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Abstract

This thesis proposes a robust, hybrid, deep-syntatic dependency-based pars-
ing architecture and presents its implementation and evaluation. The architecture
and the implementation are carefully designed to keep search-spaces small with-
out compromising much on the linguistic performance or adequacy. The resulting
parser is deep-syntactic like a formal grammar-based parser but at the same time
mostly context-free and fast enough for large-scale application to unrestricted texts.
It combines a number of successful current approaches into a hybrid, comparatively
simple, modular and open model.

This thesis reports three results:

We suggest, implement, and evaluate a parsing architecture that is fast, ro-
bust and efficient enough to allow users to do broad-coverage parsing of
unrestricted texts from varied domains.

We present a probability model and a combination between a rule-based
competence grammar and a statistical lexicalized performance disambigua-
tion model.

We show that inherently complex linguistic problems can be broken down
and approximated sufficiently well by less complex methods. In particu-
lar (1) on the level of long-distance dependencies, the majority of them can
be approximated by using a labelled DG, context-free finite-state based pat-
terns, and post-processing, (2) on the level of long-distance dependencies,
a slightly extended DG allows us to use mildly context-sensitive operations
known from Tree-Adjoining Grammar (TAG), (3) on the base phrase level,
parsing can successfully be approximated by the more shallow approaches
of chunking and tagging. We conclude that labelled DG is sufficiently ex-
pressive for linguistically adequate parsing.

We argue that our parser covers the middle ground between statistical parsing
and formal grammar-based parsing. The parser has competitive performance and
has been applied widely.
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Chapter 1

Introduction

This thesis proposes a robust, deep-syntactic dependency grammar parsing archi-
tecture and presents its implementation and evaluation. The architecture and the
implementation are carefully designed to keep search-spaces small without com-
promising much on the linguistic performance or adequacy. The resulting parser is
deep-syntactic like a formal grammar parser but fast enough for large-scale appli-
cation to unrestricted texts. It combines a number of successful current approaches
into a comparatively simple, extendable and adaptable model. It is hybrid since we
use a hand-written part-of-speech grammar combined with lexicalised probabilistic
disambiguation.

Parsing has always been a fundamental task in Natural Language Processing.
Most natural language applications, such as information extraction, machine trans-
lation, question answering, or speech recognition, can almost certainly profit from
high-accuracy syntactic parsing. The aim of parsing is to map a sentence input
onto a syntactic and possibly shallow semantic analysis, which usually consists
of a hierarchy of substrings, a syntax tree. The syntactic analysis also expresses
the grammatical functions (GF, or GR for grammatical roles) of the substrings, ei-
ther implicitly based on their position in so-called configurational approaches, or
explicitly by labeling the functions in so-called functional approaches. The ap-
proach presented here follows the latter paradigm, which is often used in a class
of grammars called Dependency Grammars (DG). There is a growing interest in
dependency-based representations for the purpose of many Natural Language Pro-
cessing tasks, such as text mining or information extraction (de Marneffe, Mac-
Cartney, and Manning, 2006; Rinaldi et al., 2007), semantic space construction
(Henderson et al., 2002; Weeds et al., 2005; Padó and Lapata, 2007), question
answering (Aliod et al., 2000), etc. One of the advantages of dependency based
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syntactic representations is that they can be mapped easily into a semantic repre-
sentation, or and they allow easy identification of the arguments of complex rela-
tions.

We propose to combine a rule-based approach with a statistical approach. We
rely on a hand-written and editable syntactic competence grammar over part-of-
speech tags, and use statistical lexical information to estimate the probabilities of
the application of these rules for performance-based disambiguation. Linguists are
often very efficient at writing grammar rules, particularly when using a framework
that is close to traditional school grammar assumptions, such as DG (Tesnière,
1959). But the scope of application and the amount of ambiguity a rule creates
is easily beyond imagination and better handled by a statistical system. The sta-
tistical model that we suggest is not probabilistic in the sense that it captures the
probability of generating a sentence (Collins, 1999), but models the decision pro-
cess of parsing. The probabilities of possible decisions at an ambiguous point in
the derivation are assumed to add up to 1. Its probability estimation is thus a dis-
criminative model (Charniak, 1996; Johnson, 2001).

Although we use a context-free CYK parsing algorithm (Younger, 1967), we
are able to treat the majority of English long-distance dependencies, by (1) us-
ing and modelling dedicated patterns across several levels of constituency subtrees
partly leading to dedicated but fully local dependency syntactic relations, by (2)
lexicalized post-processing rules, and by (3) modelling mildly context-sensitive
phenomena in DG. We also show that some non-local dependencies are simply
artifacts of the grammatical representation.

This thesis reports three results:

We suggest and implement a parsing architecture that is fast, robust and accu-
rate enough to allow users to do broad-coverage parsing of unrestricted texts
from unrestricted domains. We have parsed the 100 million word British
National Corpus and similarly large amounts of medical scientific literature.

We present a probability model and a combination between a rule-based
competence grammar and a statistical lexicalized performance disambigua-
tion model.

We show that inherently complex problems can be approximated and bro-
ken down sufficiently well by less complex methods. In particular (1) on
the level of long-distance dependencies, the majority of them can be approx-
imated by using a labeled DG, context-free finite-state based patterns, and
post-processing, (2) on the level of long-distance dependencies, a slightly
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extended DG allows us to use mildly context-sensitive operations known
from Tree-Adjoining Grammar, (3) on the base phrase level, parsing can
successfully be approximated by the more shallow approaches of chunking
and tagging. We conclude that a representationally minimalist theory such
as labeled DG is sufficiently expressive for linguistically adequate parsing.

One of the main challenges of parsing natural language is ambiguity, as we
illustrate in section 1.1. In section 1.2 we give a a brief introduction to the major
approaches of parsing natural language texts. Since full parsing is very resource-
intense, we argue in section 1.3 that it is beneficial to employ different techniques
for the various different tasks required to attain full parses. In section 1.4 we give
a high-level comparison between our parser and a number of related parsers. To
conclude the introduction chapter, we give an overview of the contents of each
chapter of the thesis in section 1.5.

1.1 Ambiguity

Parsing of natural language, unlike the parsing of formal language, is difficult due
to the inherent ambiguity of natural language at all levels. Ambiguity is a primary
motivation for using statistical methods. We now give some examples of syntactic
ambiguity for illustration. Except for the first example, they are all examples of
structural ambiguity. All of the ambiguity types discussed here occur frequently in
real-world texts.

Part-of-speech (POS) ambiguity run is a verb in I like to run but a noun in
He liked the run. Even for the seemingly clear-cut and very frequent POS classes
verb and noun, there are areas of gradience. The two semantically nearly identical
sentences I like him running and I like his running suggest a verb reading for the
former and a noun reading for the latter case. With the female pronoun her a
distinction can no longer be made.

PP-attachment I saw the man with glasses has at least 2 possible analyses: one
in which I use the glasses as an instrument for seeing, and one where the man
happens to carry glasses.

Coordination The director ran and left the factory can mean that the director
first ran the factory, but has left his position in the meantime, or that he physically
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accelerated before he stepped outside the factory.

Complex NP or 2 NPs She sold BP shares can either mean that she sold unspec-
ified shares to BP or that she sold shares of BP to somebody unspecified.

Object or adjunct I hate Mondays; but by Tuesday afternoon I usually stop
hating has a hidden reading of which most readers only become aware in the second
part of the sentence.

Adjunct or sentential complement The news reported last Friday was bad can
either mean that last Friday was bad or that the reporting of the news happened
last Friday. Readers can be unsure where the unrealized, or zero, relative marker
should occur. Lexical statistics used in lexicalized statistical models such as the
one introduced in this thesis are a natural way to express readers’ expectations.

Superordinate Clause or Zero-Relative Something the reporter said is uncon-
vincing is ambiguous if punctuation is absent. Either the reporter has discovered
an unconvincing item or listeners find that one of the reporter’s utterances fails to
convince.

Functional role Stolen Painting Found by Tree. Only a semantic role analysis
expresses the ambiguity between a geographical adjunct or a passive agent adjunct.

The vast majority of ambiguities that arise during the parsing process remain
local, because the parsing context does not allow them to lead to a full parse, but
they still tremendously slow down the parsing process. Sentences with dozens
of global readings and thousands of local partial readings are rather the rule than
the exception. Several mutually compatible analyses lead to an exponential in-
crease in the number of sentences. Church and Patil (1982) note on PP attachment
that a sequence <verb-NP-PP*> with n PPs has Cn+1 analyses, where Cn+1 is
the (n + 1)’th Catalan number. The Catalan number Cn is defined as 1

n+1

(
2n
n

)
.

Other types of ambiguity show a similar exponential behaviour. Average sentence
length in the Wall Street Journal (WSJ) is around 23 words, 7 % being above 40
words. Large-coverage grammars have very many rules, so that the combination
of a large grammar, long sentences and exponential ambiguity factors lead to enor-
mous search spaces, which make parsing a very complex and error-prone chal-
lenge.



5 1.2. Approaches to Parsing

While ambiguity often leads to an enormous number of potential readings for
a sentence, the types of ambiguity are restricted and relatively few. We will discuss
in section 1.4 that we model less than 10 types of ambiguity.

1.2 Approaches to Parsing

1.2.1 Full or Shallow Parsing

Many natural language applications have in fact dismissed full parsing as too com-
plex and too error-prone and suggested to use shallow parsing as a viable alterna-
tive. Shallow parsing is a popular alternative to full parsing, which is fast, because
it is based on finite-state techniques, and robust, because only partial unconnected
strings instead of full sentences are analysed. Recursion is absent or strictly lim-
ited. Typically, the text to be analyzed is run through a sequence of finite-states
machines, which build up a partial structure in a bottom-up fashion (Appelt et al.,
1995; Abney, 1996). Each finite-state machine corresponds to a level of syntactic
processing: tagging for POS disambiguation, chunking for Base-Phrase recogni-
tion (in some systems followed by a PP-chunker for PPs), a verbal (and some-
times nominal) attacher for the phrase level. Super-phrasal attachment is rarely
done, long-distance dependencies are usually neglected, ambiguous PPs remain
unattached, non-canonical word-order also leads to unattached constituents, or to
wrong analyses. Because of the sequential processing, each finite-state transducer
taking as input the output of the previous transducer, these shallow parsers are often
called cascaded finite-state transducers. While this approach is highly promising
and reliable for the low-level cascades – tagging and base phrase chunking – the
performance for high-level chunking drops off. Nerbonne et al. (2001) confirm
that a variety of chunking methods applied to parsing tasks do not reach the levels
of probabilistic parsers like Collins (1999) or Charniak (2000).

Briscoe and Carroll (2002) summarise the current view on shallow parsing in
the computational linguistics community. They state that shallow parsing output
is neither as complete nor as accurate as state-of-the-art statistical parsers, and
that it is unlikely that they will achieve the same level. A major problem for the
development of accurate shallow parsers is that heuristics like longest match in-
teract in complex ways with the large number of manually coded rules required
in a wide-coverage system. This makes effective development of further rules in-
creasingly difficult, and it requires increasingly painstaking manual specification
of the contexts of legitimate application for each rule. A second problem is the
pipeline approach, which requires that the output from each phase of processing
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is deterministic, thus many decisions need to be taken too early in the processing
chain, favouring local maxima. A third problem is that many such systems achieve
much of their domain independence by basing rules as much as possible on part-
of-speech (PoS) tags, rather than specific lexical items, in order to limit the number
of rules required.

In the IE community, the opinion that there is not yet a viable alternative to
shallow parsing is still predominant. Shatkay and Feldman (2003) summarise the
current view on shallow parsing as follows:

Efficient and accurate parsing of unrestricted text is not within the
reach of current techniques. Standard algorithms are too expensive
to use on very large corpora, and are not robust enough. A practical
alternative is shallow parsing. ... Shallow parsing has the benefit of
both speed and robustness of processing, which comes at the cost of
compromising the depth and the fine-granularity of the analysis

(Shatkay and Feldman, 2003)

They dismiss full parsing as too slow and too error-prone. Since the approaches
of the authors they quote in their work, large-scale parsing has made tremendous
progress, both in terms of speed and accuracy. We thus argue that their verdict
merits re-assessment.

Full and fast parsing of unrestricted texts is within the reach of current tech-
niques, as described in this thesis. On the one hand full parsing is already widely
applied in Computational Linguistics with a surface-syntax approach, namely prob-
abilistic context-free parsing (Collins, 1999; Charniak, 2000; Henderson, 2003),
and on the other hand, deep-syntactic approaches are currently becoming more
robust, scalable and faster, so that the first systems allowing full, deep-syntactic
parsing of unrestricted amounts of texts from unrestricted domains are becoming
available (Riezler et al., 2002; Clark and Curran, 2004; Miyao, Ninomiya, and
Tsujii, 2005).

We describe a system in this thesis that uses finite-state techniques for the
low-level tasks of lemmatising, part-of-speech tagging and base-phrase chunking,
but uses full parsing for finding the syntactic relations between base phrases and
clauses, thus profiting from the speed, robustness and small search-spaces of finite-
state techniques, and employing resource-intense parsing approaches only where
they are beneficial.
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1.2.2 Formal Grammar Based Parsing Approaches

A variety of parsers that are based on a formal linguistic theory have existed for a
number of years. To name only a few, they are: The Alvey tools (Briscoe et al.,
1987) have been developed for Generalized Phrase Structure Grammar (GPSG).
Lingo (Copestake and Flickinger, 2000) and Babel (Müller, 1996) has been devel-
oped for Head-Driven Phrase Structure Grammar (HPSG). FIPS (Wehrli, 1997)
and PAPPI (Fong, 1991) parse using Government & Binding (GB) grammars.
MINIPAR (Lin, 1998) and FDG (Tapanainen and Järvinen, 1997) use Dependency
Grammar (DG). Parsers for Combinatory Categorial Grammar (CCG) include e.g.
Steedman (2000). XTAG (Group, 2001) has been developed for Tree-Adjoining
Grammar (TAG). The Xerox Grammar Writer’s Workbench (Kaplan and Maxwell,
1996) has been developed for Lexical-Functional Grammar (LFG).

Formal grammars have been developed to formalise all phenomena that natu-
ral language exhibit. In their original form, formal grammar based parsers rely on
competence data only. They are also referred to as grammar-based parsers. Parsers
that are based on them are linguistically satisfactory, but their accuracy varies, and
processing times are often considered too long for large-scale application. Also,
developing and maintaining hand-written grammars and disambiguation scoring
systems in complex formalisms can be labour-intensive. As an alternative, proba-
bilistic parsers have been developed.

At the same time, some deep linguistic grammars have also achieved the cover-
age and robustness needed to parse large corpora, for two reasons. First, linguistic
performance is increasingly included into these parsers, leading to the mixed ap-
proaches which we discuss below. A second important reason for the increasing
speed and robustness of deep-linguistic grammars are recent developments in the
context-free and mildly context-sensitive parsing of of long-distance dependencies
(LDD), which will be discussed in chapter 6.

1.2.3 Probabilistic Parsers

Broad-coverage syntactic parsers that learn from syntactically annotated corpora
have become available. Classical probabilistic parsers (Eisner, 1996; Collins, 1999;
Charniak, 2000; Henderson, 2003) use context-free history-based grammar repre-
sentations (Black et al., 1993).

Implementations of probabilistic parsers can be very efficient. The CYK pars-
ing algorithm has parsing complexity O(n3) (see e.g. (Eisner, 2000; Nivre, 2003)),
which means that large-scale parsing of real-world texts becomes possible. Lexical
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information, but also entire grammars, can be learnt from annotated data.

Probabilistic parsers analyse sentences by means of imitation following an-
notated linguistic performance data. Grammars are either learnt automatically or
exist implicitly in the form of statistical data. These parser are also referred to
as data-driven parsers. They generally have good performance, both in terms of
speed, accuracy, and robustness. Until recently, they were linguistically not con-
vincing, since they produced pure CFG trees as output, i.e. trees that do not include
the deep-syntactic information known from formal grammars, i.e. neither annota-
tion for grammatical function nor the empty nodes and long-distance annotation
which are actually provided in Treebanks such as the Penn Treebank (Marcus,
Santorini, and Marcinkiewicz, 1993b; Bies et al., 1995) on which they are usually
trained. Collins (1999) uses head-driven and dependency-based models, which are
discussed in detail and compared to our approach in chapter 4.

Recently, both the discovery of deep-syntactic information (Johnson, 2002;
Dienes and Dubey, 2003; Jijkoun and de Rijke, 2004; Campbell, 2004; Musillo and
Merlo, 2005) and probabilistic parsing that includes deep-syntactic information
(Gabbard, Kulick, and Marcus, 2006) have made great progress.

The problem of grammar size is not necessarily solved in probabilistic systems,
but can be aggravated by a naive probabilistic parser implementation, in which e.g.
all CFG rules permitted in the Penn Treebank are extracted. From his 300,000
words training part of the Treebank (Charniak, 1996) obtains more than 10,000
CFG rules, of which only about 3,000 occur more than once. It is therefore nec-
essary to either discard infrequent rules, do manual editing, use a different rule
format such as individual dependencies (Collins, 1996), compress the represen-
tation (Henderson, 2003), or use a hand-written grammar as we and other mixed
models do.

1.2.4 Mixed Models

Recently, parsers that mix grammar-based and probabilistic data-driven approaches
have been particularly successful. They include the first LFG system that has man-
aged to parse the entire Treebank (Riezler et al., 2002), the first HPSG parser to
attain similar robustness (Miyao, Ninomiya, and Tsujii, 2005), and recent parsers
in the CCG framework (Curran and Clark, 2004; Clark and Curran, 2004). Kaplan
et al. (2004a) compare speed and accuracy of a successful probabilistic context-
free parser (Collins, 1999) to a robust LFG system based on (Riezler et al., 2002).
They show that their mixed model clearly outperforms Collins (1999). The system
we present in this thesis is also a mixed model, relying on the one hand on a hand-
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written competence grammar, while using probabilistic performance data obtained
from the Penn Treebank for disambiguation and pruning.

1.3 Task-Specific Division of Labour

Not all NLP tasks are equally hard or resource-intense, and there is no single ap-
proach that is suitable for all levels of processing. Parsing proper is very resource-
intense, using parsing algorithms for all levels of analysis can be seen as an overkill
if simpler algorithms deliver the same level of performance. Morphological anal-
ysis (morphology can be parsed with CFG rewrite rules), part-of-speech annota-
tion (disambiguation can be done according to the highest ranked parse) or base
phrase detection can be efficiently handled by linear, finite-state algorithms (Ab-
ney, 1991). While finite-state algorithms are less resource-intense, and while they
typically do not reach the accuracy of parsing approaches at the complex phrase
and clause level (Briscoe and Carroll, 2002), the debate whether finite-state algo-
rithms or parsing delivers better accuracy is still open. We summarise the results
of Prins (2005) below. Dienes and Dubey (2003) have shown that a task that seems
inherently hard, finding the landing sites for long-distance dependencies, can be
handled quite successfully by a finite-state tagging approach.

Kaplan et al. (2004b) discuss the integration of finite-state technology into a
formal grammar based parser using Lexical-Functional Grammar (LFG). The use
of finite-state morphology greatly decreases the lexicon development task. The
integration of finite-state morphology and part-of-speech tagging is described as
an essential step for the development of truly broad-coverage grammar, such as
Riezler et al. (2002).

Approaches integrating part-of-speech taggers as filters for the parser typically
show a considerable increase in parsing speed and robustness, and a slight increase
in accuracy. For example, Prins (2005, 72-74) reports detailed results on applying
such a filtering system to parsing. He shows that tagging preprocessing systems are
up to 10 times faster, and that the accuracy increases slightly if reasonable filtering
parameters are used. Also, very long sentences typically cause parser to run out
of memory if no filter is used. Approaches integrating base phrase chunking, such
as Prins (2005), typically report the same level of accuracy at moderately reduced
parsing time. We employ a hand-written grammar. The fact that the grammar writer
is freed from the task of writing base NP rules provided an additional practical
motivation for integrating chunking into our parser.
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1.4 Relations and Differences to Current Approaches

A number of different approaches have been used in parsing. We give a high-
level overview of approaches that are related to ours. Collins (1999) uses head-
driven and dependency-based models in his work, which is discussed in detail and
compared to our approach in chapter 4.

We have mentioned that some deep linguistic grammar based parsers have also
achieved the coverage and robustness needed to parse large corpora, by means of
adding performance data. Riezler et al. (2002) show how a hand-crafted LFG
grammar scales to the Penn Treebank with Maximum Entropy probability models.
Hockenmaier and Steedman (2002) acquires a wide-coverage CCG grammar from
the Penn Treebank automatically, Burke et al. (2004) an LFG grammar. Sarkar
and Joshi (2003) apply TAG to statistical parsing. These approaches are discussed
in chapters 4. An important reason for the increasing speed and robustness of
deep-linguistic grammars are recent developments in the context-free and mildly
context-sensitive parsing of long-distance dependencies (LDD), which will be dis-
cussed in chapter 6.

The system we propose and implement in this thesis, Pro3Gres, is a hybrid
system on many levels, which combines successful parsing and finite-state ap-
proaches1.

It occupies a middle ground between using a formal grammar and a proba-
bilistic parser. Recently, progress has been made at closing the gap between deep-
linguistic formal grammar-based parsing and probabilistic parsing. We have intro-
duced these approaches as mixed models above. An important example is Kaplan
et al. (2004a). Our work is in the same spirit. Like Kaplan et al. (2004a) our sys-
tem explores the middle ground between systems like Collins (1999) and Riezler
et al. (2002). Pro3Gres largely uses simple context-free parsing, but it delivers
deep-syntactic analyses comprising most long-distance dependencies. It integrates
efficient finite-state techniques like taggers and chunkers. Pro3Gres can be used as
an alternative to formal grammars that integrate finite-state LDD approximations,
discussed in chapter 4 (Riezler et al., 2002; Burke et al., 2004; Hockenmaier and
Steedman, 2002; Miyao, Ninomiya, and Tsujii, 2003).

It can be seen as a statistical extension of Tapanainen and Järvinen (1997).
Tapanainen and Järvinen (1997) is a popular dependency parser which relies on
constraint grammar (Karlsson et al., 1995), heuristics and a manually written gram-

1The abbreviation Pro3Gres signifies PRObabilistic, PROlog-implemented, Parser-based RObust
Grammatical Relations Extraction System
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mar, but it does not have a statistical disambiguation component. Mollá and Hutchin-
son (2003) have conducted an evaluation of Tapanainen and Järvinen (1997) on a
500 sentence test corpus (Carroll, Minnen, and Briscoe, 1999). Comparing the re-
sults of their evaluation to our results in chapter 7 indicate that we perform better.

It can be seen an extension of deterministic dependency parsing (Nivre, 2003;
Nivre, 2004; Nivre, 2006b) to non-deterministic but still low-complexity parsing
by using a beam search instead of an oracle based on a short look-ahead.

It is an extension from PP-attachment as in Collins and Brooks (1995) to all de-
pendency relations, including the majority of long-distance dependencies (Schnei-
der, 2003) as we discuss in chapter 4. It also extends Collins (1999) from ad-hoc
dependencies to functional dependencies, including the majority of long-distance
dependencies.

It can be seen as version of the chunking & dependency model proposed by
Abney (1995) that includes the treatment of long-distance dependencies. Pro3Gres
integrates shallow parsing methods in order to reduce the parsing cost (Schnei-
der, 2004). We also present Pro3Gres as a statistical, broad-scale extension of
Frank (2003)’s LFG chunk and F-structure model. We show that fully-fledged
C-structures can be obviated in a functional dependency and chunks model that
employs mild context-sensitivity (Schneider, 2005).

Our pattern-based finite-state recognition of long-distance dependencies can be
seen as an extension to the patterns in Johnson (2002) and a parsing application to
Jijkoun and de Rijke (2004).

Instead of simple and error-prone mapping schemes as in Collins (1999) or
Nivre (2006b) to map the Treebank to dependency representations, we use a func-
tionally oriented, relatively involved mapping scheme, which is explained in chap-
ters 3 and 6 and which is detailed in the appendix. We believe that the merit of
attaining a linguistically highly motivated dependency representation outweighs
the disadvantage of using a non-trivial, relatively complex mapping.

Unlike many other probabilistic parsers, Pro3Gres models a closed and clearly
defined set of ambiguities. They are the following ambiguities.

1. PP-attachment: PPs can be attached to a verb or to an noun. In I ate the
steak with fries the PP attaches to the noun, in I ate the steak with a fork the
PP attaches to the noun.

2. Words tagged _IN as preposition or complementizer: The Penn Treebank
tagset uses the tag _IN for both prepositions and complementizers. In I work
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for I like it the word for is a complementizer; in I work for the money the
word for is a preposition.

3. Subject or reduced relative clause: A noun preceding a verb can be this
verb’s subject or it may be modified by a reduced relative clause headed by
this verb. In The newspaper published the article the noun newspaper is
the subject of the verb published; in The article published last month the
noun article is modified by a reduced relative clause headed by the verb
published. The reduced relative clause reading is only possible for verb par-
ticiples. Since the performance of taggers in distinguishing simple past and
participle forms is relatively poor, also simple past forms need to be treated
as ambiguous.

4. Object or adjunct noun: A noun following a verb may be an object or an
adjunct. In Jane ate the excellent fish the NP headed by fish is an object; in
Jane ate only last Friday the NP headed by Friday is an adjunct.

5. Participles as verbs or as adjectives: Participles may serve as adjectives or
as full verbs. In Computer aided design the participle aided is an adjective;
in the headline Computer aided to design spacecrafts it is a full verb.

6. Subordinate clause attachment: Subordinate clauses attach to a verb or a
noun. In John wanted his girlfriend to leave the subordinate clause headed
by leave attaches to the matrix verb wanted; in John wanted a reason to leave
the subordinate clause headed by leave attaches to the matrix object reason.

7. Matrix verb dependent or subordinate clause subject: Nouns between
the matrix verb and the subordinate verb may depend on either of them if
a complementizer is absent. In The news reported the earthquake was bad
the noun earthquake depends on the subordinate verb; in The news reported
yesterday was bad the noun yesterday depends on the matrix verb. This
example hinges on a subject vs. reduced relative clause ambiguity. Indepen-
dent examples are possible, but less obvious, as they are not acceptable in
all English dialects: In John realized the apple was bad the noun apple de-
pends on the subordinate verb; in John ate the apple was bad the noun apple
depends on the matrix verb and is modified by a zero-relative clause.

8. Object or subject: A closed class of verbs, typically introducing direct
speech, may use subject-verb inversion if the matrix clause occurs in sentence-
final position. In “Yes”, said the student the subject and verb are inverted,
student is then the subject; in The student said something there is no inver-
sion, something is the object.
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In addition to these 8 types of ambiguities, some ambiguities are addressed
by post-processing, for example the distinction between a PP acting as a
complement or as an adjunct. Long-distance dependency ambiguities are
partly treated as post-processing and partly during parsing, as chapter 6 ex-
plains.

1.5 Overview of this Thesis

The further layout of this thesis is as follows.

Overview of the Parser and the Architecture Chapter 2 gives an overview of
the parser by discussing an example sentence. Each module is introduced and
briefly discussed. An introduction to the probabilistic model of the parser is given.
Detailed discussions are postponed to the later chapters.

Dependency Grammar Chapter 3 introduces and defines the grammar formal-
ism that we use: Dependency Grammar. We discuss the common core of all Depen-
dency Grammar approaches, and the characteristics of our version of Dependency
Grammar. Our version of Dependency Grammar is labelled with grammatical
roles, partly underspecifies word order, is mildly context-sensitive, mostly allows
content words only to be heads, and integrates tagging and chunking. This chapter
also paves the way for our treatment of long-distance dependencies in chapter 6.

Related Approaches In chapter 4, a summary of related approaches is given.
They are compared to our approach. We review research on PP-attachment as an
especially ambiguous relation, then we discuss probabilistic approaches (Collins,
1999; Charniak, 2000). They are relatively fast and robust, but quite shallow, since
they typically do not express long-distance dependencies. Some formal grammar
based parsers have now become robust enough for wide-coverage parsing. We
discuss that the complexity class occupied by Tree-Adjoining Grammar (TAG) is
a good candidate for expressing the amount of context-sensitivity found in natural
language. A non-parsing approach aiming at the expression of grammatical roles
is also discussed.

Grammar Engineering In chapter 5, we discuss our hand-written grammar in
detail. Advantages and disadvantages of hand-written grammars are discussed. It
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is discussed that one advantage is that sentence types that are rare in the training
domain but important for the application domain, such as questions, which are rare
in the Penn Treebank but important for question answering (QA), can be manually
tuned or extended. A hand-written grammar is also perspicuous and maximally
flexible. Since dependency rules are binary and the Penn Treebank tagset quite lim-
ited the expense needed for writing a large-scale grammar is manageable. Gram-
mars are re-usable since they are not very domain-dependent. The hand-written
grammar does explicitly not model rare and marked phenomena, and places strong,
linguistically well-founded constraints, which leads to a considerable search space
reduction. As rare phenomena have very low probabilities, precision and recall
values are hardly affected.

Extended Locality: Modelling Long-Distance Dependencies in a Context-Free
Fashion Context-free grammars are appealing as they allow a parser to use very
fast parsing algorithms, for example the O(n3) CYK algorithm. But context-
free grammars cannot express non-local information (long-distance dependencies,
LDDs) at least not in the traditional way involving empty nodes and structure-
sharing, co-indexation or movements. We will explore in chapter 6 how the major-
ity of LDDs can be expressed in a context-free way.

In particular, we will show that the vast majority of non-local dependencies
except for few WH-traces can be treated as local dependencies by (1) using and
modelling dedicated patterns across several levels of constituency subtrees partly
leading to dedicated but fully local dependency syntactic relations, by (2) lexical-
ized post-processing rules, by (3) modelling mildly context-sensitive phenomena
in DG. We also show that (4) some non-local dependencies are simply artefacts of
the grammatical representation.

We will first explore how unbounded LDDs really are, then we will give a quan-
titative analysis of our findings for the ten most frequent types of empty nodes in
the Penn Treebank 6.2, which cover more than 60,000 of the approximately 64,000
empty nodes of sections 2-21 of the Penn Treebank. Then we will describe the
importance of the particular grammar formalism we are using, Functional DG, to
achieve the goal of expressing most LDDs locally. We will also explain how we
deal with the LDDs that that we found to be really unbounded, namely indexed
gerunds and WH-non-subject questions. The former remain underspecified, the
latter are treated either with a simple pre-parsing approach, or with a slightly ex-
tended DG that allows us to express mildly context-sensitive constructions known
from Tree-Adjoining Grammar (TAG) in DG. The relation to TAG (Frank, 2002;
Frank, 2004) and LFG (Bresnan, 2001) is discussed.
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Evaluation In chapter 7, an extensive evaluation is given, from an unlexical-
ized baseline to the lexicalized versions of the parser. The evaluation is based on
GREVAL (Carroll, Minnen, and Briscoe, 1999) and on a selection of the GENIA
corpus. We also evaluate relations involving long-distance dependencies, as far as
this is possible. It is shown that the parser’s performance is comparable to a selec-
tion of statistical parsers and to a classical robust full parser. The roles of pruning,
backing-off, distances, lexicalisation and linguistic constraints are investigated.



Chapter 2

Overview of the Parser and the
Architecture

In this chapter we first give an overview of the parser with an example. Each mod-
ule is introduced and briefly discussed. More detailed discussions are postponed
to the appropriate chapters. In the second part we give three examples of how we
integrate linguistic knowledge into our system.

2.1 The Modular Architecture

Pro3Gres is a modular system. Each problem is broken down into sub-problems,
and a simplified solution is used. As much of the processing and disambiguating as
reasonably possible is done before and after the costly parsing stage. The parsing
itself is also least resource-intense thanks to reasonably reducing search spaces and
restricting to mostly CFG parsing. Fig. 2.1, a flowchart, gives an overview of the
parsing architecture.

We will now illustrate the information flow by sketching the on-line processing
of the following example sentence, respectively the off-line processing of Treebank
training sentences.

(1) What could rescue the bill would be some quick progress on a bill amending
the National Defense Education Act of 1958

Its top-ranked parser output can be seen in figures 2.2 and 2.3. Figure 2.2
uses the classical arrow notation, in which labelled dependencies are drawn as

16
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Figure 2.1: Pro3Gres flowchart

arrows from the governor to the dependent. Figure 2.3 uses the classical stemma
notation, in which governors appear higher than dependents, the dependency labels
appear directly below the head. The stemma notation was introduced by (Tesnière,
1959) and illustrates the similarity of dependency of constituency, which we will
discuss in chapter 3. Both representations are completely equivalent, only a few
parameters in the tree display routine differ, the graphical interface offers both as
display options.

Tagging The raw text is part-of-speech tagged using a state-of-the-art tagger.
We have used LTPos (Mikheev, 1997) and, alternatively, Ratnaparkhi’s Maximum
Entropy tagger (Ratnaparkhi, 1996).

Almost all current taggers reach accuracy of 95-97% for tagging the Penn Tree-
bank with the Penn Treebank tagset.Only an evaluation on unknown words is re-
ported inMikheev (1997), but LTPos is a popular tagger because it supports XML
and integrates a chunker, which made it particularly easy to integrate into our pro-
cessingpipeline. Ratnaparkhi (1996) report an accuracy of 96.6%. The tagged text
of our example sentence is shown in (2).

(2) What_WP could_MD rescue_VB the_DT bill_NN
would_MD be_VB some_DT quick_JJ progress_NN on_IN
a_DT bill_NN amending_VBG the_DT National_NNP
Defense_NNP Education_NNP Act_NNP of_IN 1958_CD
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Chunking The tagged text is chunked for verb groups, indicated by parentheses
and base NPs indicated by square brackets with LTChunk (Mikheev, 1997). Be-
cause LTChunk was not robust enough for chunking the whole British National
Corpus, we have used Carafe, a conditional random field chunker for that task1.
The resulting text is shown in (3).

(3) What_WP (could_MD rescue_VB) [the_DT bill_NN]
(would_MD be_VB) [some_DT quick_JJ progress_NN] on_IN
[a_DT bill_NN] amending_VBG [the_DT National_NNP
Defense_NNP Education_NNP Act_NNP] of_IN 1958_CD

Head Extraction The linguistic heads are extracted using our own implemen-
tation of Magerman rules (Magerman, 1995). The original chunk and the tag are
associated to the head. The linguistic head is the semantic and syntactic core of the
chunk. It has frequently been suggested (see e.g. (Abney, 1995; Collins, 1996))
that it is sufficient to parse between heads of chunks. The sentence reduced to
(head,tag) pairs is shown in (4).

(4) What_WP rescue_VB bill_NN be_VB progress_NN on_IN
bill_NN amending_VBG Act_NNP of_IN 1958_CD

Lemmatizing The extracted heads are lemmatised. We use Morpha (Minnen,
Carroll, and Pearce, 2000).

Functional Dependency Grammar The hand-written grammar is based on part-
of-speech tags and on few closed-classed words. For example, the leftmost parsing
step, combining what and rescue with a relative modification dependency is
licensed by a rule involving closed class words, because it is restricted to only a
subset of all WH-pronouns. First, only a subset of WH-pronouns can generally
serve as relative pronoun, secondly, the relative dependency here is special since
what is both the modified noun and the relative pronoun, short for that which.
This rule is restricted to the what WH-pronoun only. The second left parsing step
which leads to the analysis in fig. 2.2, the rule that licenses the object dependency,
is very general and applies to any verb tag followed by any noun tag.

Parsing A CYK parser (Younger, 1967) is used. CYK is a generalised, all path
version of chart-based shift-reduce parsing for CNF grammars. CYK is a bottom-

1Carafe is a programming project available at http://sourceforge.net/projects/carafe/
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up algorithm, the structure is built up in a breadth-first fashion from the lexical
item, level by level.

The algorithm in pseudo-code is as follows (N is the number of chunks in the
sentence):

for j = 2 to N # length of span
for i = 1 to N − j + 1 # beginning of span
for k = i + 1 to i + j − 1 # separator position
if Z → XY and X in chart[i to k], Y in chart[k+1 to j]
and Z not in chart[i to j]
then insert Z into chart[i to j]

At the first level, where the span length j is 2, all combinations between adja-
cent words are built, as far as they are licensed by the grammar. The combination
of A and B, the span from A to B, can either have A as head, (which can be
noted as A(B)) or B as head (which can be noted as B(A)). The following graph
illustrates the build-up at level 2 for the first 6 words in the sentence.
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In our example, A−B is What− rescue which can be licensed by a subject
relation, in which B is the head, B(A) or by a modification by relative clause
relation, in which A is the head, A(B).

B −C is rescue− bill which can be be licensed by an object or an adjunct or
a subject relation, in all cases rescue being the head. The object relation rule suc-
ceeds and creates a chart entry. Since the inverted subject relation rule is restricted
to a closed class of verbs, it fails. The adjunct relation rule is restricted to a closed
class of dependents, namely temporal expressions, and thus fails.

C −D is bill− is which licenses a subject relation. This relation will not lead
to a globally connected parse due to the parsing context, but it is possible locally,
the rule succeeds and a chart entry is created.

Analogously, structures of span length 2 are constructed for the rest of the
sentence.

At the next level, j is 3, structures with span length 3 are constructed. A − C



2.1. The Modular Architecture 22

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

A B C D E F

A B C D EB C D E F– – – – –j = 2 �
�
�

�
�
�

�
�
�

�
�
�

@
@
@

@
@
@

@
@
@

@
@
@

A B C DC D E F– – – –j = 3

j = 4

j = 5

j = 6

A B CD E F– – –

A BE F– –

A F–

�
�
�

�
�
�

�
�
�

@
@
@

@
@
@

@
@
@

�
�
�

�
�
�

@
@
@

@
@
@

�
�
�

@
@
@

Figure 2.4: Complete CYK chart for an example sentence with 6 terminals

is What(rescue(bill)) with a modification by relative clause relation, or
rescue(what)(bill) = rescue(what, bill) with a subject relation. Analogously,
the whole structure is built up, in exactly N levels, where N is the number of words
per longest parse span. All the theoretically possible chart entries for the cell A−C
are listed in the following illustration.

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

A B C D E F

A B C D EB C D E F– – – – –j = 2 �
�
�

�
�
�

�
�
�

�
�
�

@
@
@

@
@
@

@
@
@

@
@
@

A B C DC D E F– – – –j = 3
⇓

A + (B(C)) = A(B(C))orB(A,C)
A + (C(B)) = A(C(B))orC(A,B)
C + (A(B)) = C(A(B))orA(B,C)
C + (B(A)) = C(B(A))orB(A,C)

The algorithm continues analogously until one or several spans covering the
entire sentence are found. In our example, that is at at j = 6, because this example
has 6 terminals. Figure 2.4 shows the complete chart for this example.

In order to alleviate the overhead of keeping loop variables or executing loops
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that do not find results, a data-driven, fully declarative version of the CYK algo-
rithm has been implemented. For every chart entry X (where start i and end j are
provided by chart entry X), if there is a chart entry Y (starting at j + 1, and whose
end k is provided by the chart entry Y ), if there is a grammar rule Z → X, Y , then
a new chart entry Z (starting at i and ending at k) is inserted into the chart. Its
pseudo-code is as follows. We use lambda notation in order to indicate unbound
variables.

1. Add all terminals (heads of chunks) to chart

2. Loop: foreach chart entry Xλi.λk.[i to k]
foreach chart entry Y λj.[k+1 to j] # adjacent
if ¬ tried(X, Y )

foreach Z → X, Y assert Z[i to j] to chart
assert tried(X, Y )

3. If any rule was successful, prune and then Loop again, else terminate.

Relation Extraction Each chart entry is weighted by a lexicalized probability.
The frequency counts for the lexicalized statistics are obtained from the Gold Stan-
dard, which is the Penn Treebank (Marcus, Santorini, and Marcinkiewicz, 1993b;
Bies et al., 1995), at an off-line stage, before the parsing starts. Structural patterns
expressing grammatical relations are applied to the Gold Standard. For local re-
lations the patterns are relatively simple, for long-distance dependencies they can
be quite complex (see chapter 6), spanning a large number of tree generations.
Since the lexical heads need to be extracted, all patterns comprise more than one
generation.

Let us consider a simple example of a subject relation. The first sentence in the
Penn Treebank is annotated as follows.

(5)

( (S
(NP-SBJ (NNP Mr.) (NNP Vinken) )
(VP (VBZ is)

(NP-PRD
(NP (NN chairman) )
(PP (IN of)
(NP
(NP (NNP Elsevier) (NNP N.V.) )
(, ,)
(NP (DT the) (NNP Dutch) (VBG publishing) (NN group) )))))

(. .) ))
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A subject relation holds between an NP with a functional label SBJ and its VP
sister. In order to extract the lexical head, the extraction pattern needs to comprise
the possible subtrees of the NP and the VP. They can both be arbitrarily nested, in
our simple example that is not the case, both NP and VP immediately dominate
their heads. The subject NP immediately dominates two nouns, however. The
structural pattern selects the rightmost noun as the head. It thus reports a count for
the (noun,verb) pair (Vinken_NNP, is_VBZ). The counts are lemmatized after the
extraction, and back-off counts with semantic classes, tags, and only a subset of
the heads specified are also calculated.

Lexicalized Statistical Data from the Treebank During the build-up of the
parse, three sources contribute to the disambiguation: first, the parsing context only
allows a small subset of local structures to be combined into a full parse. Second,
the analyses are ranked by the product of the probabilities of the parsing decisions.
Third, analyses whose products of probabilities fall below a certain threshold are
abandoned.

A Maximum Likelihood Estimation (MLE) probability model is used for the
second and third source. We use the hash symbol (#) to symbolise frequency. The
general Pro3Gres MLE estimation is as follows. We estimate the probability of
dependency relation R at distance (in chunks) dist, given the lexical head a of the
governor and the lexical head b of the dependent. By application of the chain rule
we get:

P (R, dist|a, b) = P (R|a, b) · P (dist|R, a, b) ∼=
#(R, a, b)
#(a, b)

· #(R, dist, a, b)
#R, a, b

(2.1)

We then take the assumption that the distance depends only on the relation type,
but not on the lexical items. We have observed that some relations, for example
the subordinating clause relation sentobj or the PP-attachment relations modpp and
pobj can span many chunks, while for example in the object relation obj the object
noun is almost always immediately adjacent to its governing verb chunk. We have
also observed that there is only little variation based on lexical differences, so that
including them would considerably increase the sparseness of the data at probably
very little benefit.

P (R, dist|a, b) ∼= P (R|a, b) · P (dist|R) ∼=
#(R, a, b)
#(a, b)

· #(R, dist)
#R

(2.2)
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Some relations use variations of this general estimation rule. Let us look at
the ending of our example sentence, ... a bill amending the National Defence
Education Act of 1958. The final PP, which is introduced by of, can syntactically
be attached to 5 positions: be, progress, bill, amend, or act. For PP-attachment, a
variation on the above MLE estimation, following Collins and Brooks (1995), is
used. It includes the PP-internal noun (we will refer to it as description noun). a
is the head (a verb or a subject), b the preposition and c the description noun, R is
labelled modpp for noun-attachment and pobj for verb-attachment.

P (R, dist|a, b) ∼= P (R|a, b) · P (dist|R) ∼=
#(R, a, b, c)
#(a, b, c)

· #(R, dist)
#R

(2.3)

The co-occurrence count in the denominator expresses the sum of attachment
cases and attachment candidates (i.e. syntactically licensed, potential attachments).
Because potential attachment interacts with the rest of the parsing progress in com-
plex ways it needs to be approximated. Following (Collins and Brooks, 1995) we
model PP-attachment as 2-way ambiguous between noun- and verb-attachment2.
As regards our above example, where attachment is 5-way ambiguous, that means
that all 5 attachment possibilities are never compared directly. The denominator
generally expresses the sum of competing relations. The MLE estimations for
pobj and modpp are thus the distance factor times all attachment cases divided by
all attachment cases plus all cases where the attachment went to any competing
relation.

P (pobj, dist|verb, prep, desc.noun) ∼=
#(pobj, verb, prep, desc.noun)

#(verb, prep, desc.noun)

·#(pobj, dist)
#pobj

P (modpp, dist|noun, prep, desc.noun) ∼=
#(modpp, noun, prep, desc.noun)

#(noun, prep, desc.noun)

·#(modpp, dist)
#modpp

2There are other approximations, e.g. (Collins, 1996) uses the entire sentence as a window.
Merlo, Crocker, and Berthouzoz (1997) model 3-way ambiguous situations
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Since we model PP-attachment as ambiguous between verbal and nominal at-
tachment (as discussed in section 1.4), we make the approximation that the com-
peting relations are only pobj and modpp, hence that the denominator is the sum
of all nominal plus all verbal attachments given the lexical items. This approxima-
tion is appropriate, because PPs can usually only attach to nouns (modpp), to verbs
(pobj) or to predicative adjectives (which is subsumed under the pobj relation). If
we based our counts on all 2-way ambiguous verb-noun-pp sequences (Collins and
Brooks, 1995) we could get the following probabilities.

P (pobj, dist|verb, noun, prep, desc.noun) ∼=
#(pobj, verb, noun, prep, desc.noun)

#(pobj, verb, noun, prep, desc.noun) + #(modpp, verb, noun, prep, desc.noun)

·#(pobj, dist)
#pobj

P (modpp, dist|verb, noun, prep, desc.noun) ∼=
#(modpp, verb, noun, prep, desc.noun)

#(modpp, verb, noun, prep, desc.noun) + #(pobj, verb, noun, prep, desc.noun)

·#(modpp, dist)
#modpp

We need a slightly different model for three reasons. First, this model only
counts occurrences where a PP appears in an ambiguous position in the text. We
would like to profit from the many cases in which informative PP-attachments in
the Gold Standard do not appear in ambiguous positions, for example a sentence
initial noun attaching an immediately following PP, or a verb attaching the imme-
diately following PP. The latter case includes intransitive verbs, which are only in
an ambiguous position if they are followed by an adjunct noun. Second, the parser
needs attachment probabilities, for 2-way ambiguous, unambiguous, or multi-way
ambiguous attachments alike. Third, when an attachment probability during pars-
ing needs to be assigned, the analysis we have of the sentence is very incomplete
and does not know which other attachment possibilities there will be. Let us look
at the parsing situation where act and of 1958 are about to be combined, when the
probability of the noun attachment with act as governor and of 1958 as dependent
needs to be assigned. At this stage, there is no certain way of knowing that act will
in fact be in competition with amend, bill and progress over attaching of 1958, nor
that it will not be in competition with what and the first occurrence of the word bill
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in the sentence. An object dependency from rescue to the first occurrence of bill
rendering it inaccessible as potential governor for of 1958 will exist in the chart
at this stage, but we cannot know if it will feature in the highest ranked analysis.
These intricate interdependencies arising from the parsing context are very hard to
estimate.

We have therefore decided to model PP-attachment as generally ambiguous
between noun attachment and verb attachment (the latter including adjective at-
tachment), that is to use the putative parsing context of Collins and Brooks (1995)
as an approximation, where every verb is in competition with one noun, and every
noun is in competition with one verb. The actual competitions during parse time
are never in direct comparison, but indirectly via the comparison of the putative
parsing context.

Generally, an MLE probability is the result of the positive counts divided by
the candidate counts. For our PP-attachment model, positive counts are cases that
do attach in the Gold Standard, and candidate counts are cases that do attach in
the Gold Standard plus cases that could attach but that do not, according to the
putative parsing context. For verb attachment, then, candidate cases are all cases
where attachment as pobj occurs, plus all cases where in the ambiguous context of
a verb-noun-PP sequence the PP attaches to the noun (the label will be modpp).

P (pobj, dist|verb, prep, desc.noun) ∼=
#(pobj, verb, prep, desc.noun)

#(pobj, verb, prep, desc.noun) + #(modpp, verb,
∑

(noun), prep, desc.noun)

·#(pobj, dist)
#pobj (2.4)

P (modpp, dist|noun, prep, desc.noun) ∼=
#(modpp, noun, prep, desc.noun)

#(modpp, noun, prep, desc.noun) + #(pobj,
∑

(verb), noun, prep, desc.noun)

·#(modpp, dist)
#modpp (2.5)

The counts are backed off across several levels, following Merlo and Esteve Fer-
rer (2006) by including semantic classes, the WordNet lexicographer file ID for
nouns and the Levin top class for verbs. The probabilities used for the attachment
of the PP of 1958 in the example sentence are as follows.
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Probability of attachment of the PP of 1958 to the noun bill

P (modpp, dist|noun, prep, desc.noun) ∼=
#(modpp, bill, of, Class18) = 8

#(modpp, bill, of, Class18) + #(pobj,
∑

(verb), bill, of, Class18) = 8

·#(modpp, dist) = 677
#modpp = 53591

= 0.0126

Probability of attachment of the PP of 1958 to the verb amend

P (pobj, dist|verb, prep, desc.noun) ∼=
#(pobj,

∑
(verb), of,

∑
(noun)) = 420

#(pobj,
∑

(verb), of,
∑

(noun)) + #(modpp, verb,
∑

(noun), of, desc.noun) = 5586

·#(pobj, dist) = 25650
#pobj = 46124

= 0.0418

Probability of attachment of the PP of 1958 to the noun act

P (modpp|noun, prep, desc.noun) ∼=
#(modpp, act, of, Class18) = 14

#(modpp, act, of, Class18) + #(pobj,
∑

(verb), act, of, Class18) = 14

·#(modpp, dist) = 11918
#modpp = 53591

= 0.2224

As we have mentioned, there is no direct competition between different possi-
ble noun-PP attachments in this model. For example bill and act are not in direct
competition in this model, their probabilities differ due to the distance and their
relative probabilities when in competition to verb attachment.

We have now explained the probability for a single parsing decision, equalling
a single attachment. The probability of a tree for a given sentence is the product of
all the single decisions that build up the tree. As can be seen in the triangular chart
that is built up by the CYK algorithm (see figure 2.4), the number of chart entries
m is related to the number of terminals n as follows.

m =
(n− 1)2 + (n− 1)

2
(2.6)

The probability of a tree T given a sentence S with n terminals is therefore:
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P (T |S) =
m∏

i=1

P (Ri, disti|ai, bi) (2.7)

We estimate the probability of a tree given a sentence. We thus use a discrimi-
native, not a generative model (Johnson, 2001).

MLE is not the statistical method leading to the best possible results. However,
Bikel (2004, 109 ff) points out that using advanced statistical methods does often
not improve performance considerably. He only reports a 1 % increase in parsing
performance on a Collins (1999) parser when replacing the MLE model by a Maxi-
mum Entropy model. We have therefore decided to investigate into a sophisticated
back-off model rather than into alternative statistical methods.

Pruner In complex real-world sentences, constructing all possible chart entries
can become very time-consuming. It has been shown (see e.g. Brants and Crocker
(2000)) that discarding locally very improbable partial analyses hardly affects a
parser’s performance, because the chance that locally very improbable analyses
become parts of the most probable analysis later is very small. Pruning happens
during parsing, as indicated by the double arrow in figure 2.1. Pruning is a standard
procedure, used in all beam parsers (Ratnaparkhi, 1997; Henderson, 2003).

We use the following three pruning methods: hard local cut, fixed beam prun-
ing, and large chart panic mode. The hard local cut method rules out local attach-
ments that are very improbable. As a default, all attachments that have a probability
below 1 % are immediately cut. The fixed beam pruning method restrict the num-
ber of chart entries for each span. As a default value for robust, large-scale parsing
we use 5. The large chart panic mode is used to cope with very complex real-world
sentences. It only has an effect in a small minority of real-world sentences. When
the total number of chart entries exceeds a certain threshold (we use 1000 as a
default) the value used for the hard local cut is increased according to a heuristic
function which takes the span length of the chart entries and the total number of
chart entries into account. The large beam panic mode entails that in very complex
sentences some permissible spans are never found, but it allows the parser to de-
liver a set of long partial analyses for every sentence. The largest sentence we have
encountered in the British National Corpus consists of over 200 chunks.

Parse Collection In case no complete span for an input sentence can be found,
the parser needs to resorts to collecting partial parses. Starting from the most prob-
able longest span, recursively the most probable longest span to left and right is
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Figure 2.5: Parser output

collected. There are two reasons why no complete span can be found in some
sentences. Either it contains a (rare, highly marked or potentially unacceptable)
construction that is not covered by our grammar, or the pruner prevents a possible
complete structure from being created.

Post-Processing After parsing, a post-processing module converts the depen-
dency tree into a graph structure which contains additional, deep-syntactic rela-
tions, so-called long-distance dependencies. An example of a sentence involving
a long-distance dependency is shown in figure 3.3, a so-called control structure,
where mutations becomes the subject of the subordinate verb compete due to the
semantic of the control adjective unable. We give a short overview of long-distance
dependencies in the following, and discuss them in detail in chapter 6.

2.2 Integrating Linguistic Knowledge into the System

2.2.1 The Boundedness of Long-Distance Dependencies

Long-distance dependencies are traditionally grouped into two classes (see e.g.
Pollard and Sag (1994)). In the first class, there is an overt constituent in a nonar-
gument position that represents the absent constituent (the trace) in the argument
position. In this class we find topicalisations, WH-questions, WH-relative clauses
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and pseudo-cleft constructions. In the second class there is a constituent in an ar-
gument position that also represents an argument of a different predicate. In this
class we find control and raising, relative clause, passive, and it-cleft constructions.

We show in chapter 6 that all cases of the first class type except for complex
WH-movements can be treated locally in Dependency Grammar. For the second
class type, context-free parsing is sufficient, because the coreference of the argu-
ment position can be resolved at the post-processing stage by means of a statistical
method. Let us look at an example of a control structure.

(6) John wanted to leave.

Every subordinate clause which is subjectless and infinitival, such as to leave
here, triggers the post-processing module to take a decision based on the lexical
probability of the matrix verb (want) which introduces subject control, object con-
trol, or neither. In this case, the outcome of the decision constructs a coreference
to the subject of the matrix verb, indicating that on the deep-syntactic level John is
also the subject of leave. Complex WH-movements needs a different treatment. A
simple mildly context-sensitive approach is discussed and implemented in chapter
6.

2.2.2 Constraints on Grammar Rules

Linguistic knowledge allows us to place strong restrictions on the co-occurrence
of different relation types. Verbs that have attached adjuncts cannot attach comple-
ments, since this would violate X-bar constraints. Verbs that have no object cannot
attach secondary objects. The application of dependency rules can often be lexi-
cally restricted: for example, only temporal expressions occur as NP adjuncts. We
have noticed during the development of the grammar that these restrictions play
a crucial role for the improvement of the parser’s performance. We describe the
grammar in detail in chapter 5, we assess the impact on speed and performance of
these constraints in section 7.8.

2.2.3 Mapping Grammatical Relations for the Probability Estimation

We integrate a wide selection of knowledge sources in our system, and a variety of
techniques. Integrating grammatical knowledge does not only have an impact on
the grammar rules. We now give an example of how grammatical knowledge can
be used for the probability estimation.
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We have discussed the MLE estimation in general in section 2.1, and the case of
PP-attachment relations. Some relations have models that slightly differ from the
general estimation. For example, the noun-participle relation integrates linguistic
knowledge about similar grammatical relations.

The noun-participle relation is also known as reduced relative clause. Exam-
ples are the report written or the soldiers returned home were greeted. Reduced rel-
ative clauses are frequent enough to warrant a probabilistic treatment, but consider-
ably sparser than verb-subject or verb–object relations. They are in direct compe-
tition with the subject-verb relation (as discussed in section 1.4), because both are
licensed by a NP followed by a VP. We have a subject-verb relation in the report an-
nounced the deal and a noun-participle relation in the report announced yesterday.
The majority of modification by participle relations, if the participle is a past par-
ticiple, functionally correspond to passive constructions (the report written ∼= the
report which has been written). In order to reduce data sparseness, we have added
the verb–passive-subject counts (psubj) to the noun–participle counts. Some past
participles also express adjunct readings (the week ended Friday); therefore the
converse, i.e. adding noun–participle counts to verb–passive-subject counts, can-
not be recommended.

The probability estimation for the modpart relations across all backoff levels
is as follows (we map the noun a to its Wordnet-class å and the verb b to its Levin-
class b̊ ).

P (modpart, dist|a, b) = (2.8)

#(modpart,right,a,b)+#(psubj,left,a,b)
#(modpart,right,a,b)+#(psubj,left,a,b)+#(asubj,left,a,b) if>0,else

#(modpart,right,̊a,̊b)+#(psubj,left,̊a,̊b)

#(modpart,right,̊a,̊b)+#(psubj,left,̊a,̊b)+#(asubj,left,̊a,̊b)
if>0,else

#(modpart,right,b)+#(psubj,left,b)
#(modpart,right,b)+#(psubj,left,b)+#(asubj,left,b) if>0,else

#(modpart,right,a)+#(psubj,left,a)
#(modpart,right,a)+#(psubj,left,a)+#(asubj,left,a)


·#(modpart,dist)

#modpart

As the last backoff, a low non-zero probability is assigned for most relations.
Again, based on grammatical knowledge, there are exceptions to this: the verb–
adjunct relation can only occur with a closed class of nouns, mostly with adverbial
expressions of time. In order reduce parsing complexity, only the backoff levels
that include the adjunct noun or its class are used. The backoff hierarchy is also
changed. Before using a semantic class on the dependent and keeping the lexical
head of the governor, the adjunct relation keeps the head of the dependent and
uses the semantic class of the verb. While predicates place selectional restrictions
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on their arguments, adjuncts are themselves a restricted class, a class that can,
however, be selected by almost any predicate (Merlo and Esteve Ferrer, 2006).



Chapter 3

Dependency Grammar

In this chapter we give a detailed introduction to Dependency Grammar (DG).
We need to discuss DG in detail for a number of reasons. First, it motivates out
mapping of the constituency representation of the Penn Treebank to a dependency
representation. Second, we need to clarify what we mean by functional in func-
tional dependency grammar. Third, the discussion of headedness and projectivity
is an important preparatory step for our treatment of long-distance dependencies,
which hinges on the fact that functional DG naturally extends locality to the clause
level. We discuss long-distance dependencies in chapter 6. Fourth, we elucidate
the close relationship of DG to Head-Driven Phrase Structure Grammar (HPSG),
and to Lexical-Functional Grammar (LFG).

There exist a number of different versions of DG. In section 3.1 we present
four important conceptions of the common core of all DG versions. In section 3.2
we then discuss some characteristics of the version of DG that we use, which is
best described by the term functional DG.

3.1 Conceptions of DG

In the following we will present four conceptions of what DG is. First we give a his-
torical, informal definition of the intuition of DG as an extended valency grammar.
Second we discuss that the government relation is the fundamental DG primitive.
Third we give a more formal definition and discuss in which ways DG has been
presented as equivalent to constituency, and in which ways it is not. Finally, we
discuss that DG can be mapped to X-bar under certain conditions.

34
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3.1.1 Extended Valency Grammar

Intuitively, DG is a valency grammar. The term valency or valence is borrowed
from the definition of valency in chemistry. Different verbs take a specific number
and type of complement. A monovalent verb like sleep typically takes a subject
(she sleeps) but cannot take an object *she sleeps it. A bivalent verb like eat typ-
ically takes a subject and an object (she eats it), although the object may also be
absent. A trivalent verb like give typically takes a subject, a direct object and an
indirect object (she gives him flowers or she gives flowers to him). The type of
complement, typically nouns, prepositional phrases or subordinate clauses, is of-
ten restricted. While for example epistemic verbs may take subordinate clauses (he
thinks that she sleeps), the majority of verbs cannot (*he eats that she sleeps). Also
the type of argument can be restricted. For example, the type of complementizer
introducing a subordinate clause depends on the matrix verb.

(7) I think that you will come.

(8) *I wonder that you will come.

(9) *I think whether you will come.

(10) I wonder whether you will come.

Valency is closely related to transitivity, intransitive verbs being monovalent,
transitive verbs being bivalent, and ditransitive verbs being trivalent. Transitivity
typically does not refer to restrictions on the type of arguments and does not include
the subject valency.

Valency is not restricted to verbs only. Relational nouns and some predicative
adjectives also open valencies. Predicative adjectives have in common with verbs
that different subclasses of them take different complements, usually certain PPs
and complementizers. For example, afraid requires a PP introduced by of, ready
needs a PP introduced by for:

(11) I am afraid of action.

(12) *I am afraid for action.

(13) *I am ready of action.
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(14) I am ready for action.

Nouns that are derived from verbs or adjectives partly keep the valencies. Va-
lencies for PPs are usually kept, the subject of object valency often corresponds to
a PP introduced by of.

(15) The offer of a present to the guest

(16) ?The house of a present to the guest

Valencies have been extended from verbs to many other word classes, and from
syntax into semantics (Helbig, 1992, 108). Valency theory was also influenced by
(Fillmore, 1968)’s Case Grammar and by collocation analysis.

Especially from the viewpoint of the German DG tradition (see e.g. Tapanainen
and Järvinen (1997, 3)), DG is based on valency. Weber (1997, 34) stresses the in-
fluence of the seminal valency work by Tesnière (1959) on an entire generation
of German lexicographers. The word opening a valency is defined as governor
or equivalently head in DG, the word filling the valency is called dependent. Un-
like constituency grammar, DG leaves the distinction between mother node, gover-
nor and head underspecified. The traditional stemma notation places the governor
above the dependent and draws a line between them. In example 17 we see a
stemma DG notation (a.), a redundant stemma DG notation (b.) in which the head
as a daughter of the governor is explicitly added, and a constituency representa-
tion (c.), in which the governor is a phrasal category. We will discuss the relation
between DG and constituency in more detail in section 3.1.3.

(17) eats pizza

a. eats
@@

pizza

b. eats
@@

pizza

pizza

��
eats

c. VP
@@

NP

pizza

��
eats

In DG, valency was also extended from argument to adjuncts and even to func-
tion words in order to be able to build up complete dependency structures. Some
dependencies are not valencies or grammatical functions in a strict sense. For ex-
ample, the dependence of a subordinate verb on the complementizer that introduces
the subordinate sentence is difficult to explain on valency grounds. But where pos-
sible, Tesnière’s conception of nucleus was kept to alleviate the need to create an
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unlimited number of dependencies for which valency cannot account. A nucleus is
a content word plus its attributed function words1. Only nuclei have dependency
relations among each other. For a verb, typical function words are auxiliaries. For
a noun, typical function words are determiners. Content words typically form open
classes, function words closed classes. Valency focuses on events between content
words, usually underspecifiying definiteness, polarity, modality, aspect and tense.
This valency background of DG is a major reason why the definition of heads in
DG is often diametrically opposed to the definition of heads in GB (where function
word categories often dominate content words) or in Montague grammar (where
determiners dominate nouns). We will discuss head definitions in section 3.2.1.

There is a substantial overlap between the practical notion of verb and noun
chunk and the theoretical concept of nucleus, but there are also differences. For
example, a predicative adjective can be seen to form a nucleus with a copula. For
practical parsers, they can be considered similar enough, so that chunking plus
parsing between chunk heads as suggested by Abney (1995) follows the philosophy
of valency grammar and gives it a thorough theoretical linguistic motivation.

3.1.2 Government Grammar

DG leaves the distinction between governor and head underspecified. DG is a
grammar in which the government relation is a fundamental primitive. Govern-
ment, a relatively complex constituent relation in GB, which is needed for example
to assign Case, is available in dependency as a primitive. Covington (1992, 4) con-
cludes that since only lexical items can govern in DG, dependency and government
coincide. Covington (1992, 4) equates government to immediate dependency, the
most local form of dependency. The restriction to immediate dependency is a DG
version of the Minimality condition (Chomsky, 1986; Rizzi, 1995).

As a first approximation, lexical government can be defined as c-command in
GB. c-command is defined as follows. α c-commands β iff:

1. the first branching node dominating α also dominates β

2. α does not dominate β.

This definition is not sufficient to assign case to subjects. Subject case is as-
sumed to be assigned by I . I does not c-command the subject NP due to the
intervening I ′ node.

1Nuclei are also known as bonetsus from the Japanese grammar tradition.
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In order to allow I to govern the subject NP the notion of m-command was
introduced and the definition of government was adapted. Typical definitions of
government also constrain the governor to be a terminal category and require that
Minimality be respected.

α c-commands β iff:

1. the first maximal projection dominating α also dominates β

2. α does not dominate β and β does not dominate α .

α lexically governs β iff:

1. α is an X0 category

2. α m-commands β

3. Minimality is respected.

As DG leaves the distinction between words and maximal projections (phrases)
underspecified, it can be assumed that the version of government expressed by DG
dependency corresponds to m-command. Since DG only knows lexical categories
(words), the restriction to X0 is redundant in DG. We will return to Minimality in
chapter 6.

3.1.3 Terminal Node Context-Free Grammar

We will now compare DG and constituency in detail. We give formal definitions
of a version of context-free DG and context-free constituency. They are proven to
be equivalent, but they miss out on important characteristics of DG.

We have seen in section 3.1.1 that DG leaves the distinction between mother
node and lexical head underspecified. DG is a context-free constituent grammar
(CFG) that only knows terminal nodes. We repeat the example: in 18 we see a
stemma DG notation (a.), a redundant stemma DG notation (b.) in which the head
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as a daughter of the governor is explicitly added2, and a constituency representation
(c.), in which the governor is a phrasal category.

(18) eats pizza

a. eats
@
@
pizza

b. eats
@
@
pizza

pizza

�
�

eats

c. VP
@
@

NP

pizza

�
�

eats

This is a classical conception of DG. It has been used by Gaifman (1965) for
his proof that DG is a proper subset of CFG. It turned out that this proof is an over-
simplification. It has come under criticism for several reasons. First, Abney (1994)
shows that the essential DG property of headedness has been supressed by Gaif-
man (1965). Second, Baumgärtner (1970) was the first to discuss that the definition
used by Gaifman (1965) fails to reflect an important property of Tesnière’s concep-
tion of DG: DG expresses immediate dominance3 but may leave linear precedence4

underspecified. Third, Baumgärtner (1970), Tapanainen and Järvinen (1997) and
Nivre (2006a) discuss that Gaifman (1965) assumes a projective version of DG,
while at least Tesnière’s original DG conception is non-projective5 (see section
3.1.3). Fourth, DG often uses dependency labels, typically containing grammati-
cal relation information (such as subject or object, see section 3.1.1). Covington
(1994) discusses how they can be used to map DG to and from X-bar. We illustrate
these points in more detail in the following.

Headedness

We follow Abney (1994) for his definition of Gaifman’s DG and CFG. A DG is
a quadruple G = (Σ, P, S, L), in which Σ is a set of word categories, P is a set
of productions, S ⊂ Σ is the set of start symbols, and L is the lexicon of words.
Productions P licence trees. Abney (1994) defines their form as X(α;β), X is a

2This explicitly expresses the essential DG characteristic that one daughter and the head are
identical. In (a.) this is not expressed, as it is redundant information

3dominance is defined as appearing higher in a tree representation. Immediate dominance is
defined as a direct mother-daughter relation in a tree representation

4Precedence is an order relation. Precedence of A over B is defined as A appearing before B.
Linear precedence is defined as order relation in the unannotated, hence non-hierarchical, linear text.

5Projectivity of a tree is defined as follows: If for every node in the tree, for every n, the rightmost
daughter of its nth daughter appears before the leftmost daughter of its n + 1th daughter, then the
tree is projective.
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Figure 3.1: Dependency tree example

category, α and β are sequences of categories: α is the sequence of dependents to
the left of X , in the listed order, β is the sequence of dependents to the right of X ,
in the listed order

A DG lexicon L relates words to categories. In a word-only DG, words and
categories are equated, but in most practical DG’s, categories are pre-terminals
such as part-of-speech tags.

For example, the following DG licences the dependency tree in figure 3.1.

Categories Σ Productions P Lexicon L Start Node S
W X(W ; ε) w ∈W S = Y
X Y (X;Z) x ∈ X
Y y ∈ Y
Z z ∈ Z

ε ∈ ε

A CFG is a quintuple G = (V,Σ, P, S, L), in which V is a set of nonterminal
categories, and, like in DG, in which Σ is a set of word categories, P is a set of
productions, S is the set of start symbols, and L is the lexicon of words. Unlike in
DG, S ∈ V , and productions P are of the form X → α, where X ∈ V and α ∈
(V ∪Σ∪L). Productions P licence trees. The production X → Y1, ...Yn licences
a node iff the node has category X and its children have categories Y1, ...Yn, in the
given order.

For example, the following CFG licences the phrase structure tree in figure 3.2.

Categories Σ and V Productions P Lexicon L Start Node S
W X →W *X w ∈W S = Y
X Y → X *Y Z x ∈ *X
Y y ∈ *Y
Z z ∈ Z

Except for the extra non-terminal nodes introduced in CFG, the DG and CFG
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Figure 3.2: Constituency tree example

representations seem identical. Tree 3.2 can be induced from tree 3.1, ∗X and
∗Y are non-terminal categories representing the heads of X and Y . While this
seems like a small change, it contains a crucial difference: the newly introduced
categories ∗X and ∗Y are only related to X and Y because the production rules
of this example happen to enforce it; but it is no inherent characteristic of CFG
(Abney, 1994, 3).

The essential characteristic of DG that one daughter is the head is not a part of
the CFG formalism. Gaifman (1965)’s proof thus loses much of its interest as it is
based on wrong assumptions, as Abney (1994, 4) concludes.

Abney (1994) thus suggests to compare DG to Headed Context-Free Grammar
(HCFG), a CFG in which a unique child of each node is distinguished as a head.
Formally, productions are defined as pairs (r, i), in which r is a CFG production,
and i is the index of the head, with 1 ≤ i ≤ |r|.

A HCFG can be related to a unique DG, which Abney (1994) calls projection
dependency grammars. A DG can be related to several HCFGs, however. In order
to understand this point, it is important to clarify the distinction between produc-
tions P and DG rules. Productions are not DG rules, but they licence DG trees that
arise from the application of DG rules. DG rules are binary by definition, they re-
late a governor to a dependent. In the example tree 3.1, the application of two DG
rules, both with Y as governor, with X as dependent to the left in one DG rule, and
with Z as dependent to the right in a second DG rule leads to the one production
Y (X;Z). The order of application of these two rules is left underspecified.

If we define projection category as a sequence of projections in a headed tree,
we can define dependencies between projections. For example, in the headed tree
of example 19, the projection category (B,D, S) has one left dependent, (A), and
one right dependent, (C).

(19)
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One can map a headed tree to a unique dependency tree. Each projection p in
the headed tree maps to a node π in the projection dependency tree. The category
of π is the projection category of p. Projections q1, ..., qn that are dependents of p
in the headed tree map to the dependents of π in the projection tree. The projection
dependency tree of (19) is (20):

(20)
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The projection dependency tree of a headed tree is unique, but several headed
trees may have the same projection dependency tree. The projection dependency
tree (20) corresponds to the two headed trees in (21). Projection-dependency trees
thus abstract away from the order in which dependents are combined with their
governor (Abney, 1994, 6).

(21)
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The fact that DG underspecifies the attachment order has also led to the ob-
servation that DG is an X-bar Grammar without intermediate nodes (Covington,
1992; Miller, 2000), and the suggestion that the labels in labelled DGs may be
used to recover the X-bar intermediate nodes (Covington, 1994). We discuss this
in section 3.1.4.
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Linearity

Another reason why Gaifman (1965)’s proof has been criticised is that it does not
respect the property of Tesnière’s original DG that dependencies express imme-
diate dominance (ID) but not linear precedence (LP). There is a family of formal
grammars distinguishing between ID and LP, so-called ID/LP grammars (Shieber,
1983). CFG incorporates dominance and precedence into a single rule, while
ID/LP grammars maintain separate rule sets. The ID/LP approach is used in head-
driven phrase structure grammar (HPSG) and lexical-functional grammar (LFG).

In some versions of DG, linear precedence is left underspecified in the rep-
resentation. This entails that these versions are unable to reconstruct the linear
order from the representation. They are thus unsuitable for language generation
purposes.

Baumgärtner (1970) was the first to note that Gaifman (1965)’s proof sup-
presses the ID/LP distinction. Gaifman (1965) uses the following general form for
his proof.

w are dependents to the left, in the order from m to 1, x is the head, y are
dependents to the right, in the order from 1 to n.

w(m)...w(1) x y(1)...y(n) (3.1)

Baumgärtner (1970, 57) explains that this formula allows easy comparison be-
tween constituency and dependency, because it can be transformed into the follow-
ing rewrite rule (where [#] is at the position of the governing symbol)

x→ w(m)...w(1) [#] y(1)...y(n) (3.2)

Such a DG is equivalent to CFG (except for headedness, see the paragraph
headedness above) but supresses the underspecification of linearity, an important
characteristic of many DG versions. Baumgärtner (1970, 60-61) points out that the
linear ordering is not expressed in DG, but that this proof forces the linear ordering
onto DG, thus making incorrect assumptions. At the same time he admits that
linearity may play a secondary role.

An advantage of a grammar that focuses on ID is that for free word-order phe-
nomena an inversion of the “canonical” dependency direction under well-defined
conditions can be allowed in the grammar, without the need to resort to long-
distance dependencies. Such phenomena are the English subject-verb inversion



3.1. Conceptions of DG 44

in non-support questions (22) or sentence-final verbs of utterance (23), or clause
order inversions with sentence-final verbs of utterance (24).

(22) Is Peter tall?

(23) Peter is tall, says he.

(24) Peter is tall, he says.

A disadvantage of such a grammar is that parsing complexity increases. Bar-
ton (1985) proves that ID/LP parsing is actually NP-complete. In practical terms,
the fact that linearity may play a secondary role, constraining the direction of de-
pendencies wherever possible, alleviates this theoretical problem. Barton (1985,
77) elaborates on the practical implications of the increase in parsing complexity
for ID/LP grammars. First, he observes that parsing time only explodes in prac-
tice if the amount of ambiguity is high, if linearity remains largely unconstrained.
Second, he observes that although parsing time may exponentially increase, ex-
panding an ID/LP grammar into all possible CFG rewrite rules, a so-called object
grammar, leads to much worse time behaviour, since the object grammar very eas-
ily explodes.

[T]he use of Earley’s algorithm on the expanded object grammar con-
stitutes a parsing method for the fixed-grammar ID/LP parsing prob-
lem that is indeed no worse than cubic in sentence length. However,
the most important aspect of this possibility is that it is devoid of prac-
tical significance. The object grammar could contain trillions of rules
in practical cases (Shieber, 1983, 4).

(Barton, 1985, 80)

In practice, linearity can indeed be constrained in the majority of cases. In
the above examples, in (22) only questions allow an inversion of the verb and the
subject; in example (23) only the closed class of epistemic verbs allow an inversion
of the verb and the subject; the subordinate clause relation sentobj of example 24
is indeed a dependency relation that can always go in either direction, but most
relations are considerably or fully constrained in English.
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Projectivity

Tesnière’s original DG is not context-free. It does not rule out crossing depen-
dencies. Levy (2005) proves that non-projecitivity and crossing constituency are
identical. The few DG implementations that aim to follow Tesnière are thus often
context-sensitive, notably Tapanainen and Järvinen (1997) and Nivre (2006a). Sur-
prisingly, there are few context-sensitive DG parsers. Nivre (2006a, 74) states that
although extensions to context-free grammar have been studied quite extensively,
few corresponding dependency-based systems exist.

Let us look at an example sentence containing non-projective dependencies.
Figure 3.3 shows the Pro3Gres analysis of the sentence Mutations affecting the 5’
guanine residues of the kappa B site were unable to compete for these NF-kappa
B-related proteins. Only the heads of domain terms are represented in the tree.
mutations is the surface-syntactic, projective subject of the main verb unable, but
on a deep-syntactic level, mutations is also the subject of compete. This depen-
dency is non-projective, since it crosses other dependencies. Non-projective de-
pendencies appear in a number of phenomena, their frequency may depend on how
deep-linguistic the analysis is. Figure 3.4 shows an example of relative pronoun
resolution and the optionally available feature of expanding appositions by means
of non-projective dependencies.

Neuhaus and Bröker (1997) have proven that unconstrained context-sensitivity
leads to an NP -complete recognition problem for dependency parsing. Context-
sensitivity thus needs to be restricted to a minimum. We will suggest in chapter
6 that most English long-distance dependencies can be expressed in context-free
fashion, and discuss that for the few remaining long-distance dependencies, mild
context-sensitivity is sufficient.

Some characteristics of DG entail that it needs fewer long-distance dependen-
cies than classical CFGs. We have seen in the linearity paragraph that free word
order can be modelled in an ID grammar without the need for long-distance de-
pendencies. We have seen in the headedness paragraph that DG underspecifies the
order of attachment and projection levels. This entails that different verbal pro-
jections such as V P and S are not distinguished, no distinction between internal
and external argument is maintained. Accordingly, fronted positions are available
locally to the verb in DG as illustrated in example (25). Generally, constituents
that appear semantically closer need not appear linearly closer in the text. The dis-
located verbal particle up in example (26) can be attached locally to the verb, even
though in a typical parsing process it will be attached later than the object her.

(25) In God we trust
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Figure 3.5: The partial CFG tree corresponding to the local DG passive subject
relation.

(26) He called her up

Dependency Labels

Many DG versions use relation labels, which typically express grammatical re-
lations. Such labels are unknown in CFG. Labels can be used to map non-local
partial trees onto a local labeled DG relation. For example, partial trees from the
Penn Treebank expressing the passive subject relation are of the form shown in
figure 3.5 (where X is the co-indexation). The same information can be expressed
by using a dedicated DG label, a label that expresses the passive subject only.

In section 3.1.4 we will see that relation labels can also be used to map DG
representations to X-bar representations.

3.1.4 A Version of X-bar Theory

We have seen above in subsection 3.1.3 in the paragraph headedness that DG can
be compared to a headed CFG (HCFG). A subset of HCFG which has become
widely used is the linguistic theory of X-bar (Chomsky, 1970; Jackendoff, 1977).
It was recognised early that natural language does not need the full set of rules that
can be expressed by CFG rewrite rules. Rewrite rules in which lexical categories
project to phrases of the same category (the category of the phrase is endocentric)
are sufficient. It was also observed that these categories share the same build-up,
and that the rewrite rules for these phrases can be unified into a universal scheme
in which the category type X can be instantiated by any lexical category. This
universal set of patterns is called X-bar scheme. Its intermediate level of projec-
tion, X-bar, is recursive, attaching an adjunct at each recursion. A pattern with no
recursion of X-bar and a pattern with one recursion of X-bar can look as follows.
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The recursion at the projection level of X’ ensures that an arbitrary number of
adjuncts can be attached, while the number of arguments is fixed, determined by
the subcategorisation of the head. Stowell (1981) summarises the characteristics of
X’ as five conditions.

1. Every phrase is endocentric.

2. Specifiers appear at the X”-level; subcategorised complements appear within
X’.

3. The head always appears adjacent to one boundary of X’.

4. The head is one bar level lower than the immediately dominating phrasal
node.

5. Only maximal projections may appear as non-head terms within a phrase.

While a HCFG can be mapped to a unique DG representation, a DG represen-
tation may correspond to several headed trees, due to the DG characteristics that
the attachment order is underspecified. The projection dependency tree of (20) can
be mapped to both headed trees (21), repeated here as (28) and (29).
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The projection category (B,D, S) corresponds to the projections of a lexical
category X in X-bar theory. D corresponds to the intermediate category X ′. When
mapping from the projection dependency tree (28) to a headed tree (29), S al-
ways dominates all categories, B always dominates the head only, but it is unclear
whether the intermediate category D dominates B and C as in tree 29a. or A and
B as in tree 29b. We can thus conclude that while X-bar expresses the distinction
between the different levels of projections, the bar levels, DG is not able to do so.
Covington (1992, 2) defines DG in terms of X-bar with only one non-terminal bar-
level. The distinction between terminals and projections is possible because termi-
nals have no dependents. But a distinction between maximal projections (X ′′) or
intermediate projections (X ′) is not possible.

X-bar theory uses three types of dependencies: specifier, the non-head depen-
dent of X ′′; adjunct, a non-head dependent of X ′ with X ′ as sister; and argument,
a non-head dependent of X ′ with X0 as sister. If one uses a labelled DG that
knows these three types or can map to them unambiguously, then DG and X-bar
are equivalent (Covington, 1994).

[I]nstead of being considered equivalent to flat X-bar trees, depen-
dency structures can be mapped onto X-bar trees that introduce stack-
ing in a principled way. Here is a sketch of such a reinterpretation,
consistent with current X-bar theory. Given a head (X) and its depen-
dents, attach the dependents to the head by forming stacked X nodes
as follows:

1. Attach subcategorized complements first, all under the same X
node. If there are none, create the X node anyway.

2. Then attach modifiers, one at a time, by working outward from
the one nearest to the head noun, and adding a stacked X node
for each.
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3. Finally, create an X node at the top of the stack, and attach the
specifier (determiner), if any.

(Covington, 1994, 7)

We can conclude that a labelled DG using labels that can be mapped to speci-
fier, argument, and adjunct functions is a notational variant of X-bar.

3.2 Characteristics of functional DG

The informal definitions in section 3.1 have allowed us to introduce some char-
acteristics of DG. We would now like to introduce the characteristics of our ver-
sion of DG, which is best represented by the term functional DG, in which func-
tional is closely related to the sense of LFG f-structure (Bresnan, 1982; Kaplan and
Maxwell, 1996; Bresnan, 2001). We will discuss the close relation between LFG
and our DG in section 6.5.

An LFG f-structure conception presumes the use of a labelled DG, in which
the labels express grammatical relations. The distinction between configurational
and functional structure is not always straightforward, however. Let us consider
three examples. First, LFG uses the relations COMP for subordinated clauses, and
XCOMP for subordinated clauses in which argument is shared by means of syntac-
tic control). One may argue that the clausal or phrasal status of an argument is co-
incidential – we therefore use the label sentential object (sentobj) for COMP and
XCOMP. Second, LFG has a clause level relation TOPIC, which houses fronted
constituents that are consequently shared to their deep-syntactic subject, object, or
adjunct functions. One may argue that TOPIC is a configurational concept. We
attach fronted constituents directly to their deep-syntactic functions. Third, some
relations that do not have a clearly functional character need to be admitted to the
label set for practical parsing purposes, both in LFG and DG. In our robust parser,
they include compl for attaching complementizers to a verb, prep for connecting
the preposition and the noun in a PP, or nchunk to correct underchunking (the rules
are presented in detail in chapter 5). We discuss our notion of functionalism in
section 3.2.3.

3.2.1 Definition of Head

We have seen in section 3.1.3 that headedness is an essential property of DG. As in
other theories where headedness is essential (e.g. X-bar, LFG, HPSG), a detailed
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linguistic discussion of what a head is has to arise. If two items A and B are com-
bined, the mother node has to be either A or B. Interestingly, X-bar (as part of GB)
and HPSG have often taken opposite views, partly based on valency considerations
discussed in section 3.1.1. In practical terms, the differences between the defini-
tions of what a head is are as important as the small formal grammar differences
discussed in 3.1.

Engel (1994, 28), although firmly rooted in the German valency tradition, takes
the extreme view that ultimately all head definitions are arbitrary.

Other linguists have disagreed about the definition of heads. The importance of
the issue is, for instance, mirrored by the fact that a third of Jung (1995), a general
book on DG, is devoted to the question of head-definition.

There are different uses and definitions of the notion of head in different types
of grammars. They may be semantic, as in the case of Categorial Grammar, where
the functor is the head, and the argument is the dependent. In X-Bar theory, on the
other hand, heads are defined by syntactic means. On a morphological basis, one
may also come to different conclusions about what is the head. For instance, in
a simple Subject+Verb Construction, the subject may be seen as selecting person
and number of the Verb.

Zwicky (1985, 4-14) suggests the following arguments for determining the
head of a combination of two constituents:

a. The semantic argument: in a combination X+Y, crudely put, X is the “se-
mantic head” if X+Z describes a kind of the thing being described by X.

b. The subcategorisand: the constituent which is subcategorized with respect
to its sisters. For example, in a PP, the preposition is subcategorised by the verb,
unlike its sister NP. The preposition is therefore a head candidate.

c. The morphosyntactic locus: the (actual) inflectional locus within a construc-
tion is a candidate for the head of the construct. For example, for a VP, the auxiliary
verb carries the inflection and is a head candidate.

d. The governor: the constituent which determines the morphosyntactic form
of some sister. For example, in a VP, the verb is head candidate, because it deter-
mines the case of an object.

e. The determinant of concord: the constituent with which some or other con-
stituent must agree. For example, in a sentence, the subject N is head candidate
because the main verb must agree with it.

f. The distributional equivalent: the constituent that belongs to a category with
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V+NP P+NP NP+VP DET+N AUX+VP COMP+S
(a) Semantic Argument NP NP NP N VP S
(b) Subcategorisand V . . DET . COMP
(c) Morphosyntactic locus V P VP N AUX S
(d) Governor V P VP . AUX .
(e) Determinant of Concord NP . NP N . .
(f) Distributional Equivalent V . . N VP S
(g) Obligatory Constituent V P VP N VP S

Table 3.1: Zwicky’s definition of heads

V+NP P+NP NP+VP DET+N AUX+VP COMP+S
(a) Semantic Argument V P VP DET AUX COMP
(b) Subcategorisand V P . DET . COMP
(c) Morphosyntactic locus V P VP DET AUX COMP
(d) Governor V P VP . AUX .
(f) Distributional Equivalent V . . DET AUX COMP
(g) Obligatory Constituent V P VP DET AUX COMP

Table 3.2: Hudson’s definition of heads

roughly the same distribution as the construct as a whole. For example, in a NP,
adjective + noun and noun only are both NPs. This results in the noun being a head
candidate.

g. The obligatory constituent: the constituent which has to be present if the
mother is to be categorized as it is. For example, in an ADJP, an adjective is
obligatory and therefore head candidate, while adverbs are not.

h. The rulers in dependency grammar: the ruler is the word on which other
words depend. Since the head discussion here should support a head definition for
dependency, using this argument here would lead to circularity. We will ignore it.

Zwicky discusses these arguments by use of the following English construc-
tions: DET + N, as in those penguins; V + NP, as in control those penguins; AUX
+ VP, as in must control those penguins; P + NP, as in toward those penguins; NP
+ VP, as in we control those penguins; COMP+S, as in that we control those pen-
guins. Zwicky’s findings are summarized in table 3.1. Undeciable cases are marked
with a dot. Hudson (1987) re-analysed Zwicky (1985), using the same arguments
except for (e.) determinand of concord, and came up with the completely differ-
ent results presented in table 3.2. Hudson (1987)’s head definition has influenced
and foreshadowed the headedness definition in GB, including the DP hypothesis,
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which views NPs as a complement of DPs (see e.g. Cook and Newson (1996)) and
which facilitates the semantic analysis of quantifier scopes.

Functional Heads or Markers

We would like to show now that alternative head definitions are also possible, based
on the lexical rather than the functional heads.

It can be observed that functional words in X-bar syntax are usually required
to project to a maximal projection. The stacking of functional projections is a
noticeable feature of GB analyses. Determiners were an exception to this in the
pre-DP-hypothesis view. Now they are likewise assigned a maximal projection.
While functional projections are uncontested, especially HPSG raised the question
whether it would not be possible to use a representation in which content words are
heads. The four most contested constructions in tables 3.1 and 3.2 involve a func-
tional category (P+NP, DET+N AUX+VP and COMP+S). Before discussing each
construction in detail, we would like to point out that different levels of analysis
have different heads.

Research on the definition of heads reveals that morphological, surface syntac-
tic, deep syntactic and semantic levels of analysis often come to different conclu-
sions. On the morphological level, Mel’čuk (1988, 109) discusses that morpho-
logical dependencies themselves pose opposing head definitions: In Russian dve
volny (= two waves), the numeral dve is morphologically dependent on the noun
volny according to gender (feminine), but volny is dependent on dve according to
number (sg.) and case (genitive). On the surface syntactic level, GB, TAG, ver-
sions of LFG, and other formal syntactic theories including the dependency-based
Word Grammar (Hudson, 1984; Hudson, 1990), use functional projections. On the
semantic level, there is no doubt that quantifiers dominate NPs in a first-order pred-
icate logic representation and that modal verbs dominate VPs in a modal logic rep-
resentation. But for the deep-syntactic level, HPSG proposes that functional words
are non-heads and fall outside the dependency types available in X-bar, (speci-
fier, argument, adjunct), as we discuss in the following paragraph. The purpose of
the deep-syntactic level is to offer direct access to the grammatical relations (also
called functions) between content words, largely normalised for alternations, quan-
tification and surface phenomena. From a practical viewpoint, a representation that
assumes content words to be heads facilitates the implementation of lexicalisation
since it gives local access to content word heads. For tasks such as information
retrieval and text mining such representations are particularly useful as they repre-
sent the semantic structure more directly (see e.g. de Marneffe, MacCartney, and
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Manning (2006),Rinaldi et al. (2007)).

The majority of formal grammars distinguish between several levels of analy-
sis by using a multi-stratal approach. GB maps between surface syntax and deep
syntax by means of transformations, LFG relies on functional annotations to map
from the surface-oriented c-structure to the deep-syntactic functional f-structure,
HPSG uses an advanced system of co-indexation, although often leaving the level
unspecified, thus profiting from constraint-based approaches such as the commu-
tative unification operation. In contrast, many versions of DG are monostratal. For
a multistratal version of DG, see (Debusmann et al., 2004). This does not entail
that monostratal DGs fail to recognise that there are several levels of analysis, but
it contains the (usually implicit) claim that it is possible to underspecify the levels
that remain unexpressed without affecting the linguistic expressiveness or parsing
performance. Chapter 6 of this thesis is largely devoted to showing that a func-
tional level of representation can deliver accurate deep-syntactic descriptions even
if we underspecify the surface syntactic level.

Constructions with Functional Heads

We now discuss the four contested constructions involving a functional head (P+NP,
DET+N, AUX+VP, COMP+S) in more detail.

Prepositions Prepositions can have semantic content, directly expressing local,
temporal, or benefactive relations. But in the following constructions, the preposi-
tion has no semantic character. It is grammatical in nature and often and language-
specific. It is often associated to a case marker.

(30) Peter depends on Susan.

(31) Peter is afraid of spiders.

In a functionally oriented representation, alternations such as the dative shift
should receive identical or closely related analyses.

(32) Mary gives the book to John.

(33) Mary gives John the book.

This is only possible if NPs and PPs are treated on a par. Dependency theory,
partly under the influence of languages like Finnish, French, German, or English,
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where case assignment and prepositions largely overlap, has always been sceptical
of the status of prepositions. (Tarvainen, 1981, 10) states that prepositions have no
syntactic valency, they have at best a grammatical valency that corresponds to case
endings.

LFG assigns head character to both the noun and the prepositions, thus leav-
ing the head definition underspecified. In practice, we follow the same approach:
although the noun appears as the head of the PP in the dependency representation,
PP-attachment is lexicalized both on the preposition and the noun (if available).
Since prepositions are less sparse and more discriminant, the preposition plays a
larger role in the attachment task. LFG has also suggested to distinguish between
semantic and non-semantic prepositions, where semantic prepositions are gover-
nors and non-semantic prepositions are dependents of their noun. A practical prob-
lem of such a forced distinction is its high gradience leading to low inter-annotator
agreement.

Complementizers In GB, LFG and TAG, complementizers are functional heads
with a sentential complement. One potential practical problem with such an anal-
ysis is that empty heads need to be assumed in the case of zero-complementizers.
When parsing, it is difficult to decide where to insert empty categories.

(34) Sandy thinks (that) Kim is foolish.

(Pollard and Sag, 1994) use examples like the following to argue that comple-
mentizers are non-heads:

(35) I demand that he leave/*leaves immediately.

If demand determines the form of the verb in the complement clause then this
may suggest that the verb is the head of the complement, else we need a non-
local dependency or a distinction between different types of complement clauses.
Complementizers are a prime example for the introduction of markers in HPSG.
Pollard and Sag (1994, 44-45) define markers as functional or grammatical words
whose semantic content is logical.

We have decided to use markers, as a class of dependents with dedicated re-
lation labels, in our DG. The reasons for this decisions are rather practical than
theoretical in nature.

Determiners In GB, TAG and versions of LFG, determiners are functional heads
with a noun complement. Analogously to complementizers, it is difficult to decide
where to insert empty categories when parsing.
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(36) Sandy saw (the) pictures of Kim.

In our DG approach, we only parse between heads of chunks – the distinction
between DP or NP analysis remains underspecified. The DP hypothesis is not used.
Although the noun chunk typically includes the determiner and is thus equivalent
to a DP, the notion of head extraction always refers to the head noun.

Auxiliary Verbs Chunkers delivering verb groups underspecifiy the distinction
between auxiliary and main verb. HPSG does not treat auxiliaries as markers, but
uses so-called argument composition, which uses co-indexation to the effect that
auxiliaries and the main verb share all complements.

For practical reasons of consistency, we also treat auxiliaries as dependents
of the main verb. This leads to representations in which all types of dependency
(specifier, arguments, adjuncts), plus all markers, are available locally to the main
verb. In other words, locality naturally extends to the clause level. We discuss in
chapter 6 that this leads to a DG which has the same locality as TAG extended
locality.

3.2.2 Projectivity

Levy (2005) proves that non-projectivity and crossing constituency are identical.
We will use the term non-projectivity.

The question of whether non-projectivity is needed for parsing has been de-
bated for a long time. Approaches assuming the equivalence of CFG and DG
are projective. For example, early robust DG parsers, Eisner (1996) and Collins
(1996) are fully projective. Some of the first researchers to point out that Tes-
nière’s DG conception is non-projective included the creators of the first broad-
coverage DG parser that is explicitly non-projective (Tapanainen and Järvinen,
1997). Tapanainen and Järvinen (1997, 3) note that for a long time linguists took
Gaifman (1965)’s proof for granted.

Truly non-projective DG parsers are still very rare, due to the large process-
ing overhead. Theoretically, fully non-projective DG parsing is NP -complete, and
also in practice, the overhead is very substantial (Nivre, 2006a). Accordingly, re-
search, both in DG and other robust parsing approaches, rather focuses on the ques-
tion of how to maximally constrain non-projectivity, how much non-projectivity is
needed, and up to which point post-processing and CFG and finite-state approxi-
mations can replace non-projectivity. Nivre (2006a) sums this up concisely:



57 3.2. Characteristics of functional DG

Most of this work has so far focused either on post-processing to re-
cover non-local dependencies from context-free parse trees (Johnson,
2002; Jijkoun and De Rijke, 2004; Levy and Manning, 2004; Camp-
bell, 2004), or on incorporating nonlocal dependency information in
nonterminal categories in constituency representations (Dienes and
Dubey, 2003; Hockenmaier, 2003; Cahill et al., 2004) or in the cat-
egories used to label arcs in dependency representations (Nivre and
Nilsson, 2005). By contrast, there is very little work on parsing meth-
ods that allow discontinuous constructions to be represented directly
in the syntactic structure, whether by discontinuous constituent struc-
tures or by non-projective dependency structures. Notable exceptions
are Plaehn (2000), where discontinuous phrase structure grammar
parsing is explored, and McDonald et al. (2005b), where nonprojec-
tive dependency structures are derived using spanning tree algorithms
from graph theory.

(Nivre, 2006a, 73)

As there is very little research on non-projective extensions in DG frameworks
(Nivre, 2006a, 74), it is highly advisable to adopt research from other grammar
formalisms: In chapter 6 we therefore investigate in detail how Tree-Adjoining
Grammar (TAG) and Lexical-Functional Grammar (LFG) deal with non-projective
phenomena in natural language. We also show how the choice of grammar rep-
resentation largely influences the amount of non-projectivity needed. Research
showing to which surprising amount the grammar representation influences the
amount of non-projectivity is only just starting. While it was classically assumed,
for example, that German is a language exhibiting a particularly high amount of
non-projectivity, Kübler (2006) shows that this assumption largely rests on the rep-
resentation of grammar: while trees in NEGRA format (Brants et al., 1997) have
a high amount of non-projectivity, trees in the TüBa format (Telljohann, Hinrichs,
and Kübler, 2004) have only very little, although they do not contain less informa-
tion. We show in chapter 6 that our DG representation keeps non-projectivity to a
minimum. Only nested WH-questions are truly non-projective.

3.2.3 Functionalism

Tapanainen and Järvinen (1997) call their DG approach Functional Dependency
Grammar. Functionalism is an important notion for a deep-syntactic DG, for sev-
eral reasons, as we outline in the following. The term functionalism has a number
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of meanings. Each of the following points represents a possible meaning of func-
tional.

Grammatical Function

Our labelled DG is perhaps most obviously functional in the sense that labels ex-
press grammatical functions such as subject or object as far as possible. This is
also a main reading of functional in Lexical-Functional Grammar. In order to ob-
tain full parses, some configurational, surface-syntactic labels are also needed, as
mentioned in 3.1.1. The set of functional and configurational labels are strictly
disjoint.

Predicate-Argument Relations

Due to its valency tradition, DG representations are easily mappable to predicate-
argument relations. DG representations are functions in the mathematical sense,
a grammatical function or relation from a head to a dependent6, a grammatical
function or relation from a dependent to a head7. This aspect of functionalism
is largely owed to the choice of lexical heads and chunks as an approximation to
nuclei or bonetsus (see 3.1.3).

Abstracting away from surface configurations

The use of an ID/LP grammar allows us to abstract away from form, i.e. surface
word order, to function. The use of our headedness definition allows us to map
alternations and verb configurations. Importantly, the fact that non-projectivity
could be reduced to a minimum allows us to use a monostratal approach that can
leave other representation levels underspecified.

A Functional Conception of Word Classes

Tesnière’s DG uses a functional conception of word classes. We could only partly
model this functional aspect. Subordinate clauses are seen as clause-level objects,

6In most cases they are a function. If a long-distance chain has more than one element, they are a
relation. In the case of adjuncts, there may equally be several dependents on the same head with the
same function (adjunct), they are thus a relation

7In most cases they are a function. There is a post-processing module that expands conjunctions
and appositions, which can lead to a dependent having several heads. Then they are a relation
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hence their label sentobj. Gerunds are ambivalent between verbal and nominal
status. In the sentence

(37) John likes eating bananas.

eat takes an object like a verb, but functions as nominal object to like. We allow
gerunds to attach as objects. Tesnière refers to change of word class as translation
and uses it extensively. In our DG, we use it more restrictively, e.g. in order to
allow adjectives (e.g. the poor) or numbers to function as nominal objects in the
absence of a noun, thus obviating the need for empty categories. Our choice of
the noun as the head of a PP also follows this philosophy: the functions of PPs
and cases in alternations (Levin, 1993) such as the dative shift or the alternation
mapping the saxon genitive to an of-PP are representationally more similar.

There are a number of closed class words which (before becoming grammati-
calised) can function as words of different word classes. Examples that are mod-
elled in our grammar comprise the gerunds including or using which can function
as prepositions.

3.3 The Relationship of DG to HPSG and LFG

The formal grammar theories Head-Driven Phrase Structure Grammar (HPSG) and
Lexical-Functional Grammar (LFG) are closely related to DG. HPSG (Pollard and
Sag, 1994) is largely based on DG, the f-structure layer of LFG (Bresnan, 2001)
expresses labelled dependency information.

3.3.1 HPSG

HPSG shares crucial characteristics with DG. The DG endocentricity constraint
is a fundamental HPSG grammar principle, and HPSG rule schemata are largely
based on X-bar theory, which is equivalent to DG. A closer investigation reveals
additional similarities such as HPSG’s valency-based lexicalist character, the use
of graph theory by means of structure-sharing, and the monostratal orientation.

HPSG insists on using typed feature structures. While versions of DG using
such structures are conceivable, no such restrictions on implementational issues are
made. There is one major linguistic difference, however: HPSG typically aims to
integrate semantics to a higher degree than DG.

Any well-formed constituent in HPSG needs to conform to the 3 main compo-
nents of HPSG: grammar principles, grammar rules, and lexical entries.
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Grammar Principles The major HPSG grammar principles are the head feature
principle and the subcategorisation principle. The head feature principle, a gram-
mar universal, is formulated as follows.

[DTRS headed structure[]]⇒[
SYNSEM | LOC | CAT | HEAD 1
DTRS | HEAD-DTR | SYNSEM | LOC | CAT | HEAD 1

]
In words, each feature structure containing the feature daughters (DTRS) with

a feature structure of type headed structure needs to abide to the head feature prin-
ciple, which expresses that, by means of structure sharing, the HEAD feature of
the mother node and the HEAD feature of the head daughter are identical, just as
the DG endocentricity constraint enforces.

The subcategorisation or valency principle makes sure that valencies are sat-
urated. The SUBCAT feature contains a list of all required, but still missing va-
lencies of a constituent. A feature structure whose SUBCAT list is empty has all
valencies filled. The subject is also part of the SUBCAT list, and all complements.
The elements are ordered according to the obliqueness hierarchy. The least oblique
element, i.e. the subject, comes first. The subcategorisation principle ensures that
the SUBCAT list is emptied, i.e. its requirements are met.

[DTRS headed structure[]]⇒ SYNSEM | LOC | CAT | SUBCAT 2

DTRS

[
HEAD-DTR | SYNSEM | LOC | CAT | SUBCAT append( 1 , 2 )
COMP-DTRS 1

] 
In words, the subcategorisation requirements of a phrase are identical to those

of the head daughter, minus those satisfied by the complements (COMP-DTRS)
attached at the same level. The subcategorisation principle is also a grammar uni-
versal. In later versions (Pollard and Sag, 1994, chapter 9), specifiers get their
own subcat list, but the general principle remains unaltered. For the discussion of
grammar rules, we use the version where specifiers have their own SUBCAT list
– the specifier subcat list is called SPR, and the complement subcat list is called
COMPS – but any other method identifying specifier dependencies would have the
same effect.

In DG, the endocentricity constraint has the side effect that the filling of va-
lencies is not automatically enforced. On the one hand, this has the robustness
advantage that unfilled valencies never cause a parse to fail. On the other hand, a
mechanism preferring satured valencies is needed. The preference for longer par-
tial structures (if possible structures spanning the whole input string) ensures just
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that. Any element of a sentence will get attached somewhere whenever possible,
as a consequence valencies will be filled unless there is no way according to the
grammar to fill them. Internally we also use probability scores (Probability * 2) in-
stead of probabilities, which has the effect that an element with a likely attachment
is more likely than the element without the attachment. We have not investigated
up to which point this may render our preference for longer partial structures re-
dundant, or if it may lead to better results, leading to better partial structure breaks
when no span covering the entire input string is found.

Grammar Rules In X-bar theory, PSG grammar rules are only rule schemata,
constrained by bar levels and endocentricity. The same applies to HPSG grammar
rules, where most rule schemata are strictly derived from X-bar theory. HPSG rule
schemata comprise the head-specifier rule, the head-complement rule, the head-
adjunct rule, markers, and argument composition.

head-specifier rule X-bar structures at the X̄ level are distinguished by the
fact that all their valencies except for SPR valencies are satisfied. The head-
specifier rule is fomulated as follows, where the subcat lists are in diamond brack-
ets, e.g <> is an empty subcat list, and [] is a list containing one element.

[SPR<>] −→ [SPR<[]>, COMPS<>], []
HEAD SPR

In words, a sign with the feature specification SPR<>, i.e. with fulfilled SPR
subcat requirements, can contain a head daughter with the feature specifications
COMPS<> and a specifier daughter. In cooperation with the head feature principle
and the subcategorisation principle, this rule schema makes sure that head daughter
and mother are identical, and that the required SPR valency is identical to the sister
of the head daughter.

head-complement rule X-bar structures at the X0 level are distinguished by
the fact that none of their valencies are satisfied. The head-complement rule is
fomulated as follows, where L is a list.

[COMPS<>] −→ [COMPS L], []*
HEAD COMPS

In words, a sign with the feature specification COMPS<>, i.e. with fulfilled
COMPS subcat requirements, can contain a head daughter with any list in the
COMPS feature, and an arbitrary number of complements. In cooperation with the
head feature principle and the subcategorisation principle, this rule schema makes
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sure that head daughter and mother are identical, and that each of the required
COMPS valencies is identical to a sister of the head daughter.

head-adjunct rule The head-adjunct rule is formulated as follows.

1 [COMPS L] −→ [COMPS L], [MOD 1 ]
HEAD ADJUNCT

We have discussed in section 3.1.4 that as long as the relation label set can
be mapped to specifiers, arguments and adjuncts, DG is identical to X-bar theory
and hence these rule schemata. There are two additional rule schemat in HPSG:
markers and argument composition.

markers Markers are usually treated a dependents in DG. Again, if specific
relation labels can be mapped to markers, DG is equivalent to HPSG.

argument composition Argument composition extends locality. In practice,
secondary labels extending trees to graphs can be used to share dependents. We
use secondary labels to treat long-distance dependencies. We discuss locality, ex-
tending locality and long-distance dependencies in detail in chapter 6.

3.3.2 LFG

We discuss the relation of LFG to DG in detail in (Schneider, 2005), a summary of
our findings is given in section 6.5.2.

3.4 Conclusions

We have given an introduction to DG. We have presented four conceptions of DG.
We have discussed in which way the version of labelled DG that we use can be
said to be functional. We have discussed that our functional concept of DG leads to
representations in which all types of dependency (specifier, arguments, adjuncts),
plus all markers, are available locally to the main verb. Locality naturally extends
to the clause level. This is an important preparatory step for our discussion of long-
distance dependencies in chapter 6 There we show that our conception of functional
DG leads to a DG which has the same locality as TAG extended locality.



Chapter 4

State of the Art

4.1 Introduction

This chapter reviews a number of current successful approaches in dependency
parsing and suggests to combine some of their advantages as it has been done
in Pro3Gres, a low-complexity but deep-syntactic parser expressing grammatical
roles. We will mainly consider current parsing approaches, which traditionally
used to fall into two groups: formal grammar parsers and statistical parsers. Recent
progress at combining them will be reviewed. A non-parsing approach aiming at
the expression of grammatical roles will also be discussed.

Recently, some deep linguistic grammars have achieved the coverage and ro-
bustness needed to parse large corpora, as will be discussed in section 4.6. (Riezler
et al., 2002) show how a hand-crafted LFG grammar scales to the Penn Treebank
with Maximum Entropy probability models. Hockenmaier and Steedman (2002)
acquire a wide-coverage CCG grammar from the Penn Treebank automatically,
Burke et al. (2004) an LFG grammar. We suggest to combine a tag-sequence
based, hand-crafted functional dependency grammar (Hajič, 1998; Tapanainen and
Järvinen, 1997) with Maximum Likelihood Estimation (MLE) lexicalized proba-
bilities extracted from the Treebank. Our approach is similar to Collins and Brooks
(1995), but for a large subset of dependency relations instead of for PP-attachment
only, including the majority of long-distance dependencies.

Let us first consider a number of dependency-based approaches that focus on
just one dependency relation: the attachment of PPs. Then we will extend to ap-
proaches where full parsing is done by similar means. The PP-attachment relation
is especially interesting because it is highly ambiguous (Church and Patil, 1982),
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and because it has been shown to profit considerably from lexicalized approaches
(Collins and Brooks, 1995).

4.2 PP attachment disambiguation

We will consider two classical approaches that have been very influential: the unsu-
pervised Hindle and Rooth (1993) approach and the supervised Collins and Brooks
(1995) approach.

4.2.1 The question

For both of the sentences John eats steaks with a knife and John eats steaks with
fries, syntactically two analyses are permissible. On semantic grounds, a human
reader has no difficulties to disambiguate between attaching the PP to the verb or
to the noun, but the amount of world knowledge required to be able to do so is
considerable.
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�����
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Instead of the cumbersome attempt to model world knowledge, statistical ap-
proaches disambiguate by imitation of empirical evidence from correctly parsed
training text material. The disambiguation is not always as clear-cut as in the above
example. Inter-annotator agreement for PP-attachment is thus relatively low. Both
(Hindle and Rooth, 1993) and (Collins and Brooks, 1995) considered exclusively
binary ambiguous cases, where a verb is followed by an NP and a PP, and the PP-
attachment is therefore ambiguous between verbal and nominal attachment. (Hin-
dle and Rooth, 1993) report 85-88 % human performance on their experiments, in
which both the human and the machine were only given the head words (the verb
and the noun) of the possible attachment site and the preposition of the PP. (Rat-
naparkhi, Reynar, and Roukos, 1994) report 88.2 % average human performance
on experiments in which both the human and the machine were given the head
words (the verb and the noun) of the possible attachment site, the preposition of
the PP and the head of the noun inside the PP (which is sometimes called descrip-
tion noun). More context leads to better disambiguation, the verb or noun and the
preposition (and the description noun) may not be enough context. (Ratnaparkhi,
Reynar, and Roukos, 1994) report 93.2 % average human performance if the whole
sentence is given.

There is a semantic reason why human performance and inter-annotator agree-
ment is quite low, which is discussed in Hindle and Rooth (1993). There are se-
mantically undecidable cases, in which the semantic difference between verb- or
noun-attachment is very small.

Undecidable cases Undecidable cases can be divided into the following three
groups.

Idioms: the nouns contained in many idioms cannot be conceived of as consti-
tuting a possible attachment site:

(38) I visited the zoo from time to time.

Locative ambiguity: in a locative PP, the place of the action and the real-world
object are often identical – the PP-attachment ambiguity is semantically void.

(39) He searched all the bars in Paris.

Benefactive ambiguity: in a benefactive PP, an action intended for a person and
the resulting real-world object is often intended for the same person.

(40) Jane wrote the report for the supervisor.
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4.2.2 Hindle and Rooth

(Hindle and Rooth, 1993) is an unsupervised approach to PP-attachment disam-
biguation. They extracted 200’000 (V,N1,PP) triples from a tagged and partially
parsed newswire corpus First, unambiguous cases are collected into what is called
the sure-attachment base, because it only contains cases that are unambiguous:

1. No PP: the PP is assigned a NULL value

2. Sure verb attach 1: the PP is attached to the verb if the NP head is a pronoun.
In

(41) Peter gave it to the waitress.

the PP certainly attaches to the verb. In English, only the pronoun one can
be modified by a PP.

3. Sure verb attach 2: the PP is attached to the verb if the verb is in the passive.

(42) It was given yesterday to the waitress.

In the rare cases where nouns intervene between a passive verb and a PP,
they are usually temporal adjuncts that cannot be modified by a PP.

4. Sure noun attach: if no verb that could serve as attachment site is present,
the PP attaches to the noun. This is particularly the case in sentence-initial
NPs followed by a PP.

Based on these unambiguous cases, an information-theoretic lexical preference
score related to maximum likelihood estimation (MLE) is calculated.

The MLE for seeing a preposition given a verb is

P (prep|v) ∼=
#(v ∧ prep)

#v
(4.1)

This MLE is weighted by the general preference of the preposition for verb-
(or noun-) attachment in order to fight sparse data

P (prep|
∑

v) ∼=
#

∑
v ∧ prep

#
∑

v
(4.2)

The weighted probability estimation for seeing a preposition given a verb is
then
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P (prep|v) ∼=
#(v ∧ prep) + P (prep|

∑
v)

#v + 1
=

#(v ∧ prep) + #
P

v∧prep
#

P
v

#v + 1
(4.3)

The formula used is expressed as a logarithm, indicating attachment preference
for verb in the numerator and for noun in the denominator. NULL (no PP after the
noun) is considered to be an (indirect) verb-attachment preference indicator in an
ambiguous situation.

LA =

log2

#v∧prep+#
P

v∧prep
#

P
v

#v+1 · #n∧NULL+#
P

n∧NULL
#

P
n

#n+1

#n∧prep+#
P

n∧prep
#

P
n

#n+1 (4.4)

Iteration: For all ambiguous cases the lexical association score (LA) is calcu-
lated. If it lies above a certain threshold, the attachment is considered to be reliable
and thus asserted to the sure-attachment base. The LA is recalculated and the next
iteration starts. The iteration loop exits once no new reliable attachments can be
made. For the remaining cases, the default of noun-attachment is used.

4.2.3 Collins and Brooks

(Collins and Brooks, 1995) is a supervised approach to PP-attachment disambigua-
tion. They also include the noun inside the PP (so-called description noun) in the
probability model, whenever non-zero counts exist. A supervised approach, us-
ing a parsed corpus, has the advantage that noise is virtually absent and that it
has full recall, hence a probabilistic model is possible. The potentially ambiguous
(V,N1,PP) triples are extracted from the Penn Treebank. The PP is represented as
preposition and PP-internal noun (N2). The MLE estimation for verb attachment
for the resulting (V,N1,P,N2) quadruple is as follows.

P (verb-attach|V,N1, P, N2) ∼=
#verb-attach, V, N1, P, N2

#V,N1, P, N2
(4.5)

The disadvantage of using a parsed corpus is that the sparse data problem be-
comes even more serious. The inclusion of the PP-internal noun further aggravates
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sparseness. Collins and Brooks (1995) proposes a back-off method as an alterna-
tive to smoothing. We discuss backing-off and the variations that we use in detail
in subsection 4.3.1 and in chapter 7.

4.3 Treebank-Based Statistical Parsers

Now we extend the discussion to all relations needed to do full parsing. The Penn
Treebank, which has been used by Collins and Brooks (1995), contains full syn-
tactic annotations, which can allow parsers to disambiguate all relations. A variety
of Treebank-based statistical parsers exist, for example Collins (1999),Charniak
(2000), and Henderson (2003). We will limit our discussion to one of them, the
Collins parser.

4.3.1 Collins 1996

Michael Collins’ PhD (Collins, 1999) is seen as a milestone in the history of lex-
icalized parsing approaches. Three probabilistic parsing models are introduced.
Each of these three models is described here, since many of the elements of the
parser presented in this thesis can be seen as versions and extensions of these mod-
els, especially of Model 1. Model 1 is a purely dependency-based model (Collins,
1996; Collins, 1997; Collins, 1999; Collins, 2003).

Collins’s parsing models can be seen as an extension of his PP-attachment
work, described in the previous section. Since lexicalization greatly improves PP-
attachment results, it is natural to use similar approaches for all syntactic rela-
tions. Instead of taking local decisions, the probabilities of the local ambiguities
are multiplied to calculate a global probability. Klein and Manning (2003) and
Bikel (2004) have shown that also very weakly lexicalised approaches can perform
almost as well as strongly lexicalised approaches. Their results do not, however, in
any way discredit the use of a strongly lexicalised approach, such as ours, as one
possible, successful and linguistically intuitive approach among others – a point
that also Klein and Manning (2003) explicitly make.

Mapping Treebank trees to Dependencies As the Treebank is in constituency
format, its structures need to be mapped to dependencies for a dependency-based
model. The main components of the model are as follows.

1. Only the heads of base NPs (base NP=unnested NPs) are used (Abney, 1991;
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Abney, 1995). For This man generally eats fresh bananas with a fork the
reduced tree becomes:
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2. For each CFG rewrite rule, the head is established. For example, given the
tree above, the heads are the syntactic categories indicated in boldface.

S −→ NP VP
VP −→ VB NP PP
PP −→ IN NP
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3. The dependencies are derived directly from the rewrite rules. Binary rules
lead to one dependency, ternary rules to two, etc. The dependency label t is
a combination of the syntactic categories of the mother and daughter node,
as follows:

Dependency = arrow_from each dep. to its head with type t:
t = 〈Dependent,MotherNode, Head〉 if head is to the right OR
t = 〈Head, MotherNode,Dependent〉 if head is to the left.

For instance,

man eats

-
〈NP, S, V P 〉

arrow_from(locman) = (loceats, 〈NP, S, V P 〉)
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eats banana

�
〈V B, V P,NP 〉

eats with

-
〈V B, V P, PP 〉

with fork

�
〈IN, PP,NP 〉

The advantage Breaking up non-binary CFG rules into individual dependencies
means that data becomes considerably less sparse, and that more valuable lexical
information than in a PCFG can be accessed. In early probabilistic parser imple-
mentation, all CFG rules permitted in the Penn Treebank were extracted and learnt.
From his 300,000 words training part of the Treebank Charniak (1996) thus obtains
more than 10,000 CFG rules, of which only about 3,000 occur more than once,
leading to very serious complexity and sparseness problems. A useful method to
alleviate this problem is to break down the often very flat Treebank CFG rules.
(Collins, 1996) therefore suggested to use the individual dependencies between a
head (LHS) and its daughters (the RHS elements), assuming independence among
the individual RHS elements.

If, for example, the first three of the following rewrite rules are seen for the verb
give during training, but the fourth one is needed at parse time, a PCFG assigns a
zero-probability, or at best a smoothed, but likely too low, non-zero probability.
But in Collins’ approach, the data learnt from the third rule can be directly used.

(43) VP −→ V NP (“gives the money")
VP −→ V NP NP (“gives them all his money")
VP −→ V NP PP (“gives his money to the poor")
VP −→ V PP (“gives to the poor")

To give another example, flat NP rewrite rules like the one in 44 are common-
place in the Penn Treebank.

(44) NP −→ DT $ CD NN ("the $ 200 hat")

They lead to a big sparse data problem. In this example, the situation is aggra-
vated by the Penn Treebank design preference for flat rules.



71 4.3. Treebank-Based Statistical Parsers

The Statistical Model Collins uses two models: The base NP model B, which
calculates chunking probabilities, and the dependency model D, which calculates
parsing probabilities. The probability of a tree is the product of both.

P (Tree|Sent) = P (B|Sent) ∗ P (D|Sent) (4.6)

The dependency model probability is

P (D|Sent,B) =
m∏

j=1

P (arrow_from(j)|Sent,B) (4.7)

Only the Dependency Model is discussed in detail here, since the Base NP
Model uses standard tagging and chunking techniques.

The MLE probabilities for a relation of type t from training corpus are calcu-
lated as follows:

P (t|〈depword, deptag〉 ∧ 〈headword, headtag〉) =

#(t ∧ 〈depword, deptag〉 ∧ 〈headword, headtag〉)
#(〈depword, deptag〉 ∧ 〈headword, headtag〉)

(4.8)

At parsetime, the expected probability for a current word wj to have a depen-
dency of type Rj to some head hj , i.e. arrow_from(wj) = (hj , Rj), is the MLE
probability P (Rj |〈wj , wtagj〉 ∧ 〈hj , htagj〉)

The best dependency-model parse maximises over the product of all the depen-
dencies thus possible in the current sentence.

argmaxDP (D|Sent) =
m∏

j=1

P (Rj |〈wj , wtagj〉 ∧ 〈hj , htagj〉) (4.9)

Since the denominator is constant – the words are a given and the tags are pro-
vided by the Base NP Model – the denominator can be neglected for maximising.

Extensions to the Core Model The model as presented has a few shortcomings,
some of which are immediately addressed and corrected in (Collins, 1996), some
in Collins (1997; Collins (1999; Collins (2003). We list and discuss them below.
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• The only dependency boundary is the sentence

In the model presented so far, longer and shorter distance dependencies have
equal weights, any relation can span the whole sentence. Collins introduces
distance measure heuristics based on the following four features: direction,
punctuation, intervening verbs, and adjacency.

At first sight, these heuristics may seem non-linguistic. But conditioning
relation probabilities on distance considerably improves performance (see
chapter 7). In fact such heuristics are well founded. They are reasonable
approximations of structure: increasing distance, intervening punctuation
and verbs increase the chance that a clause boundary occurs between the
two words. On the other hand, they approximate psycholinguistic recency
and mental load effects, which partly depend on complexity that cannot be
expressed in terms of structure.

We use a slightly different approach for each of these features. Direction is
constrained by the manually written grammar (see chapter 5). The majority
of English dependencies are only to one direction, or they are strongly con-
strained. For punctuation, we use a parsing approach that regards commas as
high-level boundaries (see chapter 5). Instead of intervening verbs or adja-
cency, we measure real distance in chunks. 74.2% of all WSJ dependencies
between chunks are adjacent, but these dependencies are also relatively easy
to retrieve.

• Sparse data problems

During parsing, very often no 〈wj , wtagj〉 ∧ 〈hj , htagj〉 pairs exist. Collins
thus backs off to tags only, according to the following back-off hierarchy
(where > is the precedence operator)

#(〈wj , wtagj〉 ∧ 〈hj , htagj〉)
> #(〈wj , wtagj〉 ∧ 〈htagj〉) +#(〈wtagj〉 ∧ 〈hj , htagj〉)
> #(〈wtagj〉 ∧ 〈htagj〉)
A hierarchy that directly steps from words to syntactic tags without an inter-
vening back-off to semantic classes seems very coarse. The bulk of decisions
is taken with only very partial lexicalisation. We discuss this topic in chapter
7.

• Independence assumptions: no probability relations across several depen-
dencies

Some syntactic relations span several subtrees. For example in PP-attachment,
the quadruples 〈 verb, prep, description noun 〉 and 〈 noun, prep, description
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noun 〉, which are used for resolving PP-Attachment by (Collins and Brooks,
1995) span two subtrees. In this sense, Collins (1996), and equally (Collins,
1997; Collins, 1999; Collins, 2003) are a step backward, for which a correc-
tion is suggested in chapter 6. We will see that the majority of long-distance
dependencies, dependencies that span several subtrees, can be expressed as
a single dependency with a dedicated label.

Relation of Pro3Gres to Collins Model 1 Both (Collins, 1996) and Pro3Gres are
mainly dependency-based statistical parsers parsing over heads of chunks. It can
therefore be expected that (Collins, 1996) was a starting point for Pro3Gres. The
(Collins, 1996) MLE and the main Pro3Gres MLE can be juxtaposed as follows:

(Collins, 1996) MLE estimation: P (R|〈a, atag〉, 〈b, btag〉, dist) ∼=
#(R, 〈a, atag〉, 〈b, btag〉, dist)
#(〈a, atag〉, 〈b, btag〉, dist)

(4.10)

Main Pro3Gres MLE estimation: P (R, dist|a, b) ∼= P (R|a, b) · P (dist|R) ∼=
#(R, a, b)∑Rels

i=1 #(Ri, a, b)
· #(R, dist)

#R
(4.11)

The following design differences can be observed:

• Pro3Gres does not use part-of-speech tag information.

1. The first reason for this is because a licensing, hand-written grammar
over Penn tags is employed, which has the advantage that the grammar
size can be kept small. The grammar will be discussed in detail in
chapter 5.

2. The second reason for not using tag information is because Pro3Gres
backs off to semantic WordNet classes for nouns and to Levin (or
WordNet) classes for verbs instead of to tags, which has the advantage
that the back-off is then more fine-grained.

• Pro3Gres uses distances measured in chunks, instead of a vector of features.
While the type of relation R is lexicalized, i.e. conditioned on the lexical
items, the distance is assumed to be dependent only on R. This is based
on the observation that some relations typically have very short distances
(e.g. verb-object), others can be quite long (e.g. Verb-PP attachment). This
observation greatly reduces the sparse data problem. Chung and Rim (2003)
have made similar observations for Korean.
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• The co-occurrence count in the MLE denominator in equation 4.11 is not
the sentence-context like in 4.10, but the sum of competing relations, as
discussed in section 1.4. For example, the object and the adjunct relation
are in competition, as they are both licensed by a verb chunk followed by
a noun chunk. Pro3Gres models the probability of the decision to attach a
given noun with an object relation or an adjunct relation in this example.

• Relations (R) have a Functional Dependency Grammar definition. Let us
reconsider the reduced Tree representation for the sentence This man eats
fresh bananas with a fork, which leads to the following Dependency Rela-
tions in (Collins, 1996) versus Pro3Gres; in the latter also non-local lexical
information is considered as far as possible.

man eat banana with fork

-〈NP, S, V P 〉�〈V B, V P, NP 〉
� 〈V B, V P, PP 〉

�〈IN, PP, NP 〉

(Collins, 1996)

man eat banana with fork

-〈subject〉 � 〈object〉
� 〈verb − PP 〉

-〈noun − prep〉

While Collins labels are ad-hoc heuristics, we use a principled and linguis-
tically highly motivated conversion. While for the given example the dif-
ference may seem cosmetic, we will see in chapter 6 that it is crucial. It is
one of the prerequisites for allowing us to treat the majority of long-distance
dependencies locally.

Both Collins and our approach are transformations on the training trees. John-
son (1998) shows that even simple syntactic transformations for an unlexicalized
PCFG model can have a significant impact on parsing performance. On ambiguous
PP-attachment, a model that additionally includes parent node categories improves
precision by 7% from 73 to 80%, and recall by 9% from 70 to 79%. Johnson
(1998) also tested a “Chomsky-Adjunction” binarized model. It attaches several
PPs in multiple steps, and is thus the model closest to our and (Collins, 1996)’s
approach. Its performance is equivalent to the PCFG baseline. This should not be
taken as an argument against our approach, however, for the following reason.

The assumption of independence between several PPs is too strong. For de-
ciding if a PP attaches to a head, it is important to know whether an attaching PP
intervenes. We address this shortcoming by two means. First, the grammar restricts
attachment to heads that have attached other material. Second, we use a distance
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measure: intervening chunks between a head and a PP are mostly NPs and other
PPs.

Bikel (2004) voices a frequently heard criticism on tree transformations:

While head-lexicalizations and other tree-transformations allow the
construction of parsing models with more data-sensitivity and richer
representations, crafting rules for these transformations has been largely
an art, with heuristics handed down from researcher to researcher.
What’s more, on top of the large undertaking of designing and imple-
menting a statistical parsing model, the use of heuristics has required
a further effort, forcing the researcher to bring both linguistic intuition
and, more often, engineering savvy to bear whenever moving to a new
treebank.

(Bikel, 2004, p. 91)

Although our tree transformations are specific to the treebank, we believe that
its format is standardised enough to be followed by future corpora. We believe that
a combination of statistical and rule-based approaches, for example a rule-based
competence grammar and finite-state deep-linguistic tree transformation combined
with a statistical disambiguation and pruning component is an approach worth ex-
ploring. We also believe that the linguistic insights gained are fruitful for the whole
science of linguistics. We are precisely interested in descriptions of the language
that are meaningful to, interpretable and editable by linguists. Finding interpretable
generalisations has always been a major goal of science.

We also believe that the merit of attaining a linguistically highly motivated
dependency representation outweighs the disadvantage of using a non-trivial, rela-
tively complex and not fully complete mapping, which is detailed in the appendix.

4.3.2 Model 1, 1997

Collins states that Model 1 of (Collins, 1997) “is essentially a generative version
of the model described in (Collins, 1996)” (Collins, 1997) is generative, i.e. the
top-down derivation probability is modelled. Like in a PCFG, the probability of
the Treebank-inherent CFG rules are calculated. In order to address sparse data
issues, Collins distinguishes between the left context l and the right context r. We
use Collins’ original notation.

(Collins, 1997) CFG rule generation model for the rewrite rule P→ Lm ... L1
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H R1 ... Rn

P (RHS|LHS) = Ph(H|P, t(P ), l(P ))

·
m∏

i=0

Pl(Li, t(Li), l(Li)|P,H, t(H), l(H), d(i))

·
n∏

i=0

Pr(Ri, t(Ri), l(Ri)|P,H, t(H), l(H), d(i))

where
LHS left-hand side of rule
RHS right-hand side of rule
Ph P of head
Pl:1..m P of words left of head
Pr:1..n P of words right of head

H RHS Head Category
P LHS Mother Category
L Constituent Category (to the left)
R Constituent Category (to the right)
t(H) tag of H head word
l(H) head word of H (l=lexical info)
d distance measure

4.3.3 Model 2

Model 2 (Collins, 1997; Collins, 1999) extends the parser to include a comple-
ment/adjunct distinction for NPs and subordinated clauses, and it includes a sub-
categorisation frame model. Complements in the Treebank are identified on con-
figurational grounds, and based on functional tags. All non-terminals that can be
clearly identified as complements are added a -C suffix. For every rewrite rule,
the correct subcategorisation frame needs to be selected and then processed cor-
rectly. The word probability is conditioned on the subcategorisation frame: sub-
categorised words are more likely to appear if they are subcategorised. Once a
subcategorised word has been found, the subcategorisation frame is shortened by
one element.

Let us look at an example. The S rewrite rule in Last week IBM has bought
Lotus S(bought)→ NP(week), NP-C(IBM), VP(bought). For the subcategorisation-
dependent generation of dependencies in Model 2, first the probabilities of the
possible subcat frames to the right prc and to the left plc of the head are calculated,
conditioned on the LHS mother category P , the RHS head category H and the
lexical head h. The selected subcat frame is added as a condition to the left context
l, respectively the right context r.

Phead(VP|S,bought) · Plsubcat({NP-C}|S,VP,bought) (4.12)
·Prsubcat({}|S,VP,bought) · Pl(NP-C(IBM)|S,VP,bought,{NP-C})
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Once a subcategorised constituent has been found, it is removed from the subcat-
egorisation frame, so that if IBM is NP-C, h=week has an empty subcategorisation
frame.

Pl(NP(week)|S,VP,bought, {}) (4.13)

This ensures that non-subcategorised constituents cannot be attached as comple-
ments, which is one of the two major function of a subcategorisation frame. The
other major function of a subcategorisation frame is to ensure that, if possible, all
the subcategorised constituents are found. In order to ensure this, the probabil-
ity whether a rewrite rule should stop expanding is calculated. Importantly, the
probability of a rewrite rule with a non-empty subcat frame to stop expanding is
low, while the probability of a rewrite rule with an empty subcat frame to stop
expanding is high.

Pl(STOP|S,VP,bought,{}) · Pr(STOP|S,VP,bought,{}) (4.14)

The entire probability of the phrase S(bought)→NP(week), NP-C(IBM), VP(bought)
is therefore

Phead(VP|S,bought) · Plsubcat({NP-C}|S,VP,bought) · Prsubcat({}|S,VP,bought)
·Pl(NP-C(IBM)|S,VP,bought,{NP-C}) · Pl(NP(week)|S,VP,bought,{})
·Pl(STOP|S,VP,bought,{}) · Pr(STOP|S,VP,bought,{})

The subcategorisation frame model of Collins Model 2 is an approximation to
subcategorisation in a formal grammar. Different types of complements are not
distinguished. We have decided to use a complement/adjunct distinction for NPs,
and also to distinguish between different types of subcategorisation. Each type of
subcategorised complement can occur maximally once per verb. Since each de-
pendent is attached separately, subcategorisation frame selection and removing of
found constituents coincide. We place strong restrictions on the co-occurrence of
subcategorisation types, as we explain in chapter 5. All the examples given in sup-
port of the subcategorisation frame model in Collins (1997) are dealt with by the
hand-written grammar.

4.3.4 Model 3

Model 3(Collins, 1997; Collins, 1999) extends the parser by adding a WH-movement
model.
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A factor for the probability of gap and filler creation and transmission is added.
First, the probability of a rule’s gap requirement is calculated, conditioned on the
LHS mother category P , the RHS head category H and the lexical head h. A rule’s
gap requirement is either head (which means no gap), right, which means that a gap
is required in the left or the right context, respectively. If so, the gap requirement
is added to the corresponding subcat frame. Second, if a gap requirement is in
the subcat frame, the probability of a (gap) TRACE constituent being generated
is higher. Third, if a gap requirement is in the subcat frame, the probability of a
(filler) extra constituent is also higher.

We show in chapter 6 how we treat long-distance dependencies.

4.3.5 Recovering empty nodes and functional tags with Treebank-Based
Statistical Parsers

It is generally recognised that classical probabilistic parsers (Collins, 1999; Char-
niak, 2000; Henderson, 2003) are linguistically not convincing. They produce
pure constituency data as output that does not include the grammatical function
annotation nor the empty nodes annotation provided in the Penn Treebank. Many
approaches thus aim to recover empty nodes or functional tags from their output in
a post-processing step. Approaches to reconstruct functional tags include Blaheta
(2004) and Musillo and Merlo (2005). Our approach only aims to recover a subset
of the information corresponding to functional tags, we will thus not discuss them
in detail. The functional tags that we aim to recover are SBJ, the subject depen-
dency; LGS, the logical subject in passive sentences; CLR, PPs that are arguments;
and TMP, NPs that act as adjuncts.

Post-processing attempts to recover empty nodes include simple approaches
like Johnson (2002), and linguistically sophisticated approaches like Campbell
(2004). Some approaches are based on machine-learning, for example Dienes and
Dubey (2003) use a tagging approach, Jijkoun and de Rijke (2004) use memory-
based learning, and Levy and Manning (2004) use loglinear classifiers. One of
the best-performing approaches, Campbell (2004), is a rule-based approach using
entirely hand-crafted rules. Campbell (2004) raises the question whether statisti-
cal approaches are warranted for the treatment of long-distance dependencies. He
points out that empty categories follow from clear formal linguistic principles, ac-
cordingly there should be principle-based ways to recover them. Empty categories
do not exist prior to the annotation, they are consciously inserted by the annotator
following guidelines about linguistic configurations. The majority of empty nodes
occur in configurationally clearly defined places. We describe our rule-based ap-
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proach to discovering the majority of long-distance dependencies in chapter 6. It
is also a largely rule-based approach, exploiting linguistic knowledge.

Recently, there have been first approaches reporting both empty nodes and
functional labels integrated into the parsing stage in broad-coverage probabilistic
parsing, for example Gabbard, Kulick, and Marcus (2006).

4.4 Dependency-oriented Statistical Parsers

There is a large number of dependency parsers, some of them with a probabilistic
component. For space reasons we cannot discuss all of them but present an impor-
tant subset. Statistical DG parsing has recently attracted a lot of interest, as is wit-
nessed by the recent CoNLL shared tasks of multilingual dependency parsing. The
first one took place at CoNLL-X (Buchholz and Marsi, 2006), the second one at
and CoNLL-XI (Nivre et al., 2007). About half of the entrants of the dependency-
parsing shared task of CoNLL-X used Nivre’s MaltParse approach (Nivre, 2006b),
which we also summarise below. Pro3Gres participated in CoNLL-XI, with aver-
age results, which are discussed in section 7.3.2.

4.4.1 Link Grammar

Link Grammar (Sleator and Temperley, 1991) is an early broad-coverage parser
using a dependency-related formalism. Its parsing algorithm is context-free, that
means it can only report projective structures. Nevertheless, most non-projective
structures of English can be treated. A large set of labels is used in order to deliver
projective analyses for structures that are inherently non-projective. In order to
obtain the corresponding non-projective analyses, a considerable amount of post-
processing is needed (Schneider, 1998). In practical terms, Link Grammar proves
that completely projective parsing of English is possible without sacrificing long-
distance dependencies.

4.4.2 Eisner

(Eisner, 1996) describes three models for probabilistic dependency parsing. The
dependency structures are required to be projective, which means that since no
mapping of LDDs to dedicated dependency types is used, the system is unable to
express empty nodes and LDDs. The system uses only unlabelled dependencies.
These two factors mean that Eisner does not use the potential of DG to express
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grammatical relations more directly, but just uses a version of DG equivalent to
constituency. An unlabeled DG is a CFG in Chomsky Normal Form, in which the
mother node and its head dependents are equivalent.

4.4.3 MacDonald et al.

McDonald et al. (2005) also use unlabelled dependencies. Their approach is one
of the few really non-projective approaches. They detect discontinuous structures
directly during parsing, using spanning tree algorithms from graph theory. Like in
other Treebank-based approaches, most other dependency parsers are projective,
some using graph rewriting in a post-processing stage. They also show that their
parser increases efficiency on languages with non-projective dependencies.

4.4.4 Nivre et al.

Nivre (2003) also used unlabelled dependencies. Nivre and Scholz (2004) reports
labels, but their approach is still projective. They use scores rather than probabili-
ties and parse deterministically using an LR(n) parser. Pro3Gres differs here, as it
uses a search beam on CYK instead of a sophisticated look-ahead, thus covering
the middle ground between all-path parsing and deterministic parsing. Memory-
based learning (Daelemans, 1999) is used for the parsing and look-ahead function
in Nivre and Scholz (2004). The look-ahead is three tokens, only taking the part-
of-speech tags into consideration. Nivre and Scholz (2004) reports results that are
slightly below Collins (1999) and Charniak (2000).

Nivre and Nilsson (2005) use graph rewriting procedures to transform projec-
tive trees into non-projective graphs. The graph transformations are learnt from
the training data in the following way: the training data for the parser is projec-
tivized by applying and remembering lifting operations (Kahane, Nasr, and Ram-
bow, 1998). A lifting function is a simple graph transformation, which is defined
as follows: if a governor a has a dependent b, and b has a dependent c, then lifting c
will make it an immediate dependent of a. When the parser is trained on the trans-
formed data, it is also given information about lifts. After parsing, a post-processor
applies the learnt lift operations inversely. Inverse lift operations correspond to our
post-processing treatment of control structures. Nivre and Nilsson (2005) report
that in the Czech Prague Dependency Bank (Hajič, 1998) 15 % of all sentences
need at least one lifting operation, and 25 % of the sentences in the Danish Depen-
dency Bank (Kromann, 2003). Less than one percent of the sentences in the Prague
Dependency Bank need more than 3 lifting operations, and less than 3 percent of
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the sentences in the Danish Dependency Bank need more than 3 lifting operations.
The memory-based learner reports almost correct reconstruction (99 % f-score) on
perfect parses, on Czech projective parser output it improves the labelled attach-
ment score from 72 % to 72.8 %. Such a graph rewriting task is very similar to
the combined task of recovering empty nodes and antecedents in the Penn Tree-
bank. At least for English, it could also be addressed with a rule-based approaches
(Campbell, 2004), or our approach in chapter 6.

Nivre (2006a) uses a completely different parsing algorithm, in which every
word is allowed to attach to any other word. The algorithm in pseudo code is as
follows.

Foreach sentence w1, ..., wn {
for i = 1 up to n {

for j = i− 1 down to 1 {
LINK(i, j) }}

The link operation builds an arc with i as head and j as dependent, or j as
head and i as dependent, or none, depending on the grammar rules. Such an algo-
rithm allows the construction of arbitrarily non-projective graphs. If typical depen-
dency constraints such as acyclicity, single-headedness and projectivity are placed
as weak constraints, that can be violated under rare conditions, then we have a
usable non-projective algorithm. The rest of Nivre (2006a) presents the ensuing
parser and shows that the degree of violations needed on the projectivity constraint
is small, corresponding to the lifting operations presented above.

Kuhlmann and Nivre (2006) have further investigated the context-sensitivity
in the Danish Dependency Bank and the Czech Prague Dependency Bank. They
describe that context-sensitivity constraints of the class that the grammar formal-
ism of Tree-Adjoining Grammar (TAG) belongs to has almost complete coverage,
99.89 %, on these two Treebanks, and that the remaining uncovered data is partly
due to the properties of the annotation scheme. They conclude that TAG mild
context-sensitivity is a very attractive extension of projectivity. We discuss in chap-
ter 6 that for English, TAG mild context-sensitivity is needed to analyse complex
WH-questions. We have followed (Kuhlmann and Nivre, 2006)’s suggestion and
implemented a simple dependency version of TAG based mild context-sensitivity,
which we present in chapter 6.

Nivre’s work is summarised in Nivre (2006b). Throughout the several versions
of his parser, MaltParse, deterministic parsing with an oracle and a limited look-
ahead of typically 3 words is used. It is well known that such a short look-ahead
is not sufficient for many cases, that local maxima may differ from global maxima
for much longer sequences.
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The Efficiency criterion is achieved by the deterministic and greedy
(non-ambiguitypacking) nature of the shift-reduce parser. One could
argue that even at a word level, deterministic, non-packing parsing is
not always possible ... . (Samuelsson, 2007)

Our approach using a full-path parser combined with a beam-search is an impor-
tant difference. Whether these different architectures have an impact in terms of
linguistic performance has not been evaluated, however.

More arguably, Nivre’s mapping from the Penn Treebank to a dependency rep-
resentation is, like Collins’ (Collins, 1999), relatively surface-oriented and has not
been accepted by all scholars (see, e.g. Samuelsson (2007)). We discuss some of
the inconsistencies and errors that Nivre (2006b)’s mapping introduces in the eval-
uation in subsection 7.3. More research on dependency schemes such as Carroll,
Minnen, and Briscoe (2003) and de Marneffe, MacCartney, and Manning (2006) is
needed, as also one of the conclusions of Nivre et al. (2007) expresses:

Increasing our knowledge of the multi-causal relationship between
language structure, annotation scheme, and parsing and learning meth-
ods probably remains the most important direction for future research
in this area. (Nivre et al., 2007, 929)

Our own representation has been based on the functional considerations in
Lexical-Functional Grammar (LFG), it is close to Carroll, Minnen, and Briscoe
(2003), and uses some of the extension advocated in marneffe-ea06, for example
appos. Haverinen et al. (2008) have mapped the output of Pro3Gres to the Stan-
ford scheme and shown that Pro3Gres achieves state-of-the-art performance. The
Stanford scheme (de Marneffe, MacCartney, and Manning, 2006) is a recent ex-
tension of Carroll, Minnen, and Briscoe (2003) and is a widely used dependency
representation.

Our representation originally left chunk-internal relations underspecified, which
also allowed us to side-step some areas of gradience and focus on predicate-argument
relations, which has been the original spirit of dependency grammar (see chapter
3). Versions of the parser that report all chunk-internal relations are now available.
We will see in chapter 6 that using a linguistically highly motivated, functionally
oriented approach is crucial.

4.4.5 Yamada and Matsumoto

Yamada and Matsumoto (2003) is very similar to Nivre and Scholz (2004). Impor-
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tant differences are they use a different parsing algorithm (a shift-reduce version),
Support Vector Machines, and that they report slightly better performance.

At first sight, one would expect previous DG work to be a major source of influ-
ence on a DG parser such as Pro3Gres. But it turns out that, first, the recognition
that Functional DG is so expressive because of its functional labels (Covington,
1994; Schneider, 2005) has not yet had a big impact. Second, there is only rel-
atively little work on long-distance dependencies in DG, as Nivre (2006a, 73-74)
points out. Third, our application of mild context sensitivity is more closely re-
lated to TAG and LFG approaches than to DG work. In fact we offer a DG-based
simplification to the TAG and LFG approaches to mild context-sensitivity. Fourth,
also DG research is turning to the class of extension of context-sensitivity that TAG
offers. Kuhlmann and Nivre (2006) have investigated naturally occurring context-
sensitivity in two corpora in dependency format (the Danish Dependency Bank and
the Prague Dependency Bank) and conclude that TAG mild context-sensitivity is a
very attractive extension of projectivity.

4.5 Data-Oriented Parsing (DOP)

Data-Oriented Parsing (Bod, 1992; Bod, Scha, and Sima’an, 2003) is a model in
which the basic units to which probabilities are assigned are subtrees. The prob-
ability of a subtree is not the product of all its local subtrees (trees spanning two
generations), but recursively the sum of the probabilities of all the subtrees – local
or bigger than local – it can be composed of. (Bod, 2001) shows that subtrees as
deep as 14 levels still contribute to parsing performance. These results show that
lexical and structural dependencies span a large number of levels.

Pro3Gres takes the assumption that this property is strongly present in the fol-
lowing two configurations. First, deeply nested phrases of the same type, where the
lexical head appears several levels below its maximal projection. Second, in long-
distance dependencies, where lexical information needs to be shared between the
gap and the filler. Collapsing LDDs into local dependency relations as Pro3Gres is
related to a version of DOP in which the depth of subtrees expressing certain types
of long-distance dependencies are known.
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4.6 Statistical Formal Grammar Parsers

We have mentioned that state-of-the-art probabilistic parsers (Collins, 1999; Char-
niak, 2000; Henderson, 2003) are linguistically not convincing.

Before the advent of statistical methods, regular and context-free gram-
mars were considered too inexpressive for serious consideration, and
even now the reliance on stochastic versions of the less-expressive
grammars is often seen as an expedient necessitated by the lack of
an adequate stochastic version of attribute-value grammars.

(Abney, 1997)

It is recognised, for example in Kaplan et al. (2004b), that formal grammar
parsers, without using the insights into statistics gained from probabilistic parsing,
cannot achieve the robustness, coverage, accuracy and speed required for large-
scale application. We discuss some of the successful approaches to integrate statis-
tical disambiguation in formal grammar based parsers. The discussion is ordered
by linguistic theory.

4.6.1 Lexical-Functional Grammar (LFG)

Lexical-Functional Grammar (LFG) can be seen as the outcome of the debate
about the prevalence of constituency or dependency (see e.g. Schneider (1998))
LFG grammars use constituency rules that are annotated for building up functional
structures (Bresnan, 1982). The functional structures of LFG are closely related to
our dependency output, as we will argue in section 6.5.

Riezler et al., Maximum Entropy Modelling

Riezler et al. (2002) was he first approach scaling up an LFG parser to the entire
Penn Treebank. They used Maximum Entropy Modelling, which we briefly discuss
in the following. Maximum Entropy Modelling is by no means restricted to be used
in the LFG theory only. It has also been used in HPSG syntax, and for many other
natural language processing tasks. We discuss Maximum Entropy here because of
the historical importance of Riezler’s approach.

Log-linear and Maximum Entropy models A central theory on which statis-
tical Formal Grammars are based is log-linear and Maximum Entropy modelling.
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Log-linear models are models in which the log probability is a linear combination
of feature values (plus a constant). Maximum Entropy models and Random Fields,
but also PCFG, are examples of log-linear models.

PCFGs are a particular, simple version of log-linear models in which the se-
quence of features is the sequence of production rules traversed for a derivation. It
is simple to get a probability model, the probabilities of all productions of the same
LHS sum to 1. This useful property is lost in a straightforward extension of PCFGs
to a structure-sharing, re-entrant Formal Grammar, as the re-entrancies introduce
additional probability mass (Abney, 1997).

Stochastic Attribute-Value Grammar (SAVG) introduced in Abney (1997) is
the general name for what can be seen as PCFG for attribute-value grammars.
An attribute-value grammar rule is a rewrite-rule equipped with features that con-
strain each other, and that can express co-references. Rules are assigned weights
in a fashion similar to PCFG or lexicalized PCFG. Because the co-references (also
called re-entrancies) introduce interdependencies by adding to the probability mass
in more than one place, SAVG loses the PCFG property of being probabilistic.
PATR and PATR-II are attribute-value grammars. HPSG and GPSG often im-
plemented as attribute-value grammar, although then only an important subset of
HPSG can be implemented.

Abney (1997) originally suggests to base SAVG on Markov Random Fields.
But no tractable exact parsing algorithm is known. Because of the dependencies
among substructures, dynamic programming is impossible. This means that no
efficiently implementable random-field approach exists yet.

Johnson et al. (1999) suggests to use Maximum Entropy models for SAVGs.
Maximum Entropy modelling allows one to stochastically weigh discrete features
to maximise the probability of a model, typically of an initially non-probabilistic
model. One does not need to know if the features are independent and one can
maximise the probability of a model that has many features by maximising each
feature individually. Weight estimation is easy because the entropy function is con-
vex. This means that it has one maximum, that no other point than the maximum
is flat, and that all paths towards the maximum go upwards.

Entropy In Shannon’s information theory, information I is a measure of surprise
at an individual outcome given previous experience of outcomes. The less likely
an outcome, the more informative. Information is measured in bytes, hence the
logarithm with base 2.
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I = log2
1
p

(4.15)

Entropy H can be described as the average expected surprise, the average in-
formation of an outcome. It is simply the information weighted by its probability,
as indicated in 4.16

H = p · log2
1
p

(4.16)

This function has two important properties. First, it is convex. Second, the
entropy of a function is maximised at the point where the parameter probabilities
fit the data best. This means that the probability of a complex function, for instance
the product of weighted features, can be maximised by maximising the entropy.

Scored Features The score of an outcome a, for example a syntactic analysis
given a sentence, is the product of features f weighted by α. Of all possible binary
features from the feature space 1..n, a feature fi is either true (1) or false (0) for an
outcome.

Score(a) =
n∏

i=1

αfi
i =

∏
i=1

{
αi if fi = 1
1 if fi = 0

(4.17)

In order to get the probability distribution, the score has to be re-normalized by
a factor Z. For maximising or comparing probabilities, Z does not matter and is
often not actually calculated.

p(a) =
1
Z

n∏
i=1

αfi
i where Z =

∑
Ω

n∏
i=1

αfi
i (4.18)

Partial Information Maximum Entropy modeling is used where only partial in-
formation is available. The features for which training data is available get their
probabilities from simple counts over the training corpus from which the weights
follow directly. The automatic weighting of the features for which no informa-
tion is available makes sure that they get highest entropy weights. The automatic
weighting uses methods like iterative scaling. If entropy increases for a small
weight change, then it is moving towards the maximum.
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Riezler’s approach Riezler et al. (2002) is probably the first large-scale appli-
cation of Maximum Entropy models combined with a formal grammar. An LFG is
scaled to parse the Penn Treebank. Sections 02-21 are used for training. Many of
the features used in LFG are not expressed in the Treebank, therefore a Maximum
Entropy model was used. Around 1000 features expressing information about c-
structure, f-structure and lexicalization are employed. 74.7 % of the sentences in
section 23 receive a full parse, in 23.5 % partial results are collected. The evalua-
tion is done on 700 randomly selected sentences from the Penn Treebank section
23, and on 500 random sentences annotated with dependency information from the
Suzanne corpus (Carroll, Minnen, and Briscoe, 1999).

Cahill, van Genabith, Burke

The Penn Treebank is currently the largest available syntactically parsed corpus for
training formal grammar parsers. In order to be able to use it, one must address the
fact that it leaves some features underspecified although they are used in formal
grammars. One possible approach is to use Maximum Entropy, as Riezler et al.
(2002) have done for LFG. Another approach used in LFG is to devise a approx-
imative mapping from the Penn Treebank to LFG rules. While (P)CFG rewrite
rules are expressed directly, such a mapping is needed in order to approximate the
functional annotations that form a vital part of each LFG rule. For this purpose,
Cahill et al. (2002) and Cahill et al. (2004) have developed a mapping method.
The CFG rules extracted from the Penn Treebank are automatically annotated with
functional annotations. Two parsing architectures are compared: a pipeline archi-
tecture in which the automatic f-structure annotation is done on the actual output
of PCFG-trained parser; and an integrated architecture in which the automatic f-
structure annotation is done on the gold-standard, and then an LFG parser is used.
It is shown that the integrated architecture outperforms the pipeline architecture. In
relation to Pro3Gres, the pipeline architecture corresponds to an approach in which
Johnson (2002) patterns are used on the output of a classical probabilistic parser
(Collins, 1999; Charniak, 2000), while the integrated architecture corresponds to
our approach of using extended Johnson (2002) patterns on the gold standard and
parsing with Pro3Gres.

Burke et al. (2004) extends on Cahill et al. (2002) by extracting paths between
co-indexed constituents, thus also taking non-local information into consideration.
For each of the modelled LDD types t (they mainly involve topicalization: TOPIC,
TOPIC-REL, FOCUS) the path p probability is estimated
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P (p|t) =
#(t, p)∑n

i=1 #(t, pi)
(4.19)

4.6.2 Head-Driven Phrase Structure Grammar (HPSG)

Head-Driven Phrase Structure Grammar (HPSG) is close to dependency in spirit
(Pollard and Sag, 1994). It also aims at a functional, even at a semantic orientation.
It is certainly deep-linguistic. But due to its reliance on very complex attribute-
value structures, on unification, and on pervasive use of long-distance dependen-
cies, HPSG can suffer from enormous search spaces. Although HPSG systems are
now achieving relative robustness (Miyao, Ninomiya, and Tsujii, 2003; Miyao, Ni-
nomiya, and Tsujii, 2005), their inherent complexity is much higher than what is
needed to express natural language. (Sarkar, Xia, and Joshi, 2000) state that the
theoretical bound of worst time complexity for HPSG parsing is exponential.

Alpino

Alpino (Bouma, van Noord, and Malouf, 2001) is a wide-coverage HPSG grammar
for Dutch trained on a Dutch corpus. It is hand-written, but uses maximum-entropy
dependency probabilities (and some heuristics) for the disambiguation task, which
are shown to drastically increase the accuracy of the system. The hand-written
heuristics are, each of them compared to Pro3Gres, as illustrated in table 4.1.

Their statistical model is based on dependency relations. The probability of a
parse y given a sentence x, where R is the relation, is modelled as:

P (y|x) =
1

Z(x)

∏
dependentεy

P (R, dependent|head). (4.20)

Z(x) is a normalisation factor; since the probabilities are used for compar-
ing and maximising, and since x is fixed, Z is ignored. Like in (Collins, 1996),
dependent and head is a <word, tag> tuple. Unlike in (Collins, 1996) or Pro3Gres,
not only the relation R, but also the dependent is generated. For parameter estima-
tion, the usual backoff (Collins, 1999) is used, as well as unsupervised learning:
the results from parsing a large corpus.
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Alpino Pro3Gres
Complementation is preferred over
modification

Left underspecified

Subject topicalization is preferred
over object topicalization

Object topicalization is severely re-
stricted, currently to questions only.
More marked in English than in
Dutch

Long-distance dependencies are dis-
preferred

Relations expressing LDDs get ap-
propriate low probabilities from the
training corpus

Certain rules are dispreferred Similarly: some of the unmod-
elled rules are given low pseudo-
probabilities

Certain lexical entries are dispre-
ferred

Rely on tagger output

Certain guesses for unknown words
are preferred over others

Rely on tagger output

Table 4.1: Alpino 2001 in comparison to Pro3Gres

Miyao and Tsujii et al.

Miyao, Ninomiya, and Tsujii (2003) present a probabilistically consistent model
for predicate-argument structures, i.e. deep-linguistic structures as they are output
by formal grammars like HPSG, LFG or Functional DG. It is discussed that the
probability of a complete sentence can be calculated in a tractable parse forest,
while a naive tree enumeration computation is intractable. Then it is shown that
predicate-argument structures can be represented as parse forests. The conducted
parsing experiments on Penn Treebank section 23 reveal that the employed HPSG
parser is only relatively robust, as it fails to output structures in almost 20 % of the
sentences, and that sentences longer than 40 words had to be cut.

Miyao, Ninomiya, and Tsujii (2005) improves robustness to above 95 % of
Penn Treebank section 23, but also with limitations: first, sentences longer than 40
words still needed to be excluded, secondly the predicate-argument information –
the HPSG SEM feature had to be neglected: “predicate-argument structures (SEM
features) cause exponential explosion in the search space. The SEM feature was
thus ignored in the parsing experiments.” Using HPSG without its SEM feature
leaves many of the aspects for which HPSG has been designed unexpressed.
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Miyao and Tsujii (2004) use an HPSG system for the task of PropBank predicate-
argument discovery, including predicate-argument relations that involve long-distance
dependencies. Their completely rule-based approach outperforms most machine
learning approaches on the task. This confirm the intuition that voiced by Camp-
bell (2004) that linguistic knowledge is a good alternative to advanced machine-
learning approaches for the task of detection and resolution of long-distance de-
pendencies.

4.6.3 Combinatory Categorial Grammar (CCG)

Combinatory Categorial Grammar (CCG) has been successfully applied to proba-
bilistic large-scale parsing in Hockenmaier (2003). Performance is very compet-
itive, and with its combination of a relatively simple grammar formalism with a
proper treatment of long-distance dependencies, it is a close relative to our ap-
proach. Differences are, however, that CCG is constituency-oriented and that
search spaces are enormous. As a practical solution, super-tagging is used. Like
TAG, CCG is a mildly context-sensitive grammar. We discuss TAG and its relation
to our approach in chapter 6.

Constituency orientation of CCG and search-spaces CCG and categorial gram-
mars (CG) generally are, like DG, valency oriented lexicalized grammars. The
category assigned to a word encode its valency requirements. For example, the
transitive verb love has a category ((S\NP )/NP ) which means that if its cate-
gory requirements for an NP to the right (/NP , typically the object in DG) and
then an NP to the left (\NP , typically the subject in DG) are satisfied then we
have an S node. But while DG is typically functionally oriented, taking nouns and
gerunds and subordinated sentences alike as potential objects, categorial gram-
mars are constituency-oriented. While (at least our) DG does not express va-
lency requirements but licenses attachments, which means that unsatisfied valen-
cies never pose problems, CGs even need to express adjunction as an artificial
valency (e.g. ((S\NP )/NP ) ((S\NP )/NP ) is an adverb of a transitive verb).
Also, there is no unique class for all verbs (intransitive, transitive, (di)transitive
with PP, (di)transitive with subordinated S etc.), but all of them are treated sep-
arately. In practice, this means that the number of possible categories per word
is large. On Treebank section 00, each word token has on average 22 categories.
Inflated word category ambiguity in turn inflates parsing search spaces, to several
orders of magnitude more than in other formal grammars.



91 4.7. Shallow Parsing, Finite-state Cascading

Super-Tagging As a practical solution, a super-tagging approach has been im-
plemented (Curran and Clark, 2004). Super-tagging has been described as “almost
parsing” (Bangalore and Joshi, 1999) because a partial parse tree is assigned to a
word. Originally applied to TAG, super-tagging is highly suitable for CG, where
each word category expresses its valency requirements in the form of sister and par-
ent node requirements very similar to TAG. (Curran and Clark, 2004) have shown
that aggressive super-tagging strategies drastically reduces search spaces and turns
CCG systems into probably the fastest current parser ((Clark and Curran, 2004)).
The super-tagger initially assigns a small number of CCG categories to each word,
and the parser only requests more categories from the super-tagger if it cannot
provide an analysis. Super-tagging is related to the carefully designed non-local
restrictions that we place in our hand-written grammar. Super-tags express par-
tial trees and therefore restrict, or even predetermine the parsing process to a large
degree. We will show in an evaluation in section 7.8 that constraints have even a
bigger impact on parsing time than pruning.

4.6.4 Tree-Adjoining Grammar (TAG)

The grammar formalism of Tree-Adjoining Grammar (TAG) and its relation to
Functional Dependency Grammar are discussed in detail in chapter 6. TAG be-
longs to the class of mildly context-sensitive grammars. This class is described
as being sufficiently expressive for all linguistic phenomena in natural language
(Frank, 2002; Frank, 2004). As context-sensitivity is restricted, worst-case parsing
complexity for TAG is O(n7) or O(n8), depending on the implementation (Eisner,
2000). We discuss in 6 that Functional Dependency Grammar inherently expresses
TAG’s extended domain of locality (Carroll et al., 1999; Frank, 2002; Sarkar and
Joshi, 2003). Only a minimal extension to CYK-based CFG parsing, which has
complexity O(n3), is needed for parsing a Functional Dependency Grammar that
is akin to TAG: adjoining to the main verb.

4.7 Shallow Parsing, Finite-state Cascading

There is a popular, robust, very fast alternative to full parsing: be it by a probabilis-
tic approach, which is typically fast but fails to express long-distance dependencies,
or a formal grammar, which typically expresses long-distance dependencies but is
often slower and less robust: shallow parsing. Typically, the text to be analysed
is run through a sequence of finite-states machines, which build up a partial struc-
ture in a bottom-up fashion. Each finite-state machine corresponds to a level of
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syntactic processing: tagging for POS disambiguation, chunking for Base-Phrase
recognition (in some systems followed by a PP-chunker for PPs), a verbal (and
sometimes nominal) attacher for the phrase level. Super-phrasal attaching is rarely
done, long-distance dependencies are usually neglected. Because of the sequential
processing, each finite-state transducer taking as input the output of the previous
transducer, they are often called cascaded finite-state transducers.

While this approach is highly promising and reliable for the low-level cascades,
tagging and chunking, the performance for high-level chunking, at the phrase level,
drops off. Briscoe and Carroll (2002) take a critical viewpoint. They state that
shallow parsing output is neither as complete nor as accurate as state-of-the-art
statistical parsers, and that it is unlikely that they will achieve the same level. A
major problem for the development of accurate shallow parsers is that heuristics
like longest match interact in complex ways with the large number of manually
coded rules required in a wide-coverage system. This makes effective development
of additional rules increasingly difficult, it is thus difficult to scale up. A second
problem is the pipeline approach, which requires that the output from each phase
of processing is deterministic, thus many decisions need to be taken too early in
the processing chain, favouring local maxima. A third problem is that many such
systems achieve much of their domain independence by basing rules as much as
possible on part-of-speech (PoS) tags, rather than specific lexical items, in order to
limit the number of rules required. Therefore, they cannot profit from the increased
performance that lexicalisation offers (Collins, 1999).

4.7.1 Tag-Based Chunking and Partial Parsing Grammars

Abney (1991) and Abney (1996) describe a well-known tag-based chunking sys-
tem. While the application of a finite-state chunker for the entire parsing process
is controversial, Abney (1991) points out that such chunkers are very fit tools for
low-level tasks.

First, one of the most difficult problems for context-free parsing tech-
niques is attachment ambiguities. But within chunks, (syntactic) at-
tachment ambiguities do not arise, and simple context-free parsing
techniques are very effective. By having separate chunker and at-
tacher, we can limit the use of expensive techniques for dealing with
attachment ambiguities to the parts of the grammar where they are
really necessary – i.e., in the attacher.

Another motivation is modularity. Since the chunker is insensitive to
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the state of the attacher, we can develop and debug it separately from
the attacher. The chunker also simplifies the task the attacher faces:
many lexical ambiguities can be resolved within chunks, relieving the
attacher of that task, and there is less clutter to deal with at the level
of words.

A related motivation is that the chunker-attacher division keeps at-
tachment ambiguities from being multiplied with chunk ambiguities.
The chunker evaluates chunks as well as it can on its own, instead of
taking decisions relative to one or another branch of the attacher’s
non-deterministic computation.

(Abney, 1991, 17)

Abney (1991) is a full parser, unlexicalized, disambiguating by means of sub-
categorization frames and built-in preferences for argument-attachment, verb- at-
tachment and low attachment. Abney (1991)’s scientific merit is now mainly seen
that it introduces the notion of chunk and the division of labour between the chun-
ker and the attacher – a division that is still valid today, and used by many parsing
systems, Collins (1996), Daelemans, Buchholz, and Veenstra (1999), and also by
Pro3Gres.

Abney (1995) suggests a model that mixes chunking and dependency grammar.
Based on the observation that finite-state chunking approaches are unsuitable for
analysing ambiguous structures such as PP-attachment it is suggested to step back
from a full finite-state parsing approach to using chunking only for unambiguous
sub-structures. In addition to the standard structural definition of chunks as being
unnested NPs (so-called Base-NPs) and verb-groups, Abney gives chunks a func-
tional, pragmatic definition: “We can define chunks as the parse tree fragments that
are left intact after we have unattached problematic elements” (Abney, 1995) As to
the definition of “problematic” cases, Abney argues that they are post-head sisters,
i.e. arguments, modifiers and conjuncts that follow their head, plus pre-head ele-
ments of the S constituent only.1 Due to these findings, the structural and Abney’s
pragmatic definition largely coincide.2

1The constraint that only the S constituent can contain pre-head ambiguities may be true for
English, but closely related languages, e.g. German, also allow noun or even adjective pre-head am-
biguities, for example der auf der Bank beim Brunnen/beim Zeitungslesen sitzende Mann where the
PP is ambiguous between attaching post-head to the noun bank or pre-head to the adjective sitzend.
This entails that chunking approaches, and constituency approaches in general, are considerably
more problematic for languages like German

2As a notable exception we can mention NPs like some of the people, which is assumed to be one
chunk with people as head, while syntactically we have two base-NPs, the superordinate one with
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After thus “unattaching” all ambiguous cases, Abney goes on to suggest to
re-attach them by a thematic, valency-based, grammar-role centred approach.

... essential information is clearly lost by “unattaching” chunks. For-
tunately, we can re-introduce the deleted information, without losing
the phrase boundaries we require to account for processing facts, by
including the severed attachments as a relation distinct from immedi-
ate constituency. Since post-head sisters are canonically licensed by
θ-role assignment, it is natural to reintroduce the severed attachments
as relations between post-head sisters and their governors, rather than
their immediate dominators. Such a move would lead us to what is
essentially a mixed immediate-constituency/dependency structure, in
which dependency relations contribute to semantic interpretation and
syntactic constraints involving binding and movement ...

(Abney, 1995, 6)

This is the syntactic model adopted for Pro3Gres.

4.7.2 Grefenstette, Brants

There are a number of other systems based on cascaded finite-state transducers, for
example Grefenstette (1996). After standard tagging, a chunker that differs from
traditional approaches by including verb arguments and modifiers into the verb
group, and noun arguments and modifiers, and prepositions, into the noun group.
A second transducer extracts the heads of the chunks, distinguishing between PPs
and NPs for the noun chunks, and between active, passive and copular verbs for
the verb chunks. Brants (1999) is a successful cascaded finite-state transducer that
has been tested on English and German. It is claimed to be psycholinguistically
adequate.

4.8 Memory-Based Grammatical Relation Finding

Daelemans, Buchholz, and Veenstra (1999) and Buchholz (2002) are memory-
based cascading approaches extending on the finite-state automaton idea. While
Daelemans, Buchholz, and Veenstra (1999) deals with subjects and objects only,

some as head. This is one of the major sources of the Pro3Gres parsing errors that appear under the
grammar assumption label in section 7.2.2.
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Buchholz (2002) extends to all verbal arguments. Memory-based Learning (MBL)
is a similarity-based supervised learning approach in which a memory-based learn-
ing algorithm builds a classifier by storing a large set of examples. From each train-
ing example, a vector of manually defined features, including the target feature, is
extracted. When used on a new feature-vector at application time, the classifier
assigns a class to the new feature vector, based on the most similar feature vectors
in memory. Which similarity measure to use can be automatically or manually
adapted to the classification task.

A large number of distance metrics have been suggested in the literature. On
numerical values, the dot product, which is equivalent to the cosine measure of two
vectors since normalised vectors are used, is the most obvious metric. On symbolic
features, the edit distance is the simplest. The MBL software (Daelemans, Buch-
holz, and Veenstra, 1999) also uses many advanced algorithms, based on informa-
tion gain, χ-square goodness of fit tests, Kullback-Leibler divergence in order to
weigh features according to their importance, and makes use of decision-trees to
abstract generalisations and reduce the data load.

4.8.1 Daelemans et al. 1999

After standard tagging and chunking a feature vector is extracted from each training
instance. The following features are used:

The distance from the verb to the argument head (measured in chunks); the
number of base VPs between the verb and the argument head (maximally 1 al-
lowed); the number of commas between the verb and the argument head; the verb;
the part-of-speech tag; the first left argument head context word; the first left ar-
gument head context tag; the second left argument head context word; the second
left argument head context tag; the first right argument head context word; the first
right argument head context tag;

As a realistic baseline for the combined subject and object assignment f-measure,
66% is given: “[u]sing the simple heuristic of classifying each (pro)noun directly
in front of resp. after the verb as S[ubject] resp. O[bject] yields a ... baseline of
66%” (Daelemans, Buchholz, and Veenstra, 1999) . The best MBL algorithm used
for this task improves just above 10 % over this baseline to 76.2 %. While the
improvement over the baseline is impressive, the baseline seems surprisingly low.
Our own baseline experiments for unlexicalized parsing with Pro3Gres (see chap-
ter 7), admittedly done on a different corpus (Carroll, Minnen, and Briscoe, 1999),
show a baseline of 85 % combined precision and 75 % combined recall. Shallow
parsing approaches probably miss something very important: the parsing context.
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Let us consider the simple example sentence the report issued by the commis-
sion in 1986 has shown that ...: While the parsing context disambiguates the local
ambiguity of report as a subject (unless no parse spanning the very short distance
from report to shown can be found), in the case of shallow parsing the disambigua-
tion has to rely on lexical and tagging context information, which is much less
reliable than parsing context. Although parsing is highly ambiguous, only a small
minority of locally possible parses manage to combine to globally possible parses;
a piece of information that shallow parsing misses. We will give an indication of
the extent to which this can affect performance in section 7.7.2.

4.8.2 Buchholz 2002

Buchholz’ work starts with Daelemans, Buchholz, and Veenstra (1999) and care-
fully extends the system, first by optimising the MBL algorithm parameters, then
by testing and adding new features to the vector, and finally by including long-
distance dependency features.

We will not discuss the MBL parameters. New features that are tested are first
a bigger observation window, and the Penn Treebank functional labels. It is shown
experimentally that the argument head-centred observation window performs better
if it is larger to the left than to the right, which is to be expected from Abney’s
observation that all non-S ambiguities are post-head sisters. It is found that the
observation window to the right need not even include any lexical information,
whereas the best-performing observation window to the left includes chunk type
and lexical information for the two previous chunks.

In order to approximate the missing parsing context, the derivation-history in
history-based approaches, (Buchholz, 2002) introduces features for elements be-
fore the verb (front material), elements between the verb and the argument/adjunct
(intervening material) – the chunks that can or cannot be attached to the verb,
which leads to the parsing-based disambiguation – and the part of the sentence
following the argument/adjunct (back material) – a sort of a parser look-ahead.

Buchholz (2002) finds that the intervening material feature does indeed make
a significant difference, correcting an important shortcoming of Daelemans, Buch-
holz, and Veenstra (1999)’s approach. Unlike most statistical parsers, Buchholz
(2002) next extends her features that deal with long-distance dependencies. Structure-
shared arguments are given a complex dependency label composed of the two la-
bels of the gap and the filler position. For example, a passive subject is assigned a
<NP-Subj; T-NP-Obj> label. After these linguistic extensions, (Buchholz, 2002)
is a competitive system, according to (Preiss, 2003) possibly better than state-of-
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the art statistical parsers.

4.9 Conclusions

We have summarised the state of the art and shown in which ways Pro3Gres is
related to current approaches. We suggest a parsing architecture that combines the
advantages of formal grammars and of probabilistic context-free parsers.

Kaplan et al. (2004a) compare speed and accuracy of a successful probabilistic
context-free parser (Collins, 1999) to a robust LFG system based on (Riezler et al.,
2002). They show that the gap between probabilistic context-free parsing and deep-
linguistic full LFG parsing can be closed. On a random test set of 560 sentences
from the Penn Treebank (4/5th of the PARC700 corpus3) their full LFG grammar
gives an overall improvement in F-score of 5% over (Collins, 1999) at a parsing
time cost factor of 5. They also show that a limited LFG grammar (so called core
system) still achieves a considerably higher f-score at a parsing time cost factor
of only 1.5: about 200 seconds for (Collins, 1999) and about 300 seconds for the
LFG core system. A conclusion that can be drawn from their results is that research
in simplifying, restricting and limiting formal grammar expressiveness is bridging
the gap between probabilistic parsing and formal grammar-based parsing, between
shallow parsing and full parsing.

The resulting system that we have implemented is hybrid at many levels. It
carefully combines successful elements from a variety of approaches, while avoid-
ing elements that are either too unreliable or too complex. The philosophy is to stay
as shallow as possible while getting deep-linguistic analyses and using a function-
ally oriented, linguistically highly motivated dependency representation. We aim to
obtain complete analyses for the majority of real-world sentences, and meaningful
partial analyses for the remaining cases.

Our approach reduces the vast majority of long-distance dependencies to a
more shallow, less complex task by expressing the majority of long-distance de-
pendencies in a context-free way, thus offering on the one hand a parsing complex-
ity as low as for a context-free probabilistic parser, but on the other hand delivering
a deep-syntactic analysis as with a formal grammar. We have followed (Kuhlmann
and Nivre, 2006)’s discovery that the mild context-sensitivity which TAG expresses
is a suitable extension to context-sensitivity. We thus implement a simple depen-
dency version of TAG based mild context-sensitivity, which we present in chapter
6.

3www2.parc.com/istl/groups/nltt/fsbank/



Chapter 5

Grammar Engineering

Pro3Gres is a Formal Grammar parser in many senses, because it follows a formal-
ized and established grammar theory, because it treats the phenomena for which
formal grammars were invented, for example long-distance dependencies, and be-
cause it analyzes for the entities defined in Formal Grammars such as LFG: deep-
syntactic functions. At the same time, it is a robust parser, and it integrates lexical-
ized statistics obtained from the Penn Treebank. One of the aspects that Pro3Gres
shares with many systems based on formal grammars is its use of a hand-written
grammar, which we explore in this chapter.

We describe the design principles and the hand-written grammar in detail. It is
explained why we have decided to use a hand-written grammar and which govern-
ing principles we have followed during the development. The individual rule types
are then presented and discussed in detail.

5.1 Introduction

Before the success of probabilistic parsers such as Collins (1999) and Charniak
(2000) the use of hand-written grammars was commonplace, in formal grammar
based systems it still is. Grammar writing and grammar engineering proved to be
a feasible, but very labour-intense and complex task.

Grammar writing is much more difficult than rule writing. The intri-
cate interrelations of the individual rules of a grammar make gram-
mar writing a complex and error-prone process, much like computer
programming.

98



99 5.1. Introduction

(Friedman, 1989, 254)

The majority of classical probabilistic approaches learns the grammar from
the corpus, obviating the need for a cumbersome hand-written grammar, but the
amount of manual work for annotating a large corpus manually is considerable.
Recently, hand-written formal grammars are combined with statistical data (Rie-
zler et al., 2002) or formal grammars are learnt from syntactically annotated cor-
pora (Hockenmaier and Steedman, 2002; Burke et al., 2004; Hockenmaier and
Steedman, 2002) (see chapter 4). Miyao, Ninomiya, and Tsujii (2005) develop
an interesting semi-automatic grammar acquisition algorithm. They state the tra-
ditional wisdom on hand-written grammars as follows: “Although a few studies
could apply a hand-crafted grammar to a real-world corpus, (Riezler et al., 2002),
these required considerable effort that lasted over a decade.” (Miyao, Ninomiya,
and Tsujii, 2005, 684). We follow the hand-written option and combine a hand-
written rule-based grammar with lexicalized statistical data obtained from the Penn
Treebank.

We have experienced that the amount of work needed to write a broad-coverage
grammar manually is manageable, as we describe in subsection 5.1.2. The gram-
mar, once written, can be ported without or with only small changes across most
domains. What changes between domains is terminology and lexicalization prob-
abilities. We discuss in chapter 7 that the former has a large, but the latter only a
small impact. Before describing the grammar, we need to introduce the tagset on
which it is based: the Penn Treebank tagset. We do so in subsection 5.1.1.

Writing a grammar manually can have benefits. For example, sentence types
that are underrepresented in the Penn Treebank training corpus, notably questions,
are difficult to learn. Pro3Gres has been employed for question parsing at a TREC
conference (Burger and Bayer, 2005).

5.1.1 The Penn Treebank

The Penn Treebank is a large collection of syntactically annotated sentences (Mar-
cus, Santorini, and Marcinkiewicz, 1993b; Bies et al., 1995). It is annotated with
morphosyntactic part-of-speech information, and with syntactic constituency infor-
mation. The tagset for the part-of-speech annotation is very small, it only uses 36
tags. They are summarised in figure 5.1. Notable idiosyncrasies of this tagset are
that the word to is never disambiguiated (it can e.g. be a preposition or an infinitive
marker), and that no distinction is made between complementizer and preposition.
The latter requires disambiguation for parsing.
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Count Tag Legend
1. CC Coordinating conjunction
2. CD Cardinal number (N.B. ordinal numbers are adjectives)
3. DT Determiner
4. EX Existential there
5. FW Foreign word
6. IN Preposition or subordinating conjunction
7. JJ Adjective
8. JJR Adjective, comparative
9. JJS Adjective, superlative

10. LS List item marker
11. MD Modal verb
12. NN Noun, singular or mass
13. NNS Noun, plural
14. NNP Proper noun, singular
15. NNPS Proper noun, plural
16. PDT Predeterminer (such a good time, both the girls)
17. POS Possessive ending (John ’s idea)
18. PRP Personal pronoun
19. PRP$ Possessive pronoun
20. RB Adverb
21. RBR Adverb, comparative
22. RBS Adverb, superlative
23. RP Verbal particle (give up)
24. SYM Symbol
25. TO to
26. UH Interjection
27. VB Verb, base form
28. VBD Verb, past tense
29. VBG Verb, gerund or present participle
30. VBN Verb, past participle
31. VBP Verb, non-3rd person singular present
32. VBZ Verb, 3rd person singular present
33. WDT Wh-determiner (which, relative pronouns)
34. WP Wh-pronoun (what, who, whom)
35. WP$ Possessive wh-pronoun (whose)
36. WRB Wh-adverb (how, where, why)

Table 5.1: The Penn Treebank Tagset
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Label Legend Example or Explanation
Grammatical Functions

-CLF true cleft [S-CLF it was Casey who ...]
-NOM non NP in NP function heard of [S-NOM asbestos being dangerous]
-ADV clausal and NP adverbial reaches 10,000 barrels [NP-ADV a day]
-LGS logical subject in passive done by [NP-LGS the president]
-PRD non VP predicate is [NP-PRD a producer]
-SBJ surface subject [NP-SBJ Peter] walks.
-TPC topicalised constituent [S-TPC-1 I agree, he said [SBAR [S-1]]
-CLR closely related “open class of other cases"

Semantic Roles
-VOC vocative Close the door, [NP-VOC John]!
-DIR direction & trajectory attention [PP-DIR to the problem]
-LOC location declines [PP-LOC in interest rates]
-MNR manner happy [PP-MNR like a kid]
-PRP purpose and reason [PP-PRP (in order) to ...]
-TMP temporal phrase shares rose [NP-TMP yesterday]

Table 5.2: Penn Treebank Functional Labels

The syntactic annotation is as theory-independent as possible. This has led to
the following design decisions. No X-bar theory, no intermediate categories are
annotated. The functional GB categories CP, IP, DP are not used. Auxiliary - main
verb relations are expressed by VP reduplication. The top node of a sentence is S
or a derivative of S (such as SQ for yes/no questions, SBARQ for wh-questions),
not a verbal projection as in HPSG, LFG, or DG. Functional roles known form
LFG and functional DG are only partially annotated. Specifically, subjects are
annotated, objects are not, some PPs are functionally or semantically annotated.
Functional and semantic tags are summarised in table 5.2. Structurally, all PPs
modifying verbs are attached in under the VP, thus appearing as arguments, while
all PPs modifying nouns are Chomsky-adjoined. Also the functional annotations
do not always deliver argument or adjunct status in a consistent way. For example,
the functional label LOC is both used for location adjuncts (e.g. sit on a bench)
and adjuncts (e.g. a rise in interest rates).

Careful use of empty categories and co-indexation expressing long-distance
dependencies is made in the Penn Treebank. We discuss empty categories and
co-indexation in detail in chapter 6.
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5.1.2 The Difficulty of Writing Grammars

While automatically or semi-automatically acquiring grammars is a very promis-
ing approach, we maintain that the expense needed for writing a large-scale depen-
dency grammar over Penn tags is sufficiently small and that grammars are quite
domain-independent. The broad-coverage English Functional Dependency gram-
mar described in this chapter was developed in about a person-month. Despite the
apparent simplicity of Dependency Grammar, we show in chapter 6 that Functional
Dependency Grammar is a formal deep-linguistic grammar that does not make lin-
guistic compromises.

The Penn tagset consists of 36 tags (plus some punctuation tags). Considering
that dependency rules are always binary, that there are about 20 rule types and 2
possible dependency directions, the upper bound – both on rule writing and parsing
search space complexity – is about 50,000 rules. In a realistic scenario, assuming
on average one direction and relation type per possible tag combination (362) we
get about 1000 rules. We only need grammar rules containing lexical information
for closed classes. For example, a small class of gerunds, such as including and ex-
cluding can serve as a preposition, or a closed list of temporal expressions serving
as adjuncts is used. For all open word classes, the Penn tags provide enough gener-
alisation to deliver syntactically correct analyses in the vast majority of cases. The
task of the lexicalized disambiguation is to select the semantically most convincing
among all syntactically possible analyses.

The current Pro3Gres grammar has about 1200 rules and is 140 KBytes long.
The number of rules may seem high because of tag combinatorics leading to many
almost identical rules. A subject relations is e.g. possible between the 6 verb tags
and the 4 noun tags. The grammar has been written from scratch, writing and
debugging it took about a person month. Although it is probably not entirely error-
free error-reports have become increasingly rare. The supplied Pro3Gres grammar
does not aim at covering all phenomena of the English language. The decision of
which phenomena to exclude depends on “armchair linguistics” intuition, followed
by many test cycles to supplement the necessary empirical evidence. This decision
also depends on the amount of ambiguity and errors rare rules introduce. The
perspicuous rules of a hand-written dependency grammar build up the possible
syntactic structures, which are ranked and pruned by calculating lexical attachment
probabilities for the majority of the dependency relations used in the grammar (see
chapter 2). The grammar rules contain the dependent’s and the head’s tag, the
direction of the dependency, lexical information for closed class words, and context
restrictions. The rules are described in detail in the following section 5.3.
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The task of grammar writing is further simplified because we follow the Depen-
dency-based broad architecture suggested by (Abney, 1995), which uses chunk-
ing for the base phrase level, thus making it unnecessary to write base NP gram-
mars. This approach naturally integrates chunking and dependency parsing and has
proven to be practical, fast and robust (Collins, 1996; Basili and Zanzotto, 2002).
Tagging and chunking are robust, finite-state approaches, parsing only occurs be-
tween heads of chunks.

The most time-consuming aspect of manual grammar writing is the practice of
incremental engineering across a large number of test cycles. Incremental engi-
neering is a classical, well-established principle for bottom-up development. We
first consulted Quirk et al. (1985), a comprehensive and very carefully written
grammar of English. A small set of simple rules is tested first, the missing rules
are then added in a large number of development cycles. There is a constant quality
feedback from the development set corpus at each development cycle. Rules that
are found to create more errors than correct analyses are refined or eventually dis-
carded. We have trained over Penn section 2-22 and used section 0 as development
corpus. Evaluations (see chapter 7) have been made on John carroll’s 500 sentence
test corpus, and 100 random sentences form the GENIA corpus.

5.1.3 Benefits of a Hand-Written Grammar

Writing a grammar manually is more time-consuming than applying a machine
learning algorithm to learn the rules from a corpus. Still, there may be potential
benefits from writing a grammar manually.

Parsing Questions Sentence types that are underrepresented in a training corpus
are difficult to learn. In the Penn Treebank, this is the case for questions, which
are crucial for Question Answering applications. (Hermjakob, 2001) shows that
question parsing considerably improves if a grammar is enriched with additional
question parsing knowledge. In section 6 we show that Pro3Gres is highly capable
of parsing both simple and complex questions. Pro3Gres has been employed for
question parsing at a TREC conference (Burger and Bayer, 2005).

Correcting Tagging Errors In a hand-written grammar, some typical parsing
errors can be corrected by the grammar engineer, or rules can explicitly ignore par-
ticularly error-prone distinctions. Examples of rules that can correct tagging errors
without introducing many new errors are allowing VBD to act as a participle, or
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the possible translation of VBG to an adjective. Most taggers perform poorly in the
distinction between verb past tense VBD and participle VBN. But the distinction
can usually be made in the parsing process. Therefore, the grammar leaves this tag
distinction underspecified for a number of constructions, for example the modpart
relation. A second example of ignoring error-prone distinctions is the distinction
between prepositions and verbal particles, which are known to be particularly un-
reliable – and also human inter-annotator agreement is quite low. The grammar
has therefore been designed to make no distinction between verbal particles and
prepositions.

The Power of Linguistic Constraints Linguistic knowledge allows us to place
strong non-local restrictions on the co-occurrence of different relation types. Verbs
that have attached adjuncts cannot attach complements, since this would violate
X-bar constraints. Verbs that have no object cannot attach secondary objects.
The application of dependency rules can often be lexically restricted: for exam-
ple, only temporal expressions occur as NP adjuncts. We have noticed during the
development that these restrictions play a crucial role for the improvement of the
parser’s performance. We will assess the huge impact on speed and performance of
these constraints in section 7.8. History-based parsers learning a sufficiently large
number of subtree generations, such as in data-oriented parsing (Bod, Scha, and
Sima’an, 2003), inherently learn these linguistic constraints, while we concisely
express them in the grammar rules. The fact that the majority of these non-local
constraints become local in DG makes it easy to express them in a DG grammar,
and reduces search spaces.

Almost Complete Grammar A practical system, such as the one devised in this
work, can choose to rule out linguistic constructions that are possible, but very
marked and rare, and that often introduce more errors than improving the coverage.
For example, while it is generally possible for nouns to be modified by more than
one PP, only nouns seen in the Treebank with several PPs are allowed to have
several PPs in the best-performing grammars used in Pro3Gres. Or, while it is
generally possible for a subject to occur to the immediate right of a verb (said
she), this is only allowed for verbs seen with a subject to the right in the training
corpus, typically verbs of utterance, and only in a comma-delimited or sentence-
final context.

Grammar Teaching and Learning A hand-written grammar offers the possi-
bility to the user to inspect, edit and experiment with the grammar. Although this



105 5.2. Subcategorisation and Lexicalisation

possibility does not give any scientific advantage, it is useful for learning and teach-
ing purposes. On a personal level, manually writing and testing a grammar has
considerably improved our knowledge of English grammar.

5.2 Subcategorisation and Lexicalisation

Collins (1999, 7) identifies subcategorization and lexical restrictions as the major
problems for hand-written grammars. We model lexical restrictions by means of
lexicalized statistical data. As for subcategorization, which is a robustness problem
for hand-written grammars if subcategorized elements are absent, (Collins, 1999)
uses a subcategorisation probability model in his Model 2, which we introduced in
chapter 4. I We have decided to use a complement/adjunct distinction for NPs, and
also to distinguish between different types of subcategorisation. We distinguish
them by using a dedicated dependency type for each subcategorisation type (sub-
ject, object, secondary object, subordinate clause), and by grammar rules which
only allow one dependency per subcategorised dependency type. The attachment
probabilities are probabilities for attaching a dependent as a specific subcategori-
sation type: subcategorisation frame selection and removing of found constituents
coincide. The only way in which a verb that has its valencies filled can continue
attaching is to attach adjuncts, which increasingly gets unlikely due to the distance
measure.

The task of the lexicalized disambiguation is to select the semantically most
convincing among all syntactically possible analyses. During the development of
the grammar, we have observed that the amount of ambiguity a rule creates, its
scope of application and thus the amount of semantically absurd readings that are
possible for a sentence, is beyond imagination. The fact that humans can reliably
make precision judgements (deciding whether an analysis or an utterance is correct
or finding one example) but are unreliable at recall judgements (finding all analyses
for a sentence or utterances of a certain type) has been a major motivation for cor-
pus linguistics, where rational decisions are supported by vast amounts of empirical
data. Everybody who has developed and tested grammars knows how unreliable
human capabilities are when it comes to predicting syntactically well-formed but
semantically nonsensical readings of everyday sentences. The “intricate interrela-
tions” that Friedman (1989) identifies have turned into every grammar engineer’s
nightmare. Here, a statistical disambiguator which ranks all syntactically possible
readings is vital.

Since (Charniak, 1996) and (Collins, 1999) it is commonplace that a very pow-



5.3. The Rules in Detail 106

erful method to disambiguate between all syntactically well-formed analyses of
a given sentence is to respect lexical preferences learnt from annotated corpora.
Klein and Manning (2003) partly revise this commonplace by showing that a rich
set of unlexicalized, i.e. structural, features is sufficiently complementary to lex-
icalisation, so that performance of a parser using them can almost equal the best
lexicalized systems. As a first step, all tags are subdivided by adding the parent
category to each tag occurrence. This takes a tag’s into consideration and was the
step that increased performance most. As a second step, closed class words are
subdivided into linguistically meaningful subclasses, for example expressing the
distinction between the tag IN as complementizer or preposition. As a third step,
selected functional annotation from the Penn Treebank, for example −TMP , is
preserved. As a fourth step, head annotation is added to the constituents. In dis-
tinction to lexicalisation, where the head word is added, the head tag, or aspects of
it, is added. Aspects that Klein and Manning (2003) noted as crucial are the dis-
tinction between finite and infinite verbs, and the distinction between possessive
and other NPs. Applying all of these steps leads to a model whose performance
is almost equal the best lexicalized systems. Klein and Manning (2003) stress that
it is not their goal to argue against lexicalisation, but to show that carefully used
structural features can lead to a very high unlexicalized baseline. We have taken
the choice to largely opts for lexicalisation.

5.3 The Rules in Detail

We now describe the rules in detail. Each rule has four arguments and a restriction
part. The arguments are the tag of the head, the tag of the dependent, the tag of
the projection, and the direction. The tag of the projection is usually identical to
the head tag, according to the endocentricity principle, which most head-driven
formalisms, for example HPSG, X-bar or Dependency Grammar use. There are a
few exceptions, for example a preposition and a noun project into a prepositional
phrase, the projection tag is PP. The direction can be left underspecified, like in
an ID/LP grammar. The restriction part allows one to place arbitrary restrictions
on the application of a rule. Some rules are lexically restricted. For example,
there is a postposition rule forming a PP from a preposition and a preceding noun
(i.e. the direction of the dependency is to the right), but this rule is restricted to
a closed class of words like ago. Other rules express non-local restrictions on the
co-occurrence of different dependency types. For example, a verb that already has
attached an adjunct cannot attach a complement, since this would violate X-bar
constraints.
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We distinguish between the following three classes of dependency types:

1. Major types: these are the classical dependency types like subject and object.
For each of them, statistical data has been extracted from the Penn Treebank,
and an appropriate version of our probability model is used. This class con-
sists of the following dependency types: subj, obj, obj2, adj, sentobj, pobj,
modpp, modpart, prep, compl and adjtrans. Examples of these types are
found in table 5.3.

2. Minor types: minor types are not probabilistic. They have auxiliary func-
tions, such as building up noun chunks that the chunker has missed. Not all
of them can be semantically interpreted. The adverb relation attaches to any
noun or verb without aiming at a meaningful interpretation. Some relations
are in this class because they give rise to very little ambiguity and thus do not
warrant a probabilistic treatment: the modrel relation that attaches relative
pronouns and the predadj relation that attaches predicative adjectives.

3. Unconventional types: there are a number of types that are each very differ-
ent from any other type. Conjunctions, a classical DG problem, are split into
two binary rules and leave ambiguities underspecified. WH-rules receive a
simple treatment as real long-distance dependencies (see chapter 6). Com-
mas have an important function in structuring the sentence and are treated in
a special way, as will be discussed in subsection 5.3.3.

5.3.1 Major Types of Grammar Rules

All major verb types are probabilistic. They comprise the relations given in table
5.3.

Subject

There are 145 subject rules, the high number is due to tag combinations: Any verb
tag, corresponding to the regular expression VB[ZPGDN]? can combine with any
noun tag, corresponding to the regular expression (NN[P]?[S]? or EX or IN or WP
or DT or CD or PRP or RB or VBG). Each rule exists in a version with and without
a comma between the verb and the subject. The subject relation is the only relation
to have two probability models: one for active verbs and one for passive verbs.
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RELATION LABEL EXAMPLE

verb–subject subj he sleeps
verb–direct object obj sees it
verb–second object obj2 gave (her) kisses
verb–adjunct adj ate yesterday
verb–subord. clause sentobj saw (they) came
verb–pred. adjective predadj is ready
verb–prep. phrase pobj slept in bed
noun–prep. phrase modpp draft of paper
noun–participle modpart report written
noun–preposition prep to the house
verb–complementizer compl to eat apples
noun–gerund-adjective adjtrans developing countries

Table 5.3: The major Pro3Gres dependency types

General restrictions:

• Maximally one subj: The subject candidate is only allowed to attach if the
verb does not already have a subject.

• Verb-chunk is not to followed by an infinitive: infinitival verbs are assumed
not to take subjects. This entails a GPSG-style treatment of control, where
the matrix verb takes both a nominal and a clausal object.

Special restrictions:

• Plural nouns: verb chunk does not contain VBZ. This is a simple method to
ensure agreement.

• if the verb tag is VBG: verb chunk length>1. Present participles (gerunds)
are not allowed to take a subject.

• if the noun tag is VBG: noun chunk length=1, only with copula verb. Gerunds
acting as nouns (e.g. Swimming_VBG is fun) are only allowed to attach to
copular verbs (*Swimming_VBG likes fun). The length restriction on gerund
chunks is redundant for the current parser.

• Relation to right: only verbs seen in training corpus (in assertive sentences)
are allowed to have verb-subject inversion (e.g. says she The restriction to
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seen material is an intermediate step between a rule- and probability-based
model. It restricts the application of rare rules to attested cases. This measure
can reduce search spaces considerably. The chunk distance is restricted to
one, which means that no intervening elements are permitted (*says quickly
she).

• if the noun tag is EX: no noun conjunction is allowed. Expletives are not
allowed to participate in conjunctions (*there and it seems to be a problem).

• Noun tag RB for pronouns: The pronouns this, that, it are tagged RB. Only
this closed lexical class is permitted to be subject.

object

There are 78 object rules, the high number is due to tag combinations. Any verb
tag, corresponding to the regular expression VB[ZPGDN]? can combine with with
any noun tag, including lonely determiners, numbers, or WH-words, pronouns,
gerunds and symbols, corresponding to the regular expression NN[P]?[S]? or IN
or WP or DT or CD or PRP or VBG or SYM or RB. Verb-object dependencies are
not allowed to overstep commas.

General restrictions:

• Maximally one obj: the 2nd, ditransitive object is labeled obj2. This ensures
proper subcategorization.

• Verb has no adjunct to the right yet (all objects are closer to verb than ad-
juncts to the right). According to X-bar theory, case and θ-role assignment,
complements need to be closer than adjuncts. In the CYK derivation his-
tory, this means that a verb can only attach complements before it attaches
adjuncts. There can be rare and marked violations of X-bar theory in real-
world language (?they will ask today John), which we explicitly intend not
to cover in our parsing approach.

• Verb has no sentobj (all objects are closer to verb than subordinate clauses):
this assumption is based on the closeness of the object to the verb, and on the
observation that considerably longer constituents are usually placed further
than short constituents.

• Verb has no pobj (almost all objects are closer to verb than verb-PPs). This
assumption, based on the same observations, is occasionally flouted ?they
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prescribed to John this dangerous stuff that had relieved generations of pre-
vious death candidates from unbearable pain. While missing some readings,
the restriction disambiguates for instance she donated to the poor every Sun-
day to an adjunct reading for every Sunday

• Verb has no predadj (predicate adjective): verbs cannot have a predicative
adjective and an object simultaneously.

Special restriction: noun tag RB for pronouns: The pronouns this, that, it are
tagged RB. Only this closed lexical class is permitted to be object.

Assumptions: In order to facilitate parsing, two assumptions are made:

• The predicate of a copular verb is considered to be obj (also in the lexicalized
probability model). This does not mean that the complement of a copular
verb (e.g. president in Mary became president) is really an object, but it
allows a uniform syntactic treatment of verbs. Since copular verbs are a
closed and unambiguous class, a simple mapping to e.g. a complement label
would always be possible.

• In a ditransitive verb, obj is the indirect object (also in the lexicalized prob-
ability model).

Object2

There are 24 second object rules. Any verb tag, corresponding to the regular ex-
pression VB[ZPGDN]? can combine with any noun tag, corresponding to the reg-
ular expression NN[P]?[S]?. Other obj2 tags are rare but possible, the grammar
is thus potentially still incomplete. The tags CD and WP seem possibple, DT and
PRP seem unlikely, as the following examples illustrate.

(45) She gave him 23_CD.

(46) ? She gave him what_WP ?

(47) ?? She gave him this_DT.

(48) * She gave him it_PRP.

The indirect objects in these examples tend to be expressed rather by means of
a to-PP.
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General restrictions:

• Maximally one obj2. The second, ditransitive object is labeled obj2. This
ensures proper subcategorization.

• Verb already has an object.

• Only verbs seen in the training corpus or from a licensing list: this restricts
obj2 to verbs attested as ditransitive.

• No temporal expression noun: temporal expressions are excluded. This can
lead to a few errors but reduces the search space.

• Verb has no adjunct to the right yet (all objects are closer to verb than ad-
juncts to the right): according to X-bar theory, case and θ-role assignment,
complements need to be closer than adjuncts.

• Verb has no sentobj (all objects are closer to verb than subordinate clauses),
similar to the object relation.

• Noun has no modpart: this heuristic constraint is prone to introduce errors,
for instance in He gave her the roses bought in the shop, which is rare, but
not impossible. It was introduced to correct frequent misanalyses of sen-
tences such as He reported her the roses sold in the shop. In other words,
a structural constraint that prefers a superordinate zero-complementizer to a
subordinate zero-relative has been implemented. While structural soft con-
straints are not in the spirit of a statistical system, the very successful con-
straint grammar (CG) approaches rely on elaborate versions of such con-
straints. Hybrid combinations of such different approaches are a promising
field of research.

Adjunct

There are 50 adjunct rules. Any verb tag, corresponding to the regular expres-
sion VB[ZPGDN]? can combine with any noun tag, corresponding to the regular
expression NN[P]?[S]?. Adjunct relations are allowed to overstep commas.

General restrictions:

• Only nouns seen in the training corpus or from a list of temporal expressions.
Temporal expressions are a closed class. This step greatly reduces the search
space.
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• Noun has no modpart relation.

• Verb has no sentobj: this heuristic constraint forces a low attachment in
(stocks were said [to rise] Friday).

Special restriction: The direction of the adjunct relation is possible to the left
only if the verb has subject (Friday they said ...)

Sentobj

There are 130 sentential object rules. Any verb or noun tag, corresponding to
the regular expression VB[ZPGDN]? or NN[P]?[S]? can combine with any verb
tag, corresponding to the regular expression VB[ZPGDN]?. sentobj relations are
allowed to overstep commas.

General restrictions:

• Maximally one sentobj: this ensures proper subcategorization.

• The subordinate clause is generally required to have a subject. This con-
straint is however subject to the following special restrictions.

Special restrictions:

• Infinite subordinate clauses with to are allowed not to have a subject: these
are typically control structures, which get their object at the post-parsing
predicate-argument stage.

• Comma-involving sentobj requires the subordinate verb to have a comple-
mentizer or the superordinate verb to be a verb of utterance: this helps us to
restrict ambiguities arising from zero-complementizers. Zero-complementizers
are rare if there is a comma between the matrix and the subordinate clause,
except when the matrix verb is a verb of utterance.

(49) She said, the winners have arrived.

(50) ?She believed, the winners have arrived.
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• Nouns can have subordinate clauses, but only subjectless ones, and only if
the noun was seen in the training corpus. These are mostly relational nouns,
e.g. tendency to go. The fact that they need to be attested greatly reduces the
search space and eliminates many incorrect analyses.

Pobj

There are 30 verb-PP attachment rules. Any verb or adjective tag, corresponding
to the regular expression JJ or VB[ZPGDN]? can combine with any prepositional
phrase, corresponding to the regular expression PP. pobj is allowed to overstep
commas. Attachment to left is allowed if a PP is fronted to the beginning of a
sentence.

General restrictions:

• No verb-PP attachment if there is a predicative adjective (*she grew [tired]
from too much walking, she grew [tired from too much walking])

• Unlimited number of PPs possible: no distinction between PP-arguments
and adjuncts is made, an unlimited number of PP-attachments is thus al-
lowed.

Special restrictions:

• According as verb is disallowed, because it is analysed as a preposition.

• Adjective-PP attachment is restricted to small distances only.

• The verb be is not allowed to attach PPs unless it has no object: this heuristic
was introduced to correct a large number of incorrect analyses.

Modpp

There are 10 noun-PP attachment rules. Any noun tag, corresponding to the regular
expression NN[P]?[S]? can combine with any prepositional phrase, corresponding
to the regular expression PP. modpp is allowed to overstep commas.
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General restrictions:

• Noun has no modrel: this restriction does not allow a full analysis of she has
a problem [which annoys her] with computers, but it eliminates attachment
ambiguities in she has a problem [which annoys people with computers].

• Only relational nouns are allowed to have more than one PP (relational noun
recognition is approximated by Wordnet). This heuristic is a rather crude
approximation. It leads to errors with nouns that have several adjunct PPs.
But we have empirically seen on the development corpus that the error rate
increases considerably if we eliminate this restriction.

Modpart

There are 30 modification by participle rules. Any noun tag, corresponding to the
regular expression NN[P]?[S]? can combine with gerunds, corresponding to the
regular expression VB[NDG]. modpart is allowed to overstep commas. VBD is
included (because this is a very frequent tagging error), in order to exclude at least
the perfect tense under the restriction that it is the first element in the verb chunk
(unless an adverb precedes).

General restrictions:

• Maximally one modpart per noun.

• Verb has no subject.

• Noun has no apposition (appos): a heuristic that rules out possible but rare
readings: the report, 60 pages, issued yesterday, shows that ... but consider-
ably increases performance on the development corpus.

• Verb has no object, unless it is an appoint class verb.

• Noun is no temporal expression.

• The distance is very short.

Special restrictions:

• If the tag is VBD then the verb chunk is checked in order to exclude verbs
that are not participles.
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Prep

There are 72 preposition rules. Any noun tag, including lonely determiners, adjec-
tives, numbers, symbols, or PPs, corresponding to the regular expression NN[P]?[S]?
or PP or DT or CD or SYM or JJ[RS]? can combine with preposition tags and ver-
bal particle tags, corresponding to the regular expression IN or TO or RP. PPs can
attach prepositions to treat multi-word prepositions, for example in from under the
bed. Some rules need access to lexical items. For example,

• including_VBG is analyzed as a preposition contrary to its verb tag.

• The adverbs ago, later, before are considered to be real postpositions.

• that_IN and because_IN, if allowed as prepositions, lead to many incorrect
analyses.

General restrictions:

• The distance needs to be very short distance. Adjacency is thus enforced.

• that_IN is not a preposition.

• because_IN is not a preposition.

Special restrictions:

• The direction allowed to the right only for the English postpositions ago,
later, before.

• Including_VBG, involving_VBG can be prepositions.

• Because of, according to is a multi-word preposition. The attachment of be-
cause to an of-PP is thus allowed, although because is otherwise no preposi-
tion. The present participle according is allowed to attach an to-PP.

Compl

There are 24 complementizer rules. Any verb tag, corresponding to the regu-
lar expression VB[ZPGDN]? can combine with tags and closed class words ex-
pressing complementizers, corresponding to the regular expression IN or WRB or
whether_CC or but_CC). An example for WRB is the following.
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(51) While many of the risks were anticipated when_WRB Minneapolis-based
Cray Research first announced the spinoff ...

General restriction:

• The subordinated clause verb needs to have a canonical subject.

Adjtrans

There are 12 adjective translation rules. Any noun tag, corresponding to the regular
expression NN[P]?[S]? can combine with verb gerund tags, corresponding to the
regular expression VB[DNG], as shown in the following example.

(52) Longer maturities are thought to indicate declining_VBG interest rates

Gerunds that can act as verbs or adjectives are a major source of ambiguity.
The chunker does not include them in the noun chunk, which means that the parser
has to decide. The gerund cannot be an adjective if the noun chunk contains a de-
terminer. The local ambiguity created by gerunds often survives up to the sentence
level: He likes developing countries.

Restrictions:

• Short distance. Adjacency is enforced.

• The noun chunk does not contain a determiner.

• No verb of utterance is allowed: in order to avoid conflicts with verb-subject
inversion, verbs licensing this inversion cannot act as adjectives.

(53) Share prices will fall, stock brokers kept quoting.

(54) ? Share prices will fall, kept quoting stock brokers.

5.3.2 Minor Types

All minor types do not have a probability model.
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Nountrans

“Lonely” adjectives, i.e. adjectives outside noun chunks (for example the same,
the poor) can have noun function. There are 3 noun translation rules.

Restriction: Only an adjacent determiner can trigger the translation.

Adv

There are 51 adverb rules. Any verb or noun tag, corresponding to the regular
expression VB[ZPGDN]? or NN[P]?[S]? can combine with any adverb tag, corre-
sponding to the regular expression RB[RS]?. adv is allowed to overstep commas.
Proper adverb-attachment is often not ensured. There is no probability model, the
main purpose of the adverb-relation is to attach adverbs somewhere, so that an ad-
verb does not fragment the parse into two parts. This is an area where Pro3Gres
can be improved in the future.

Restrictions:

• Short distance

• The preposition about can be analysed as an adverb (about 200 people came.)

Modrel

There are 65 modification by relative clause rules. Any noun tag, including WH-
words, corresponding to the regular expression (NN[P]?[S]? or WP can com-
bine with any verb tag, corresponding to the regular expression VB[ZPGDN]?.
modrel is allowed to overstep commas. No distinction between restrictive and
non-restrictive relative clauses is made, although that would be easy to integrate.

General Restrictions:

• The relative clause has a subject

• This subject is a pronoun: the rel. pronoun or a personal pronoun

• The relativized noun does not have a modpart
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Special restriction: if the subject of the relative clause is a personal pronoun,
the relative pronoun (zero-relative object) may be absent. The restriction of zero-
relatives to the pronoun case is a pragmatic simplification.

Adjective

This auxiliary relation covers a number of noun-adjective modification including
an adjective equivalent to modpart. There are 2 rules. Examples for the adjective
relation are the following.

(55) ... for the purpose of keeping [the_DT prices_NNS] reasonable_JJ

(56) We have demonstrated that triggering delivers [signals_NN] capable_JJ of
activating the NF-AT transcription factor

Predadj

This rule is used to attach predicative adjectives to the verb. There are 18 rules.
Any verb tag, corresponding to the regular expression VB[ZPGDN]? can combine
with any adjective tag, corresponding to the regular expression JJ[RS].

Restrictions:

• Short distance

• Verb has no object, except if it is a verb of the elect class: (consider them
incompetent). This is a consequence of our treatment of copular and elect
verb complements as objects.

Comp

comp is used to build up comparison constructions involving an adverb RBR or an
adjective JJR in the comparative.

Gen, Pos

gen and pos are used to build up the Saxon genitive. The gen relation attaches the
’s_POS or ’_APOSTR marker to the noun, which can then be attached to its head
noun. The head noun cannot be a proper noun.
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5.3.3 Unconventional Types

This class contains a number of relation types which are each quite different from
all other relations.

Conj

Conjunctions have always been a problem for DG. At least three elements, two
conjoined elements and the conjunction, need to be combined into a structure.
This is difficult in a grammar that knows binary rules only. Also, on a semantic
level, it cannot be said that any of the conjoined elements governs the other. In
order to treat conjoined and non-conjoined phrases on a par, it is also not desirable
to have the conjuction as the governor. As a pragmatic solution, we use binarized
conjunction rules. In a first step, a word of a given word class can govern a pre-
ceding conjunction. In a second step, that word (it is checked that it governs a
conjunction) can be governed by a preceding word of the same part-of-speech tag.
As a consequence, the following simplification is made for lexicalization: only the
lexical item of the first conjoined element is respected.

Enumerations: A comma is allowed to be a conjunction if the enumeration is
terminated by a conjunction. Enumerations are a case where commas are easily
disambiguated.

Apposition and other relations stepping across commas

Commas are generally ambiguous. Three cases are distinguished: Enumerations
(see above), appositions and boundaries. Appositions are (often) identifiable as
starting and ending with a comma, the head of the apposition is a noun or an ad-
jective, and appositions modify nouns.

Boundary commas are commas which have structuring information. They do
not alter relation types but mark a separation a high level in the syntax tree. In
a first parsing step, only the apposition and conjunction relations are allowed to
span across commas. When parsing finishes, i.e. all possible reductions have been
made, all other syntactic relations that can span across commas (e.g. subject, PP-
attachment, but not object) are allowed to do so and parsing continues, finding new
reductions that overstep commas. This procedure implements the intuition that
commas are a strong boundary.
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Nchunk

nchunk corrects some chunking insufficiencies involving adjtrans, currencies,
percent signs, numbers, etc. For example, in the corresponding_VBG solution
the chunker does not deliver a chunk. The adjtrans relation attaches the present
participle to the noun, then an nchunk relation can attach the determiner. There
are 51 rules of this type.

Aux and wh-preparsing

The aux relation is needed to attach auxiliary verbs in questions. Since DG does
not distinguish internal and external arguments, the auxiliary verb can attach lo-
cally to the matrix verb. WH-relations the are only real long-distance dependen-
cies. Chapter 6 discusses their treatment in detail.

5.4 Conclusion

We hope to have shown that the expense needed for writing a large-scale depen-
dency grammar over Penn tags is sufficiently small. We have motivated our use of a
hand-written grammar and discussed the bottom-up design of our grammar involv-
ing many incremental development cycles. Then we have discussed the grammar
rules in detail, and we have explained the linguistic constraints that we use.



Chapter 6

Extended Locality: Treatment of
Long-Distance Dependencies in
Functional Dependency
Grammar

6.1 Introduction

We have discussed in chapters 1 and 4 that there are broad-coverage probabilistic
parsers with good performance (Collins, 1999; Charniak, 2000; Henderson, 2003),
but they typically have context-free grammars, which means that they produce pure
constituency data as output that does not include the grammatical function anno-
tation nor the empty nodes annotation provided in Treebanks such as the Penn
Treebank (Marcus, Santorini, and Marcinkiewicz, 1993b; Bies et al., 1995). Very
recently, there have been first approaches reporting empty nodes and functional la-
bels in broad-coverage probabilistic parsing (Gabbard, Kulick, and Marcus, 2006).
We have also seen that context-sensitive DG parsing is now being used (Nivre,
2006a).

Context-free grammars are appealing as they allow a parser to use fast pars-
ing algorithms. From a DG perspective, projectivity is a very powerful constraint
which reduces the search space tremendously at a relatively small loss in perfor-
mance. The loss in performance is due to the fact that context-free grammars can-
not express non-local information, so-called long-distance dependencies. We will
explore in this chapter how we extract long-distance dependencies from the Penn
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Treebank, how the majority of long-distance dependencies can be expressed in a
context-free way, and how we treat the few remaining long-distance dependencies.

A simple way to find long-distance dependencies and empty nodes is to try
to reconstruct them from the output of a context-free syntactic parser. Johnson
(2002) presents a pattern-matching algorithm for post-processing the output of a
parser that can process the Penn Treebank (Charniak, 2000). The algorithm adds
empty nodes to its parse trees. Encouraging results are reported for gold stan-
dard parses, but performance drops considerably when using trees produced by
the parser. Johnson (2002) notes that if the parser makes a single error anywhere
in the tree fragment for which the pattern has been conceived, the pattern fails to
match. Errors are frequent, especially as the statistical parsing models are more lo-
cal than the span that long-distance dependencies have. Johnson (2002) concludes
that performance may be improved by generating parsing, empty node recovery
and antecedent finding in a single system.

Pro3Gres offers a response to this suggestion by combining a statistical ap-
proach with a rule-based approach in Dependency Grammar (DG). Instead of John-
son (2002)’s pipeline system, we offer an integrated treatment which uses extended
locality and an approach based on the treatment of mild context-sensitivity in Tree-
Adjoing Grammar. We extend locality by (1) using and modelling dedicated pat-
terns across several levels of constituency subtrees partly leading to dedicated but
fully local dependency syntactic relations, and by (2) using non-local but bounded
syntactic constraints, combining lexicalized statistics and syntactic knowledge. We
model mildly context-sensitive phenomena in DG, and our DG approach profits
from the fact that some non-local dependencies are artefacts of the grammatical
representation.

For selected phenomena where post-processing approaches promise good re-
sults, we keep a post-processing approach, like Johnson (2002). These are notably
control and raising, where the appearance of a control verb in the matrix clause
and a subjectless infinitive with to in the subordinate clause trigger a sharing of
constituents on the deep-syntactic level.

After Johnson (2002), there have been a number of approaches trying to recover
empty nodes from the output of broad-coverage probabilistic parsers (Collins, 1999;
Charniak, 2000; Henderson, 2003). Some approaches are based on machine-
learning, for example Dienes and Dubey (2003) use a tagging approach, Jijkoun
and de Rijke (2004) use memory-based learning, and Levy and Manning (2004)
use loglinear classifiers. One of the best-performing approaches, Campbell (2004),
is a rule-based approach using entirely hand-crafted rules. Campbell (2004) points
out that empty categories follow from clear formal linguistic principles, accord-
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ingly there should be principle-based ways to recover them. Empty categories do
not exist prior to the annotation, they are consciously inserted by the annotator
following guidelines about linguistic configurations. The majority of empty nodes
occur in configurationally clearly defined places.

We first show how we extract grammatical relations from the Penn Treebank.
For grammatical relations involving long-distance dependencies, their bounded-
ness is discussed, illustated by a quantitative analysis. We discuss that in En-
glish most long-distance dependencies are bounded, and the few unbounded long-
distance dependencies, for example WH-questions, are cyclic. The former class
can be treated with extended locality and post-processing, the latter class needs
mild context-sensitivity.

We then present our treatment of recursive long-distance dependencies. Mildly
context-sensitive constructions known from Tree-Adjoining Grammar (TAG) can
be naturally implemented in a DG framework. We discuss examples and suggest
that our approach has fundamental implications for Lexical-Functional Grammar
(LFG).

6.2 The Boundedness of Long-Distance Dependencies
In order to be able to train a DG on constituency data such as the Treebank, a
conversion is necessary. Such conversions are described in Covington (1994) or
Basili, Pazienza, and Zanzotto (1998).

A conversion is either full, if the constituency trees are entirely translated into
DG structures, or selective, if a set of dependency relations are converted, without
enforcing that connected DG structures are possible. For the purpose of extracting
relations, irrespective of whether they are local relations or non-local subtree rela-
tions involving long-distance dependencies, a selective conversion is sufficient, so
we will restrict ourselves to introducing a selective conversion.

We have used tgrep for the conversion task, a popular query language for syn-
tactically annotated corpora1. The discussion will stay as general as possible, but
the detailed extraction patterns we use are listed in the appendix. This will allow
the interested reader to individually test the conversion patterns in detail.

1tgrep is shipped as part of the Penn Treebank from LDC. The online man page is
http://www.ldc.upenn.edu/ldc/online/treebank/man/cat1/tgrep.1 . For tgrep2, see
http://www.cs.cmu.edu/d̃r/Tgrep2/
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Relation Label Example
verb–subject subj he sleeps
verb–first object obj sees it
verb–second object obj2 gave (her) kisses
verb–adjunct adj ate yesterday
verb–subord. clause sentobj saw (they) came
verb–prep. phrase pobj slept in bed
noun–prep. phrase modpp draft of paper
noun–participle modpart report written
verb–complementizer compl to eat apples
noun–preposition prep to the house

Table 6.1: Important Pro3Gres Dependency types

SXXXXX
�����

NP

[contains a noun]

VP

[contains a verb]

Figure 6.1: Prototypical subject configuration

6.2.1 Local Relations

Before turning to long-distance dependencies, we illustrate the extraction of local
dependencies from the Penn Treebank. We will discuss two examples, subjects and
objects. Table 6.1 gives an overview of important dependencies extracted from the
Treebank and subsequently used by our parser.

Subjects

Local relations are between a mother node and immediate daughter nodes. A pro-
totypical active subject relation holds between and NP and a VP that are dominated
by an S node, as shown in figure 6.1.

In the Penn Treebank II (Marcus, Santorini, and Marcinkiewicz, 1993b) some
syntactic relations are now made explicit. Subjects are given an explicit SBJ
functional label.

Dependency relations are always between lexical items, so that the lexical
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SXXXXX
�����

NP-SBJ

[contains a noun]

VP

[contains a verb]

Figure 6.2: Explicit Penn-II subject relation

S
aaa
!!!

NP-SBJ@

noun

VP@

V

active verb

Figure 6.3: Extraction pattern for active subject-verb relations

heads need to be extracted from the Treebank. We thus use patterns that descends
into the subject noun, following the possibly nested NPs to the head noun, and into
the VP, following down the possibly nested VPs to the head verb. We symbolise the
possible nestedness by using an ’@’ symbol in fig. 6.3. Thus, like in lexicalized
PCFGs, the lexical information of local relations becomes non-local.

A base NP head is assumed to be a noun (NN∗), a pronoun (PRP ), a WH-
element (WDT ,WP ), a number (CD), or an existential (EX). At the terminal
level, the rightmost element falling into any of these categories is assumed to be
the base NP head. A VP head is assumed to be the verb (V B∗) at the lowest level.
This restriction is necessary in order to exclude auxiliaries. The lowest level verb
is a verb that has no VP sister. The pattern thus conceived can be expanded to a set
of tgrep queries or pattern instances. A comprehensive list of the patterns can be
found in the appendix in fig. A.

Objects

The extraction of other local relations, e.g. objects, is analogous. While it is com-
mon for all verb to have a subject in English, whether a verb has objects or other
types of complements largely depends on the verb subcategorisation. Quirk et al.
(1985) describe the following three types of nominal verb complementation:
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First, copular complementation: complements of copular verbs, such as be,
remain, stay, appear, become. Second, monotransitive complementation: verbs
taking one object. Third, ditransitive complementation: verbs taking two objects.
The object closer to the verb (in English) is the indirect object, the object further
away from the verb can be referred to as the secondary object.

The nominal complement of a copular verb is called subject complement. They
are expressed in the Penn Treebank by means of the functional label PRD.

(57) Mr. Vinken [VP is [NP-PRD chairman of Elsevier, the Dutch publishing
group]].

Monotransitive verbs and copular verbs are in disjoint distribution; monotransi-
tive and copular subcategorisation are mutually exclusive. For convenience, we can
therefore use the dependency label obj for subject complements, the verb seman-
tics are unambiguous. The comprehensive list of tgrep extraction pattern instances
for objects, including subject complements, can be found in the appendix in fig. A

As for ditransitive complementation, the tgrep extraction instances match verbs
with two objects. The second object is extracted and obtains the relation label
obj2, which stands for secondary object. The comprehensive list is shown in the
appendix in fig. A.

6.2.2 Nonlocal Relations

We now discuss nonlocal relations, also called long-distance dependencies. Before
doing a quantitative analysis of nonlocal relations, we consider two common ex-
amples of nonlocal relation: the relation between subjects and passive verbs, and
control constructions.

Passive Verb Subject

A Treebank example of a passive sentence is illustrated by the following sentence.

(58) [NP-SBJ-2 Preliminary findings] [VP were [VP reported [NP NONE *-2]
more than a year ago]].

In passive verbs, a movement involving an empty constituent is assumed. An
extraction pattern for the above example is in figure 6.4, where again VP@ is an
arbitrarily nested VP, and NP-SBJ-X@ the arbitrarily nested surface subject. X
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?XXXXX
�����

NP-SBJ-X@

noun

VP@
aaa
!!!

V

passive verb

NP

-NONE-

*-X

Figure 6.4: Extraction pattern for passive subjects

?XXXXX
�����

NP-SBJ-X@

noun

VP@
aaa
!!!

V

passive verb

NP

-NONE-

*-Y

Figure 6.5: First experiment pattern for passive subjects: Coreference is not en-
forced

?XXXXXX
������

NP-SBJ-X@

noun

VP@
PPPP
����

V

passive verb

NP

NOT -NONE-

Figure 6.6: Second experiment pattern for passive subjects: Forcing no trace in the
object position
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represents the numerical counter of the co-indexed, moved element. The passive
pattern expanded into comprehensive tgrep queries can again be found in the ap-
pendix in figure A.

As an initial assumption, movements can be of arbitrary length. It has been
widely investigated that the majority of movements is subject to local restrictions
(Ross, 1967; Chomsky, 1986). Passive movement is very restricted. The rigid pat-
tern 6.4, in which the movement is of fixed length, would otherwise miss subject-
passive-verb relations. We now show that we do not miss any case in the Penn
Treebank and confirm that passive movement is of fixed length.

Since it is not possible to express long-distance dependencies directly in tgrep,
our arguments are indirect. The following questions are relevant.

How many filler and gap indices coincide in our fixed pattern?

The pattern 6.5 differs from 6.4 as it does not enforce the identity of the filler
and gap index. In our tests listed in the appendix no case in which patterns 6.4 and
6.5 return different results was found.

How many fillers do not find their gap in the passive verb sister?

In a second experiment, we test in how many cases a filler occurs without a
gap position in the position expected by our fixed pattern, i.e. the passive verb
object position. In order to exclude some mismatches when using the negation,
we restrict ourselves to cases where the gap immediately follows the verb sister.
Our experiment, detailed in the appendix, shows that pattern 6.4 occurs about 30
times more often than pattern 6.6. None of the tested cases of pattern 6.6 involves
a passive verb form.

These tests, though small and potentially incomplete, indicate that passive
movement is locally fixed. It can therefore be replaced by a single, local, but
uniquely labelled dependency, for example psubj, which always allows a re-conversion
into a constituency-based format including the correct LDD indices.

Since the verb form already allows a clear identification of passive structures,
we have decided to use the same relation label as for the active subject, subj, but
to use separate probability estimations for the active and the passive case.

There is a class of verbs, following Levin (1993) often called dub verbs, which
take a noun phrase as object complement. Examples of dub verbs are name, ap-
point, consider, like in the queen appointed William Cecil her personal secretary.
As dub verbs are in disjoint distribution with ditransitive verbs, we can give the
object complement the secondary object label obj2. Dub verbs are very frequently
in the passive voice. The (slightly different) extraction pattern for them, involving
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?XXXXX
�����

NP-SBJ-X@

noun

VP@
aaa
!!!

V

passive verb

S

NP-SBJ

-NONE-

*-X

Figure 6.7: Extraction pattern for passive dub verb subjects

?XXXXX
�����

NP-SBJ-X@

noun

VP@
aaa
!!!

V

control-verb

S

NP-SBJ

-NONE-

*-X

VP@̀̀
````̀BB

       
V

control-verb

NP-X@

object noun

S

NP-SBJ

-NONE-

*-X

Figure 6.8: Extraction pattern for subject control (left) and object control (right)

a small clause, is shown in figure 6.7.

Control

Control is another course-book example of long-distance dependency. The extrac-
tion pattern for control is in fig. 6.8.

Control and raising coreferences can be reconstructed successfully from the
context of the matrix and the subordinate clause. If the matrix clause contains a
control verb, a raising verb, or a control adjective, and if the subordinate clause
contains a verb in the infinitive with to and a corresponding unfilled argument
position, then coreference is assumed. This is the assumption expressed by our
fixed extraction pattern.
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How many filler and gap indices coincide in our fixed pattern?

Filler and gap indices coincide in our fixed pattern to a high degree. Comparing
the counts with enforced and relaxed filler identity analogous to the experiment on
passives, we get 98 % identity for subject-control. In the 320 cases tested, 7 had
no identity of gap and filler. An example of these 7 sentences where the subject-
control pattern goes astray is:

(NP-SBJ-1 (DT Some)
(NNP Golenbock)
(NNS lawyers))

(VP (MD wo)
(RB n’t)
(VP (VB be)

(VP (VBN invited)
(NP-2 (-NONE- *-1))
(S (NP-SBJ (-NONE- *-2))

(VP (TO to)
(VP (VB join)

(NP (NNP Whitman)
(CC &)
(NNP Ransom)))))

(, ,)
(PP (VBG according)

(PP (TO to)
(NP (NP (NNS partners))

(PP-LOC (IN at)
(NP (DT both)

(NNS firms)))))))))

Complex interaction between different types of long-distance dependencies,
in this case between passive and control, means that the extraction pattern can
make errors. While this affects the recall of the pattern on the Penn Treebank
for obtaining lexical statistics, reconstruction of the control relation during parsing
remains unaffected.

We obtain above 99 % identity for object-control. Of the 264 cases tested in
the appendix, one failed to have identity.

How many fillers do not find their gap in the subordinate subjectless clause?

In this experiment, we tested in how many cases a filler occurs without a gap
position in the position expected by our fixed pattern, i.e. the subordinate clause
subject position. Our experiment, detailed in the appendix, shows that the control
pattern occurs 37 times more often than an (otherwise identical) pattern explicitly
requiring a no-trace subordinated subject.

The 8 tested subject-control cases where no gap occurs in the subordinate
clause subject position include a conjunction that triggers a mismatch, an annota-
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tion error, a complex interaction between passive and control, and one case where
the movement is longer than what the pattern matches, but not a typical case of
control:

(NP-SBJ-1 (PRP we))
(VP (MD should)

(VP (VB be)
(VP (VBG helping)

(S (NP-SBJ (NNP U.S.)
(NNS companies))

(VP (VB improve)
(NP (VBG existing)

(NNS products))
(PP (RB rather)

(IN than)
(S-NOM (NP-SBJ (-NONE- *-1))

(ADVP-TMP (RB always))
(VP (VBG developing)

(NP (JJ new)
(NNS ones))))))))))

For object control, the control pattern is only 22 times more frequent than an
(otherwise identical) pattern explicitly requiring a no-trace subordinated subject.
But the tested 15 object-control cases where no gap occurs in the subordinate clause
subject position include 13 cases where the pattern erroneously matches a temporal
expression in the object position.

As a tentative conclusion we can say that control is almost as clearly fixed as
passive subject movement. Although there are a few exceptions and fixed patterns
fail when several movements interact, we only lose very few cases when extracting
relations with a fixed pattern. While the extraction of long-distance dependencies
may fail when several movements interact, the impact on lexical statistics used
for parsing and thus the impact on parsing success is very small, and the post-
processing step after parsing delivers the correct result unless there are intervening
parsing errors.

The trace of both a passive and a control relation is expressed by an NP* con-
stituent in the Penn Treebank. Campbell (2004) uses a single, purely configura-
tional rule to recover NP* from Treebank trees where they have been removed.
Campbell (2004) reports similar rules for other long-distance relations.

We have written structural patterns corresponding to such rules. Each long-
distancce dependency type corresponds to a pattern or a set of patterns. Grammat-
ical role labels, empty node labels and tree configurations spanning several local
subtrees are used as integral part of long-distance dependency patterns. This leads
to much flatter trees, as typical for DG, which has the advantages that (1) it helps
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to alleviate sparse data by mapping nested structures that express the same depen-
dency relation2, (2) fewer decisions are needed at parse-time, which reduces com-
plexity and the risk of errors (Johnson, 2002), (3) the costly overhead for dealing
with unbounded dependencies can be partly avoided. It is ensured that the lexical
information that matters is available in one central place, allowing the parser to
take one well-informed decision.

While these dependency relations covering empty nodes and several levels of
subtrees express some non-local dependencies and reduce parse tree depth and
complexity, the questions about their quantitative and qualitative coverage must be
answered. We discuss quantitative coverage in section 6.3, and qualitative coverage
in section 6.4.

6.3 A Quantitative Analysis of Types of Empty Nodes

We have seen that passive and control movements are of bounded length, now we
would like to investigate all major types of movement.

6.3.1 Overview

The ten most frequent types of empty nodes cover the vast majority, more than
60,000 of the approximately 64,000 empty nodes of sections 2-21 of the Penn
Treebank. Table 6.2, reproduced from Johnson (2002) (row numbers and counts
from the whole Treebank added), gives an overview.

Empty units, empty complementizers and empty relative pronouns (rows 4,5,9,10)
pose no problem for our functional DG as they are optional, non-head material
(see section 3.1.3). For example, a complementizer is an optional dependent (or in
HPSG a marker) of the subordinated verb (see chapter 5).

Fronted constituents (row 6) are mostly PPs or clausal complements of verbs
of utterance. Only verbs of utterance allow subject-verb inversion in affirmative
clauses (row 8). The linguistic grammar provides rules with appropriate restric-
tions for all of these. In an ID/LP framework, none of them involve non-local
dependencies or empty nodes. Moved constituents (row 6) and empty clauses (row
8) have rules in our functional DG that allow an inversion of the dependency direc-
tion, loosening linear precedence constraints, under well-defined conditions.

2Data sparseness also depends on the probability model. As an alternative to collapsing the
structure in the annotation as we do, it could also be collapsed in the statistical model
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Antecedent POS Label Count Description/Example
1 NP NP * 22,734 NP trace

Sam was seen *
2 NP * 12,172 NP PRO

* to sleep is nice
3 WHNP NP *T* 10,659 WH trace

the woman who you saw *T*
(4) *U* 9,202 Empty units

$ 25 *U*
(5) 0 7,057 Empty complementizers

Sam said 0 Sasha snores
(6) S S *T* 5,035 Moved constituents

Sam had to go, Sasha said *T*
7 WHADVP ADVP *T* 3,181 WH-trace

Sam explained how to leave *T*
(8) SBAR 2,513 Empty clauses

Sam had to go, said Sasha (SBAR)
(9) WHNP 0 2,139 Empty relative pronouns

the woman 0 we saw
(10) WHADVP 0 726 Empty relative pronouns

the reason 0 to leave

Table 6.2: The distribution of the 10 most frequent types of empty nodes and their
antecedents in the Penn Treebank (adapted from Johnson 2002). Row numbers in
parentheses indicate cases that are inherently local in our functional DG

Type Count prob-modeled Treatment
passive subject 6,803 YES local relation
indexed gerund 4,430 NO Tesnière translation
subject control, raise, semi-aux 6,122 YES post-parsing processing
object control 333 YES post-parsing processing
others / not covered 5,046
TOTAL 22,734

Table 6.3: Coverage of the patterns for the most frequent NP traces [row 1]
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Type Count prob-modeled Treatment
modpart 5,656 YES local relation
non-indexed gerund 3,095 NO Tesnière translation
adverbial of verb 1,598 NO no loss of information
adverbial of noun 268 NO no loss of information
others / not covered 1,555
TOTAL 12,172

Table 6.4: Coverage of the patterns for the most frequent NP PRO [row 2]

6.3.2 NP Traces

A closer look at NP traces (row 1 of table 6.2) reveals that the majority of them
are recognised by the grammar. Except for the indexed gerunds, they participate
in the probability model. In control, raising and semi-auxiliary constructions, the
non-surface semantic arguments, i.e. the subject-verb relation in the subordinate
clause, are created based on lexical probabilities at the post-parsing stage, where
minimal predicate-argument structures are output.

Unlike in control, raising and semi-auxiliary constructions, the antecedent of
an indexed gerund cannot be established easily. The fact that almost half of the
gerunds are not indexed in the Treebank indicates that information about the un-
expressed participant is rather semantic than syntactic in nature, much like in
anaphora resolution. The parser does not try to decide whether the target gerund is
indexed or not, nor does it try to find the identity of the lacking participant in the
latter case. This is an important reason why recall values for the subject and object
relations are lower than the precision values, and constitutes one of the cases where
real information is lost by our conversion into a local DG representation.

6.3.3 NP PRO

As for the 12,172 NP PRO (row 2 of table 6.2) in the Treebank, 5,656 are recog-
nised by the modpart pattern (which covers reduced relative clauses), which means
they are treated as a local relation covered in the probability model. The extraction
patterns for the modpart relation are presented in fig. A. The dedicated modpart
relation typically expresses object function for past participles (the report issued)
and subject function for present participles (a sum totalling). The full tgrep extrac-
tion pattern instances for the modpart relation are listed in the appendix in section
A.
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?
aaa
!!!

NP

noun

VP@

V

verb participle

Figure 6.9: The extaction pattern for the modpart relation. The NP is explicitly a
non-subject NP

A further 3,095 NP PRO are recognised as non-indexed gerunds. Infinitives and
gerunds may act as subjects, which are covered by Tesnière (1959)’s translations
(see section 3.2.3), although these rules do not participate in the probability model.
For example, a translation allows a verb to act as a noun upwards in the tree. In to
read books is great, read takes an object dependent books like a regular verb, but
acts as a noun dependent for the copula be.

Many of the structures that are not covered by the extraction patterns and
the probability model are still parsed correctly, for example adverbial clauses are
treated as unspecified subordinate clauses. Non-indexed adverbial phrases of the
verb account for 1,598 NP PRO, non-indexed adverbial phrases of the noun for
268. As the NP is non-indexed, the identity of the lacking argument in the adver-
bial is unknown anyway, thus no semantic information is lost if the empty node
remains underspecified.

6.3.4 WH Traces

Only 113 of the 10,659 WHNP antecedents in the Penn Treebank (row 3 of table
6.2) are actually question pronouns. The vast majority, over 9,000, are relative
pronouns. We first discuss our treatment of relative pronouns, and then we discuss
in which way question pronouns require a different treatment.

Relative Pronouns

In subject relatives, the relative pronoun is analysed as a subject. The post-processing
module of the parser resolves the relative pronoun. Post-processing links are thick,
labels in bold font in the following pictures.

(59) boys who saw girls



6.3. A Quantitative Analysis of Types of Empty Nodes 136

boys who saw girls
W

modrel

�
subj

W
obj

�

r:subj

In object relatives and prepositional object relatives, an inversion of the direc-
tion of the relation they have to the verb is allowed if the relative pronoun precedes
the subject.

(60) boys who girls saw

boys who girls saw
W

modrel

�
subj

�

obj

�

r:obj

(61) boys to whom girls gave presents

boys to whom girls gave presents
W

modrel

�
subj

�

pobj

�
prep

W
obj

�

r:pobj

This method requires non-standard assumptions for stranded prepositions. The
dependency is localized to the relativized matrix noun, which is in correspondence
to our general treatment of prepositions as a marker-type dependent of the noun. A
post-processing step, similar to the one used for control structures, delivers the de-
pendency between the verb and the preposition. In practice, stranded prepositions
are thus treated as if they were a long-distance dependency of the second class of
the classes introduced in section 6.4.

(62) boys who girls gave presents to

boys who girls gave presents to
W

modrel

�
subj

�

pobj

W

strandprep

W
obj

�

r:pobj
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Relative clauses with stranded prepositions appear frequently as zero-relative
clauses (row 9 of table 6.2).

(63) boys 0 girls gave presents to

boys 0 girls gave presents to
W

modrel

�
subj

W

strandprep

W
obj

�

r:pobj

Relative clauses, like WH-questions, can be embedded, as illustrated in sen-
tences 64 and 65.

(64) William got a present1 [ to which Peter believes [ I will contribute _1]]

(65) William got a present1 [ Peter believes [ I will contribute to _1]]

The output of Pro3Gres for these sentences is given in figures 6.10 and 6.11.

The recursive clauses of an embedded relative clause are traditionally assumed
to be introduced by complementizers rather than relative pronouns. This assump-
tion is supported by the semantic fact that, unlike in control structures, the rela-
tivized constituent does not act as an implicit argument of the verbs of the inter-
vening clauses. A recursive version of the post-processing step for the resolution of
relative clause anaphora has been implemented. Because the relativized constituent
does not act as an implicit argument of the verbs of the intervening clauses, this
version of the post-processing step traverses embedded relative clauses without
leaving coreferences in the intervening relative clauses. This is different from the
post-processing of raising and control, where a coreference is introduced in every
subordinate clause, and where an explicit recursive call is thus not necessary (it is
not necessary since each of the newly introduced coreferences is again subject to
post-processing).

As it is expected from a robust parser, also sentences exhibiting gradience and
low acceptability are treated.

(66) ? William got a present1 [I believe [ which1 suits Peter]]

(67) ? William got a present1 [I believe [ that Peter likes _1]]

Figures 6.12 and 6.13 show the actual parser output for sentences 66 and 67.
The analysis of sentence 67 is correct, but as needs to be expected when delivering
input of low acceptability, the analysis of sentence 66 is debatable.
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Embedded WH-questions

A second nonlocal dependency that can stretch across embedded clauses is the de-
pendency from a verb in a question to its WH pronoun. This type of dependency is
fundamentally different in nature, from all dependencies we have discussed so far.
While so far all dependents appeared in a canonical “surface” syntactic position,
including the relativized matrix noun in a relative construction, the WH-question
pronoun does not.

(68) William got a present1 [ Peter believes [ I will contribute to _1]]

(69) What1 do you think [ Peter believes [ I will contribute to _1]] ?

In example 68, present is a canonical argument of get, but in example 69, what
is not an argument of think. What refers to a present, but the answer to a question
What do you think? can hardly be present since this would lead to a selectional
restriction violation. The object of what is an epistemological fact, in example 69
the entire subordinated clause that depends on think.

The fact that WH-pronouns in embedded clauses are not arguments to the ma-
trix verb entails that while context-free parsing suffices to analyse the canonical
position of the matrix noun in a relative construction, and the successive post-
processing does not need to revise context-free parsing decisions, such a pipeline
approach has to fail on WH-questions. Unlike all other non-local relations we have
discussed so far, they warrant a treatment as really unbounded dependencies. We
discuss our treatment in the following section: a Tree-Adjoining Grammar (TAG)
approach leading to mild context-sensitivity is investigated and a DG version of it
is implemented.

6.4 A Qualitative Analysis of Types of Empty Nodes

Long-distance dependencies are traditionally grouped into two classes. In the first
class, there is an overt constituent in a nonargument position that can be thought of
as strongly associated with (or filling) the gap or trace. As the type of movement
associated with this class is to a non-argument position it is called Ā-movement
(Chomsky, 1981). In this class we find topicalisations, WH-questions, WH-relative
clauses and pseudo-cleft constructions. Pollard and Sag (1994, p. 157) give the
following examples:

(70) Kim1, Sandy loves_1. (topicalization)
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(71) I wonder [who1 Sandy loves_1] . (wh-question)

(72) This is the politician [ who1 Sandy loves_1]. (wh-relative clause)

(73) It’s Kim [ who1 Sandy loves_1]. (it-cleft)

(74) [What1 Kim loves_1] is Sandy. (pseudocleft)

An additional important construction of this class is the use of support verbs in
questions:

(75) Does1 Sandy _1 love Kim? (fronted auxiliary verb)

In the second class, there is no overt filler in a nonargument position, instead
there is a constituent in an argument position that is interpreted as coreferential
with the trace. As the type of movement associated with this class is to an argument
position, it is called A-movement (Chomsky, 1981). In the second class, we find
control and raising (e.g. purpose infinitive or tough movement), relative clause and
it-cleft constructions. Pollard and Sag (1994, p. 157) give the following examples:

(76) I bought it1 for Sandy [ to eat _1]. (purpose infinitive)

(77) Sandy1 is hard [ to love _1]. (tough ‘movement’)

(78) This is the politician [ Sandy loves _1]. (relative clause)

(79) It’s Kim1 [ Sandy loves _1]. (it cleft)

In the first class (examples 70 to 75), the coreference is local inside a single
clause. If we can define an extended notion of locality in which locality means
local inside the clause, this class may only have context-free complexity despite
its long-distance character. In DG, locality naturally extends to the clause level.
Let us illustrate this point with two examples. First, in a grammar representation
where both inner and outer arguments depend on the verb, topicalized constituents
and support verbs – in fact all clause-internal constituents – are available locally to
the main verb. Example 80 receives a context-free analysis.

(80) Who did you see ?
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ROOT Who did you see
W

SENT

�
subj

�

aux

�

obj

Second, in a grammar representation where immediate dominance and linear
precedence are distinct (often called ID/LP grammars), structures involving non-
canonical word order do not require us to resort to non-locality. The subject de-
pendency is allowed to go the right in selected contexts, for example in questions
involving verb-subject inversion, as in example 81.

(81) Are you sure ?

ROOT Are you sure
W

SENT
W

subj
W

predadj

While extending locality to the clause level allows us to treat simple WH-
non-subject questions, embedded WH-questions are not covered. Embedded WH-
question are the only class 1 construction in which the dependency is not local to
the clause.

In the second class, the coreference is not local to one clause, but the overt
constituent in the matrix clause appears in an argument position. The coreference
is between two subjacent clauses in the above examples, but it can also stretch
across several subclauses.

(82) Sandy1 is believed [ _1 to be hard [ to love _1]].

If the coreferenced constituent can be said to appear covertly in each of the
intervening clauses, then the movement is cyclic, it can be modelled step by step
from clause to clause, from argument position to argument position.

In our quantitative analysis of the Penn Treebank in section 6.3, we have seen
five types of English long-distance dependencies that are not local to their clause:
(1) indexed gerunds (see 6.3.2), (2) control structures including raising (see 6.3.3),
(3) relative clauses (see 6.3.4), (4) stranded prepositions (see 6.3.4), and (5) WH-
question dependencies (see 6.3.4). If all these long-distance dependencies were
cyclic, then context-free parsing would be sufficient, because the coreference of
the argument position can be resolved at the post-processing stage.

Indexed gerunds are a special case: theoretically, they can be treated with a
pronoun resolution approach. We believe that they are rather semantic than syn-
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tactic in nature. We leave them underspecified and will not discuss them further.
Control structures are cyclic, the movement proceeds from clause to clause across
argument positions. Relative clauses are not cyclic, because the relativized noun
does not necessarily appear in argument positions in intervening clauses. Since the
overt appearance of the relativized noun is in argument position, however, context-
free parsing followed by a recursive post-processing module which does not leave
traces in the intervening clauses is sufficient. We have presented our recursive
treatment of relative clauses and of stranded prepositions in section 6.3.4. We have
discussed that WH-question dependencies are the only long-distance dependency
that belongs to the first class and that is not local to one clause. Long-distance de-
pendencies of the first class are characterised by the fact that the overt appearance
of the moved constituent is in a non-argument position. While extending local-
ity to the clause allows us to use a context-free approach by underspecifying the
distinction between the overt, non-argument position appearance and the covert ar-
gument appearance if they both are in the same clause, this approach has to fail
for embedded WH-questions, because they are not in the same clause. A different,
context-sensitive, approach is thus needed. Either we selectively and carefully ex-
tend locality further than to the clause, or we resort to the classical context-sensitive
treatment of long-distance dependency as filler-gap constructions for this case, at-
taching the overt non-argument dependent with a purely syntactic, non-functional
label which is accessible from all subordinate clauses.

The first option would mean that WH-question pronouns can directly access
a large context, up to the entire sentence. The second option could follow classi-
cal approaches to treating long-distance dependencies as gap-filler constructions.
From a GPSG perspective, a gap feature is shared across all intervening clauses.
From a GB perspective, the WH-constituent moves to the CP-specifier position,
which typically serves as an ‘escape hatch’ through which the WH-constituent
can cyclically move up, clause by clause until it reaches its overt non-argument
CP-specifier position. Option 2 would require syntactically empty nodes and non-
functional, purely syntactic dependency relations for attaching the overt non-argument
WH-constituent. Both are undesirable in a deep-syntactic, functional representa-
tion which should maximally abstract away from surface configurations and di-
rectly express grammatical roles, as functional DG aims to deliver. Since we use
a monostratal grammar theory, there is no classical movement operation avail-
able. Instead we need to allow some form of context-sensitivity, allowing de-
pendencies to cross (which is also referred to as non-projectivity). Complete non-
projectivity leads to NP-complete parsing complexity (Neuhaus and Bröker, 1997).
Non-projectivity needs to be severely constrained. Nivre (2006a) has shown that
also for a practical parser restricting non-projectivity leads to shorter parsing times.
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In his parser, the number of edges constructed with unrestricted projectivity is
about quadratic to the number of words per sentence, when allowing maximally
two non-projective dependencies per sentence it is almost linear.

Tree-Adjoing Grammar (TAG) follows the first option. TAG extends local-
ity beyond the clause under clearly defined conditions, it does not use movement
between clauses, and it maximally restricts non-projectivity while staying expres-
sive enough to treat natural language phenomena, particularly embedded WH-
questions. This approach is mildly context-sensitive (Joshi, 1985). It has been
argued that mild context-sensitivity is expressive enough for natural language pro-
cessing (Frank, 2002). Kuhlmann and Nivre (2006) have investigated naturally
occurring context-sensitivity in two corpora in dependency format (the Danish De-
pendency Bank and the Prague Dependency Bank). They confirm that context-
senstivity constraints of the class that TAG belongs to has almost complete cov-
erage, 99.89 %, on these two Treebanks, and that the remaining uncovered data
is partly due to the properties of the annotation scheme. They conclude that TAG
mild context-sensitivity is a very attractive extension of projectivity.

6.4.1 Tree-Adjoining Grammar

The TAG formalism (Joshi, 1985; Joshi and Kroch, 1985) has developed a math-
ematically restrictive formulation of phrase structure grammar. In contrast to the
string-rewriting systems of the Chomsky hierarchy, TAG is a system of tree-rewriting.
Structural representations are built up from pieces of phrase structure, so-called el-
ementary trees, which are taken as atomic. These trees can be combined by using
one of two operations: Substitution and Adjoining.

Substitution involves the rewriting of a non-terminal node at the frontier of one
elementary tree as another elementary tree with the requirement that the rewritten
node must have the same label as the root of the elementary tree that rewrites it.
Substitution can be understood as a traditional rewriting operation. Substitution
accomplishes effects similar to those of the Merge operation (Chomsky, 1995):
it inserts XPs into the argument positions of syntactic predicates. Crucially, it is
a context-free operation: context-free elementary trees combined by substitution
only yield context-free structures. An example of Substitution is given in fig. 6.14.
Elementary trees are context-free by definition. “Every syntactic dependency is
expressed locally within a single elementary tree” (Frank, 2002, p. 22)

The Adjoining operation rewrites a non-terminal node anywhere within an el-
ementary tree as another elementary tree. Unlike substitution, which rewrites or
expands trees only along the frontier, Adjoining uses a special class of recursive
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Figure 6.14: An example of the Substitution operation. The rewritten node is
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Figure 6.15: An example of the Adjoining operation. The foot node is boxed.

trees, so-called auxiliary trees. The root of an auxiliary tree is labelled identically
to some node along its frontier, the foot node. Given an auxiliary tree A with foot
node X , Adjoining rewrites as A a node N that is labelled as X in an elementary
tree T , and attaches the node that was under N in T at the foot node of the aux-
iliary tree. Adjoining thus works by rewriting some node of an elementary tree
as a recursive piece of structure (the auxiliary tree). An example is seen in figure
6.15. Trees that have undergone Adjoining can be subject to subsequent Adjoining
operations, such as in 6.16.

6.4.2 TAG Adjoining and mild context-sensitivity

We will now describe how TAG Adjoining can be a context-sensitive operation.

The Adjoining operation can be used for Chomsky adjunction. In this case, the
root node immediately dominates the foot node, as in 6.15 and 6.16.
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But TAG also allows the use of auxiliary trees in which the root node does not
immediately dominate the foot node, where a number of nodes intervene between
the root node and the foot node, in other words : the recursion stretches across
several nodes. In this case, auxiliary trees that contain terminal nodes can be in-
serted into elementary trees and thus stretch out local dependencies. Question 83,
analysed in fig. 6.17, provides an example.

(83) What did you hear that Mary saw ?

TAG treats this sentence as follows: First, the dependency between the WH-
element and its base position is established locally, within a single elementary tree,
according to TAG principles. The effect of dislocating the WH-element into a
higher clause is accomplished by means of Adjoining in fig. 6.17. Further embed-
ding of instances can be derived analogously by further Adjoining operations.

Such stretching by Adjoining with recursive auxiliary trees is the one and only
way in which context-sensitive constructions can be generated in TAG. This fact
is known as the nonlocal dependency corollary: “Nonlocal dependencies always
reduce to local ones once recursive structure is factored out.” (Frank, 2002, p.
27). Research in TAG argues that the severely restricted type of context-sensitivity
generated by Adjoining, so-called mild context-sensitivity, accurately characterises
the non-locality present in natural language (Frank, 2002).

6.4.3 The Nature of Elementary and Auxiliary Trees

While the basic operations over elementary and auxiliary trees have been outlined
now, nothing has been said about the nature of these trees. We will follow Frank
(2004) and “assume that elementary trees are built around a single lexical element,
that is, a semantically contentful word like a noun, verb or adjective” (Frank, 2004,
p. 11).

This means that elementary trees are similar to DG nuclei or chunks (if we
allowed attributive adjectives to be part of elementary trees). Elementary trees are
assumed to provide argument slots and are closely related to predicate-argument
structure:

A great deal of work in syntactic theory has assigned a privileged sta-
tus to the syntactic analogue of predicate argument structure. Such
a domain, which we call a thematic domain, consists of a single lex-
ical predicate along with the structural context in which it takes its
arguments. This notion takes a variety of forms and names, but the
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same idea seems to underlie kernel sentences in Harris (1957) and
Chomsky (1955; Chomsky (1957), cyclic domains in Chomsky (1965),
strata in Relational Grammar (Perlmutter, 1983), F-structure nuclei
in LFG (Bresnan, 1982) and governing categories in Government-
Binding Theory (Chomsky, 1981).

(Frank, 2002, p. 38)

DG parses directly for a predicate argument structure and DG structures have
been described as the F-structure part of LFG (Bröker, Hahn, and Schacht, 1994).
DG and TAG thus take a very similar stance on the inherent aims and structures
of syntactic theory. Following work by Grimshaw (1991), elementary trees are
assumed to include extended projections (Frank, 2002, p. 43).

Auxiliary trees are defined as elementary trees that show the recursive charac-
teristics described. TAG uses transformations to generate elementary trees. Grimshaw
(1991) and Frank (2002) discuss that in head movement the base position and the
ultimate landing site lie within a single extended projection. This entails that head-
movement generally is not unbounded, but local to a clause. We have shown in
subsection 6.2 how finite-state patterns can be used to cover most head-movements
in English. This approach obviates the need for using costly transformations for
creating elementary trees. If every elementary tree can be mapped to a dedicated
dependency label then they are equivalent. Therefore, many dependencies (for ex-
ample head-movement) that stretch across more than one mother-daughter node
relation and are thus non-local for PSG remain local in TAG, as they only in-
volve a single elementary tree. The extended projections of a TAG elementary
tree (Grimshaw, 1991) are also called extended domain of locality (Carroll et al.,
1999).

6.4.4 Sketching TAG Adjoining in DG

In the following, we illustrate how TAG Adjoining can be implemented in DG.
We do not provide a formal proof of our method nor claim that our method and
TAG adjoining are always equivalent in arbitrarily complex cases. We evaluate the
usefulness and coverage of this approach experimentally in chapter 7 below.

DG shares important characteristics of extended domain of locality with TAG.
All arguments and verbal modifiers of a clause are available locally to the verb. We
will first show that the foot node corresponds to a DG verbal projection. Then we
discuss that the foot node is the pre-maximal projection in which a WH-element is



6.4. A Qualitative Analysis of Types of Empty Nodes 152

ROOT the man eats apples with a fork
W

SENT

�
Subj

�
Det

W
Obj

W

PP

W

PObj

�
Det

eat=V”``````̀
       

man=N
b
bb

"
""

the=D

the

man=N

man

eat=V’``````̀,,
       

eat=V0

eats

apple=N

apples

with=P
aaa
!!!

with=P

with

fork=N
Q
Q

�
�

a=D

a

fork=N

fork

Figure 6.18: An unlabelled DG representation and its X-bar equivalents

not attached. Finally we show how the Adjoning operation can be implemented in
DG.

We have discussed in chapter 3 that in LFG F-structure, HPSG and our Func-
tional DG, where functional projections are dependents of the content-word head
(HPSG calls this type of dependent markers), the elementary tree of a content word
and its maximal projection coincide. All bar-levels are isomorphic to the head word
W in DG (Schneider, 1998; Miller, 2000)3. The suggested algorithm to convert be-
tween DG and X-bar described in Covington (1994), is illustrated again in figure
6.18, where X0 equates to a word without dependents, X ′ to a word with a subclass
of dependents, and X ′′ to a word with all its dependents attached.

Let us annotate a TAG elementary tree with the same algorithm. The resulting
structure is given in fig. 6.19.

Since functional words are attached as markers, all DG equivalents of func-
tional projections (the combination of a content word and a function word) are
governed by the content word. As figure 6.19 illustrates, all mother nodes of the
main verb are governed by the main verb within the same clause – they are all ver-

3The important difference between different bar-levels is that they have attached a smaller or
larger number of dependents. Different projections of a content word can be seen as different stages
of derivation, with more or less dependents already attached in the parsing process. A possible
conversion from DG to X-bar for example distinguishes between a projection or derivation state of V
with all dependents except subject attached (V’, internal arguments), and a projection or derivation
state of V with all dependents attached (V”, including the external argument).
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Figure 6.19: An unlabelled DG representation and its TAG equivalents. The foot
node is boxed.

bal projections. The only possible foot node in DG is therefore a projection of the
content word.

Adjoining inserts a recursive structure at some projection of the content word
which is called the foot node. Adjoining inserts new governors into an existing
structure and thus breaks up the context-freeness. In a nutshell, the DG difference
between Substitution and Adjoining is: Substitution inserts dependents, Adjoining
inserts governors.

In DG, Adjoining inserts an auxiliary tree into a partial projection of a content
word. From a process-oriented perspective, partial projections correspond to a
stage of derivation where only a subset of all dependents have been attached to a
governor. Adjoining to maximal projections (in which all dependents are attached)
is pointless, because then Adjoining A to B is equivalent to Substituting B to A.
The auxiliary tree is inserted at a derivation stage in which not all dependents have
been attached. In particular, a partial projection in which the CP-specifier (the
position that traditionally serves as an ‘escape hatch’ for constituents to move up)
is not yet attached, corresponds to C’, the foot node.

While in the example of 6.18 derivation order coincides with the internal/external
argument ordering, that is not the case when WH-question arguments are attached.
Consider what would happen if a standard CYK algorithm is employed for the
sentence in 84.

(84) Who did you see ?

The subject (external argument) is attached before the object (internal argu-
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ment, moved to CP-Spec), as can also be seen in fig. 6.19. At the stage where all
dependents except for the object are attached, Adjoining can occur.

84 Who did you see ?

ROOT Who did you see
W

SENT

�
Subj

�

aux

�

Obj

The Adjoining operation can be described in Functional DG as the following
example shows.

(85) Who did you say that Mary saw ?

did you sayX
�
Subj

�

aux

+ ROOT WhoA that Mary sawB
�
Subj

�

compl/rel

�

Obj

W

SENT

=

ROOT WhoA did you sayX
�
Subj

�

aux

that Mary sawB
�
Subj

�

compl/rel

�

Obj

W

SENT

W

sentobj=R

Given a local dependency (of a type falling inside a TAG elementary tree, hence
non-clausal) from a main verb B to dependent A in the elementary tree, if there
is a maximal projection equivalent to a TAG auxiliary tree X , and if the grammar
licences a dependency both from X to A and also from X to B such that

1. the relation type R from X to B is across elementary trees, hence expressing
a subclause relation,

2. the governor of B is also licensed of be governor of X , and has the same
relation type

then the auxiliary tree X can adjoin to the elementary tree formed by A and B.
Adjoining inserts X between A and B, thus stretching the dependency from B to
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A, by (1.) constructing a relation R from X to B, and by (2.) making the governor
of B become the governor of X . As a result, the Adjoining operation attaches A
to the subordinate verb B instead of to the local verb X . It can also be seen as an
operation that delegates a WH-pronoun to a lower clausal level, similar to Nivre
and Nilsson (2005).

Unlike in TAG, also the equivalent of elementary trees are constructed without
transformations in DG. The verb has local access to the fronted object in the ele-
mentary tree, i.e. in a non-embedded WH-question, like in LFG F-structure, where
all arguments appear flat under the verb predicate.

6.4.5 An Implementation at the Functional Level

An important theoretical consideration should be made first. In GB theory, the in-
ternal argument explicitly moves to the non-argument CP-Spec position, and is thus
attached farther (procedurally speaking later). In our illustration above, we exploit
the coincidental fact that the WH-object in its non-canonical position is attached
farther (procedurally later) due to its position. This may appear as a confusion of
design and coincidence, and of grammar formalism and parsing algorithm. The
DG grammar formalism per se leaves the procedural order of attachment and for-
mal grammar bar-level ordering completely underspecified (see chapter 3). We
may attach WH-pronouns at any time during the parsing process, as long as we
recognise them, and as long as the WH-pronoun and its governor are accessible.
After a subordinate clause has been attached to the matrix clause, the subordinate
clause is no longer accessible. There is one obvious moment when all phrase-level
constituents are accessible: before parsing starts all chunks form a flat sequence of
minimal constituents. At this moment our implementation temporarily suspends
the adjacency constraint (which normally ensures that only adjacent phrases can
be combined), allowing sentence-initial WH-pronouns to attach to any verb4.

In non-subject WH-questions, the WH-pronoun appears at the front of the sen-
tence rather than in its usual post-verbal position. The first implemented approach
is based on pre-parsing: In WH-question sentences, before the main parsing is
started, the WH-pronoun pre-parses as subject, object, adjunct, or PP-attachment
with each verb, and as complement with each stranded preposition (which will
modify a verb or a noun).

4This pre-parsing approximation to Adjoining cannot always guarantee that only mildly context-
sensitive structures are generated. Also, island constraints are not checked. The latter restriction is
defended in section 6.4.8
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6.4.6 Ambiguous WH-attachment

The attachment of the WH-pronoun is sometimes ambiguous, since it can be be
unclear from which clause the WH-pronoun originates. Compare the following
examples.

(86) What1 do you think (that) Peter believes I contribute to t_1 ?

(87) ? What1 do you eat (that) Peter believes I contribute to t_1 ?
? What1 do you eat t_1 (that) Peter believes I contribute to ?

Example 86 has a matrix clause verb think that prefers a sentential complement
over an NP object complement. Example 87, in contrast, has a matrix clause verb
eat that prefers an NP object complement over a sentential complement and seems
infelicitous. The empirical question [1] has to arise whether sentences like 87
are really much less frequent than sentences like 86, which would support our
assumption that 87 is infelicitous. If the answer is positive then we can restrict the
movement to a closed class of verbs that licence movement.

The matrix verb seems to play an important role for the decision whether the
WH-pronoun attaches locally to the matrix clause or originates from a subordinate
clause, but there may be other factors. Consider the following sentences:

(88) What1 did you say that Mary eats t_1 ?

(89) Why1 did you say t_1 that Mary eats ?

Example 89 has a WH-pronoun that typically refers to an adjunct. Already
Ross (1967) observed that extraction from inside adjuncts is impossible and for-
mulated the adjunct island constraint.

(90) *Who1 did John fire Bill [after he met t_1] ?

Huang (1982) describes that extraction of adjuncts out of a WH-island is usu-
ally impossible.

(91) *How2 do you wonder [which problem1 John could solve t_1] t_2

But extraction of adjuncts is in general thought to be possible, although ad-
juncts are less easily extractable than objects (Ouhalla, 1999, 269) One may be
tempted to think that WH-pronouns referring to adjuncts usually do not move, since
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adjuncts can attach to every verb; no subcategorisation errors or selectional restric-
tion violations would occur that trigger human parsers to expect the WH-pronoun
to originate from a subclause. The empirical question [2] has to arise whether in
examples like 91 there are really much fewer cases in which the adjunct originates
from a subordinate clause. If the answer is positive then we can exclude adjunct
WH-pronouns why, where, when from licencing movement in a robust parser.

There is ample theoretical linguistics literature based on introspection to an-
swer both questions [1] and [2]. A simple answer to [1] is that think does not
have the right subcategorisation frame. A possible answer to [2] is that extrac-
tion of adjuncts is in general thought to be possible, although adjuncts are less
easily extractable than objects (Ouhalla, 1999, 269). Since introspection can on
the one hand lead to the invention of complex grammatical examples that people
never produce, and on the other hand important examples may be forgotten, the
use of a corpus linguistics approach in complementation to a theoretical linguistics
approach is recommendable, supplementing psycholinguistic research with empir-
ical data. The scientific methodology of descriptive linguistics based on corpora is
a key component for an empirical science approach to linguistics.

A corpus-based survey of ambiguous WH-pronoun attachment

We answer the two questions raised with a corpus-based approach and compare
our results to rationalist approaches.

Since the Penn Treebank does not have many questions, we needed to use a
bigger corpus, the British National Corpus, henceforth BNC (Aston and Burnard,
1998). We have searched the BNC using BNCWeb CQP (Evert and Hoffmann,
2006) with two word-tag pair queries. The two queries are 6 resp. 7 words long.
They are identical except for the presence versus absence of a complementizer
Word 1 is the WH-pronoun. Word 2 is the auxiliary verb (although auxiliary status
is not enforced). Word 3 is the pronoun you. Word 4 is the main matrix verb.
Word 5 is a complementizer in the first query. The last two words are the subject
and the main verb of the subordinate clause. The subordinate clause subject was
restricted to be a pronoun in order to exclude some mismatches in which the that
was a determiner.

The first query delivers 28 matches. The second query delivers 862 matches.
This reveals that the version with a non-zero complementizer is marginal.

We have manually checked the 28 matches of the first query. 8 were accidental
hits, mostly involving a causative verb at word 2. The remaining 20 matches are
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few to answer questions [1] and [2]. 10 matches have the argument WH-pronoun
what, 8 have the adjunct WH-pronoun why, 2 have the adjunct WH-pronoun when.
Of the 10 argument WH-pronouns what, 6 attach in the matrix clause (5 of which
involve relativisation, e.g. So what have you got that I ’ve not seen ? (CE0 573)), 4
originate from subordinate clauses. There is a strong tendency to allow movement
for argument WH-pronouns. Of the 10 adjunct WH-pronouns why, when, 9 attach
in the matrix clause, only 1 probably originates from a subordinate clause.

(92) Why do you think that he said said to court he was gon na go for? (JNT 61)

Still, there is a strong tendency to block movement for adjunct WH-pronouns.
These findings seem to answer question [2] positively, but data is sparse. As for
question [1], in all cases where the main matrix verb is think, say, or suggest, the
WH-pronoun originates from a subordinate clause, and otherwise not. This seems
to answer question [1] positively, but data is sparse.

We have manually checked a 50 item random sample of the 862 matches of
the second query. There are 5 accidental hits, mostly involving a causative verb
at word 2. 24 matches have the argument WH-pronoun what, 5 matches have the
argument WH-pronoun who, 8 have the adjunct WH-pronoun when, 5 have the
adjunct WH-pronoun why, 2 have the adjunct WH-pronoun when.

Addressing question [2], we were surprised to see that almost all matches,
irrespective of whether they have an argument or adjunct WH-pronoun, originate
from a subordinate clause. There is only one match where attachment in the matrix
clause is semantically possible.

(93) "Well," I said, "I thought you were in the Mafia, but it’s not much of a Mafia
name." "Why do you think I was in the Mafia?" "Because you’re a landlord,
I suppose," I said, ...(FRH 2018-2020)

The evidence suggests that question [2] needs to be answered negatively when
a zero-complementizer is used. Zero-complementizers are a stronger indicator of
movement than the question whether a WH-pronoun refers to an argument or ad-
junct. There is a significant semantic difference between a complementizer and a
zero-complementizer.

As far as the extraction of subjects is concerned, it is well known in theoreti-
cal linguistics that subjects, unlike objects, cannot be extracted if the subordinate
clause has an overt complementizer, the so-called that-trace effect.

(94) Who1 did you think t_1 would fix the car ?
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(95) *Who1 did you think that t_1 would fix the car ?

(96) What1 did you think John would fix _1 ?

(97) What1 did you think that John would fix t_1 ?

This subject-object asymmetry led to a reformulation of the Empty Category
Principle (ECP) in GB. ECP states that non-pronominal empty categories need to
be governed. It is based on the observation that objects of verbs are governed by
a lexical category, while subjects of finite clauses are governed by the non-lexical
category I. Subsequently, lexical government is assumed to be a stronger form of
government, so-called proper government5. The ECP is then reformulated to state
that non-pronominal empty categories need to be properly governed.

But extraction of adjuncts is thought to be insensitive to the presence or ab-
sence of a complementizer. It is admitted that adjuncts are generally less easily
extractable than objects (Huang, 1982), but it is generally assumed that adjunct-
extraction differs from subject-extraction, with only the latter being sensitive to
the presence or absence of the complementizer (Rizzi, 1995, 46), (Ouhalla, 1999,
269). Our small corpus investigation reveals that although adjuncts may theoreti-
cally pattern like objects, in practice they usually pattern like subjects: empirically,
most WH- adjuncts with a zero complementizer subclause have moved, most WH-
adjuncts with a non-zero complementizer subclause have not moved. In practice,
non-zero complementizers typically block WH-movement. This object-adjunct
asymmetry cannot be explained in terms of proper government.

Turning to question [1], a small number of matrix verbs, mostly epistemic
verbs, especially think dominate the matches. Over the 862 matches, we find 619
think, 59 say, 52 mean, 32 know, 17 suggest, 16 suppose, 16 imagine, 15 reckon,
15 let, 10 have, 10 feel. Other types occur less than 10 times.

This supports our assumption that a sentence like 99 may be infelicitous –
although to draw a reliable correlation from rareness to infelicity would be difficult.

(98) What1 do you think (that) Peter believes I contribute to t_1 ?

(99) ? What1 do you eat (that) Peter believes I contribute to t_1 ?
? What1 do you eat t_1 (that) Peter believes I contribute to ?

5Proper government also includes antecedent-government
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Before we describe the implementation, let us summarise our findings. We
have seen that embedded WH-questions with a non-zero complementizer are very
rare. This has no direct impact on our implementation. We have seen that with
regard to question [1] our assumption holds: a very small group of matrix verbs
occurs, dominated by think. We conclude that restricting movement to a closed
class of matrix verbs, epistemic verbs, is a good approximation to real-world oc-
currences. We call these verbs licensing verbs. With regard to question [2], we
have seen that in non-zero complementizer cases, our assumption also holds: ad-
junct WH-pronouns seem to block movement. Then we have discovered that zero-
complementizers show a different behaviour: almost all adjunct WH-pronouns
have moved, i.e. originate from a subordinate clause.

Now we describe our implementation. We have considered the answer to ques-
tion [1] by restricting our algorithm to allowing movements to stretch only across
clauses whose main verb has more clausal complements than NP object comple-
ments in the Penn Treebank. Figures 6.20 and 6.21 show the actual parser output
for sentences 98 and 99.

As a consequence of the answer to question [2], we have extended our algo-
rithm to block movement of an adjunct WH-pronoun across a complementizer.

(100) Why1 do you think t_1 that Peter believes ?

(101) Why1 do you think Peter believes t_1 ?

Figures 6.22 and 6.23 show the actual parser output for sentences 100 and 101.

We have said that our first implemented approach was based on pre-parsing:
In WH-question sentences, before the main parsing is started, the WH-pronoun
pre-parses as subject, object, adjunct, or PP-attachment with each verb, and as
complement with each stranded preposition (which will modify a verb or a noun).
Such an approach had the disadvantage that some necessary knowledge about the
sentence structure is not available before the parsing starts. For example, non-
licensing verbs may occur linearly but not structurally between licensing verbs
and the attaching verb. For example, in What do you think the car which stands
in my garage may cost? the verb the non-licencing verb stand would block the
attachment of what to cost.

We have therefore made a second implementation in which in online version
of the above pre-processor, a module similar to the recursive relative clause post-
processor is used. At the moment where the WH-element and the matrix verb are
reduced, it checks if the matrix verb has (possibly recursive) sentobj relations,
whose head(s) fulfil the verb-chain requirement, i.e. whose verbs are all licensing.
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6.4.7 Subjacency and Barriers

A potential shortcoming of our approach is that barriers (Chomsky, 1986) are not
checked. For example the Subjacency condition restricts how far one movement
step across a clause level can go (Chomsky, 1981).

(102) Which book1 did Ruth report [ _1 that Judith damaged _1].

The Subjacency condition says that the locality of WH-movement is restricted
to the number of certain types of nodes, so-called bounding nodes, that can be
crossed. Traditionally, NP and IP are assumed to be bounding nodes 6. Subjacency
requires exactly one bounding node to intervene between each stepwise movement.
This licenses 103 but not 104, in which two bounding nodes (an IP and an NP)
intervene.

(103) Which book1 did Ruth report [ _1 that [IP Judith damaged _1]].

(104) *Which book1 did Ruth believe [NP the report] [ _1 that [IP Judith damaged
_1]].

A robust system does not aim at deciding if given input is acceptable or not,
but analyses naturally occurring text, which may also contain partly but not re-
ally completely unacceptable utterances. The purpose of Pro3Gres is the analysis
of naturally occurring language, it is neither a language generator nor a grammar
checker. Analysis of naturally occurring language requires disambiguation if sev-
eral analyses are possible, as we have seen in the case of the attachment of the
WH-pronoun. We have found out that the matrix verb and the presence or absence
of a complementizer are major factors for the resolution of this ambiguity. We have
implemented our findings. Checking for acceptability constraints such as barriers
is largely an irrelevant task for a robust parser7.

It is relevant, however, if such constraints disambiguate, as we have seen in
6.4.6. In WH-questions across several clauses, the WH-pronoun can attach to
any potential verb governor. GB theory has developed the concept of Minimal-
ity, which is part of Barriers theory, to licence some structures and rule out others,
and thereby disambiguates in situations where several governors are possible.

6Some cross-linguistic variation is assumed. Cinque (1990) argues that in Italian CP is a bounding
node

7If desired, a post-processing module that traverses the syntactic tree, accepting or rejecting it if
barrier violations are encountered, can be employed.
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6.4.8 Minimality and Relativized Minimality

The concept of Minimality has been introduced by Chomsky (1986) and revised
by Rizzi (1995). The Minimality condition is a locality constraint which specifies
that a potential governor is ruled our from governing inside the domain of another
governor. Informally speaking, in a configuration [XP ... X [YP ... Y ... ZP] ... ] X
is ruled out from governing ZP, because Y already governs ZP. It is a condition on
chains.

We have discussed in section 3.1.2 that GB government and DG dependency
are largely equivalent. Disambiguation between different possible governors thus
seems a typical attachment and hence parsing problem. GB distinguishes between
two kinds of government: head-government and antecedent-government. Head-
government is similar to DG dependency, but what about antecedent-government?

Antecedent-government licences or rules out coreferences. From a DG per-
spective, antecedent-government is not a relation between a head and a dependent,
but a relation between peers, between an overt and a covert dependent. Head-
government and antecedent-government together form a triangular relation ex-
pressing long-distance dependencies by connecting a governor to its surface de-
pendent via its deep dependent. We have seen that the large majority of long-
distance dependencies can be underspecified and the relation from the governor to
its surface dependent can be expressed directly if it is clause-internal or by post-
processing if it crosses clause-boundaries. The one exception are WH-dependencies
across clause boundaries, because the WH-element cannot attach in a functionally
correct way in the matrix clause. Every such configuration is syntactically am-
biguous, because the WH-pronoun could also attach to the matrix clause. In fact,
if attachment to the matrix clause is plausible, human parsers will attach it there,
choosing the most local plausible attachment. This is the central insight of Mini-
mality and Relativized Minimality.

The difference between Minimality and Relativized Minimality is that Rel-
ativized Minimality distinguishes between the three types of movements: head
movement, A movement and A-bar movement. Only intervening movements of
the same type block antecedent government.

(105) How1 do you expect [ to solve the problem t_1? ]

(106) *How1 do you expect [ which problem2[ to solve t_2 t_1 ?]]

In 106 the intervening NP specifier, blocks how from antecedent-governing its
trace, because a more local antecedent governor, which problem is available. This



167 6.5. TAG Adjoining and LFG

means that only a reading in which how is attached to the matrix verb expect can
be licensed.

(107) *How1 do you expect [ which problem2[ to solve t_2 t_1 ?]]

(108) How1 do you expect [ (that) [Peter solves the problem t_1 ?]]

The A movement of the subject from V-Specifier to I-Specifier does not affect
antecedent-government of the trace. Minimality in its original formulation would
not have licensed 108.

Let us now turn to the situation in our parser. We have seen that A movement
can be treated with post-processing, because the surface position attaches to the
local clause. Head movement is clause internal (see e.g. Frank (2002)). Disam-
biguation for these cases, if several readings are possible, is thus a context-free
parsing problem, treated by the lexicalized disambiguation model. The only case
that we explicitly disambiguate is the case where several A-bar movements are in-
volved. In example 107 the intervening A-bar element blocks the pre-parsing step,
an alternative reading in which how attaches to the matrix verb expect is attempted,
which does not lead to a full analysis. In 108 pre-parsing successfully attaches the
WH pronoun to the subordinate verb if no complementizer is present, and to the
matrix verb if a complementizer is used.

6.5 TAG Adjoining and LFG

Tesnière (1959)’s original Dependency Grammar (DG) concept aims at being a
proto-semantic, monostratal, Älanguage-independent theory rather than merely a
syntactic theory8. In LFG terms, he always challenged the need for C-structure.
His strategy is to parse surface text (ordre linéaire) directly to F-structure (ordre
structurale) in which word order plays no primary role, but may of course help
disambiguating in a secondary role, for example by preferring projectivity. Bröker,
Hahn, and Schacht (1994) refers to DG as an LFG that only knows f-structure.

6.5.1 Functional Uncertainty

Functional uncertainty allows long-distance dependencies to extend across an un-
limited, recursive path in LFG f-structures. Subordinate clauses appear as a COMP

8An extended version of the argument made in this subchapter can be found in Schneider (2005).
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or XCOMP (the latter for control) dependent in f-structure; accordingly their re-
cursion (expressed by the Kleene star) is COMP* or XCOMP*.

According to Tree-Adjoining Grammar (TAG), the only context-sensitive op-
eration that is needed to express natural language is Adjoining, from which LFG
functional uncertainty has been shown to follow as a corollary (Joshi and Vijay-
Shanker, 1989). Functional uncertainty, which is expressed on the level of f-
structure, would then be the only extension needed to an otherwise context-free
processing of natural language.

6.5.2 A chunks and F-structure version of LFG

We therefore suggest that, since f-structures can then be derived context-freely,
full-fledged c-structures are not strictly needed in LFG, and that chunks and de-
pendencies may be sufficient for a formal grammar theory. The chunks & de-
pendencies model has been suggested by Abney (1995). Frank (2003) presents a
(albeit non-probabilistic) chunks & dependencies model for LFG. Chunks can be
freely combined, subject to adjacency and projectivity constraints, which leads to
a context-free parsing algorithm. Except for the added book-keeping functional
annotations, her parsing algorithm is akin to CYK, which we use.

A major motivation for C-structure has been its context-freeness. We have
shown that the majority of long-distance dependencies can be expressed in a context-
free way by extending locality to the clause level, and can thus be expressed by a lo-
cal dependency. Functional theories (LFG and DG alike), if they use mild-context
sensitivity in the form of Adjoining or functional uncertainty or another form of
recursion over functional or clausal structures can then obviate all other forms of
long-distance dependencies. We can then parse for f-structure in a context-free
way.

Combining (1) Frank (2004)’s revelations on restricting grammatical complex-
ity in TAG, (2) LFG’s invention of functional uncertainty on f-structures, and
(3) Joshi and Vijay-Shanker (1989)’s suggestion that structures modelled by LFG
functional uncertainty and TAG mild context-sensitivity are equivalent, C-structures
can be obviated for syntactic analysis.

6.6 Conclusions

We have discussed how we extract local and non-local lexical information from
the Penn Treebank. We have shown that the vast majority of long-distance depen-
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dencies can be modelled locally in a functional representation (such as Functional
DG) by extending locality to the clause level. DG locality naturally extends to the
clause level. Out of the remaining, trans-clausal, long-distance dependencies most
can be treated recursively (A-movement, such as control-structure dependencies),
they can safely be treated by post-processing, parsing can then stay context-free.
Furthermore, WH-question pronouns (the only Ā-movement across clause bound-
aries) can be treated by extending context-free parsing to mild context-sensitivity
known from TAG. Mild context-sensitivity is a form of recursion over syntactic
structures in TAG or equivalently recursion over f-structure in LFG.

Following these considerations, the LFG suggestion by Frank (2003), as well
as our broad-coverage evidence (Schneider, Dowdall, and Rinaldi, 2004; Rinaldi
et al., 2004a; Rinaldi et al., 2004; Weeds et al., 2005), we suggest that C-structures
or other configurational “surface” representations can be obviated for the robust
broad-coverage syntactic analysis of natural language. By reducing grammar com-
plexity (Frank, 2002; Frank, 2004), by reducing parsing complexity to mostly
context-free parsing and finite-state based chunking (Schneider, 2003; Schneider,
2004), and by bridging the gap between language engineering and Formal Gram-
mar (Kaplan et al., 2004a). We conclude that chunks and dependencies (Abney,
1995; Frank, 2003) are sufficient for robust broad-coverage parsing of natural lan-
guage.

We have sketched a version of TAG Adjoining in DG and discussed our imple-
mentation. We do not provide any formal proof of equivalence between TAG Ad-
joining and our pre-parsing approach, we cannot be certain that we treat all English
long-distance dependencies, but we have shown by quantitative and qualitative ev-
idence that our local approach successfully treats the vast majority of English long-
distance dependencies, both on a token-based as well as on a type-based count. We
believe that a formal proof, or difficult claims about total coverage of long-distance
dependencies, are neither necessary nor beneficial for a robust system optimising
on precision and recall. We have extensively evaluated our approach, including
long-distance dependencies, and present detailed results in chapter 7.

Traditional wisdom has it that a grammar formalism is either deep-syntactic or
context-free. We have shown that functional DG is mostly context-free, but at the
same time deep-syntactic, i.e. expressing all major long-distance dependencies.
Only non-argument position (Ā) relations across clause-boundaries, i.e. complex
WH-movements, need context-sensitivity. Mild context-sensitivity, which is well
studied, is sufficient (Frank, 2004; Kuhlmann and Nivre, 2006). Mild context-
sensitivity extends locality beyond the clause under clearly defined conditions. We
have discussed our implementation of mild context-sensitivity and presented how
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we disambiguate attachment ambiguities of the WH-pronoun, based on a corpus
study.



Chapter 7

Evaluation and Discussion

7.1 Introduction

In this chapter we evaluate the performance of the Pro3Gres parser. First we dis-
cuss different evaluation metrics and present the evaluation method that we use.
In section 7.2 we evaluate on GREVAL, a standard 500 sentence test corpus (Car-
roll, Minnen, and Briscoe, 2003) and compare to the related works of Carroll and
Briscoe (2002), Lin (1998) and Collins (1999). In section 7.4 we evaluate on a
random subset from the GENIA corpus of biomedical texts (Kim et al., 2003a). In
section 7.5 we present and evaluate methods exploring the trade-off between pre-
cision and recall. In section 7.6 we compare against the baseline and explore the
contribution of the statistical models for lexical disambiguation and distance.

7.1.1 Traditional Syntactic Evaluation: Labelled Bracketing

Evaluations compare automatically annotated data, the so-called candidates, to
manually, carefully annotated data, the so-called gold standard. The gold standard
is assumed to be error-free. A candidate is assumed to be correct if its annotation
coincides with the one in the gold standard. Errors are partitioned into recall errors
and precision errors. Recall measures how much of the data in the gold standard is
recovered in the candidate, and precision measures how much noise is in the candi-
date data returned by the automatic procedure. For a more detailed introduction to
the topic of evaluation in CL and syntactic parsers, readers are referred to Jurafsky
and Martin (2000, p. 464).

A widely-used evaluation method is PARSEVAL (Black et al., 1991), which

171
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measures the accuracy of syntax trees delivered by a constituency based parser as
follows.

labelled recall: #of correct constituents in candidate
#of correct constituents in gold standard

labeled precision: #of correct constituents in candidate
#of all constituents in candidate

cross-brackets: # of brackets crossing between candidate and gold standard

While the PARSEVAL evaluation measure has been used widely, it cannot be
directly applied for a dependency based parser. Also, PARSEVAL has come under
serious criticism, raising doubts about how reliable its results are, as we discuss in
the following.

7.1.2 Dependency-Based Evaluation: Lin 1995

Lin (1995) suggests evaluating on the intuitive level of dependencies rather than on
the constituency level. He points out that PARSEVAL suffers from the following
serious problems.

PARSEVAL may count a single error multiple times Given the following gold
standard annotation

(109) [I [saw [[a man][with [[a dog] and [a cat]]]][in [the park]]]]

and the two following incorrect parser analyses

(110) [I [saw [[a man][with [[a dog] and [[a cat][in [the park]]]]]]]]

(111) [I [saw [a man] with [a dog] and [a cat][in [the park]]]]

PARSEVAL yields a counter-intuitive assessment of the quality of the analyses.

In (109) we have only one error, and it involves a difficult construction: a PP-
attachment error. The PP in the park has been attached to cat instead of to saw,

According to PARSEVAL, this constitutes 3 crossing brackets:

1. [a dog and a cat] vs. [a cat in the park]

2. [with a dog and a cat] vs. [a dog and a cat in the park]

3. [a man with a dog and a cat] vs. [with a dog and a cat in the park]
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This analysis scores a recall of 6/10 and precision of 7/11.

(110), on the other hand, is a very shallow, insufficient analysis. As it has no
crossing brackets, however, it scores a higher recall of 7/10 and a higher precision
of 7/7.

Lin (1995) mentions the following, additional PARSEVAL problems.

Constituency based approaches often have low agreement between parsing
schemes for some constructions This criticism has partly been answered by
PARSEVAL by removing certain bracketing information from consideration; for
example negation, auxiliaries, punctuation, or traces, since Lin (1995).

No distinction between different processing levels For cascading systems, dif-
ferent levels, which are often marked by differing degrees of difficulty, cannot be
distinguished. For Pro3Gres, for example, chunking vs. parsing performance could
not be distinguished. Also, the fact that base-NP internal syntax is left underspeci-
fied means that standard PARSEVAL cannot be applied.

7.1.3 Desiderata

A maximally flexible and informative evaluation should respect the following cri-
teria.

Selective evaluation to support error analysis: Results should be classifiable
by different syntactic phenomena, for example to identify more and less difficult
phenomena, to identify which parser is particularly suitable for which construction,
or to distinguish between semantically more and less serious errors. Grammatical
relations provide such a division into meaningful classes naturally.

Ability to ignore inconsequential differences: It should be possible to ignore
differences that are inconsequential, either for a certain task or because of seman-
tic closeness. A task-specific example is the biomedical application of Pro3Gres,
which focuses on the discovery of potential relations between proteins, where truth-
value and modality modifications (typically expressed by adverbs and sentence-
subordination) are of secondary importance. An example of semantic closeness
is the distinction between full clauses and small clauses: it can be argued that a
parsing schenme that does not distinguish between the two should not be punished.
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Figure 7.1: The hierarchy of grammatical relations suggested in GREVAL

Facilitate error diagnostics: it would be helpful if an evaluation specified what
actually goes wrong and helped the developer pinpoint the error source. In the
above example (109), it is helpful to know that a PP-attachment error occurred.
An analysis that uses perspicuous and intuitive grammar concepts and annotation
schemes further supports developers or users in this task.

Following Lin’s criticisms and suggestions as well as the above desiderata, an
evaluation based on grammatical relations instead of mapping to constituency and
evaluation with PARSEVAL seemed appropriate for evaluating the performance of
Pro3Gres. For dependency parsers, it has become customary to use grammatical
relations for evaluation, for instance in Buchholz and Marsi (2006).

7.1.4 An Annotation Scheme for Evaluation: Carroll et al. 1999, 2003

Carroll, Minnen, and Briscoe (1999) and Carroll, Minnen, and Briscoe (2003)
present a dependency-based evaluation scheme, GREVAL (GR stands for gram-
matical relations), and offer a dependency-based manual annotation of 500 random
sentences from the Susanne corpus to the linguistic community. Their test corpus
and a version of their evaluation scheme have been used in the following.

They suggest a hierarchy of relations that on the one hand allow us to do the
selective evaluations demanded by (Lin, 1995), on the other hand total figures can
also be given. Since relations inside base NPs remain underspecified in Pro3Gres
at parse-time, we needed a mapping effort and post-processing to deliver such total
figures. In section 7.2 we conduct extensive selective evaluations.

The hierarchy of relations (Carroll, Minnen, and Briscoe, 2003, 303) is illus-
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ncmod(_, flag, red). % a red flag
ncmod(on, flag, roof). % flag on the roof
xmod(without, eat, ask). % he ate the cake without asking
cmod(because, eat, be). % he ate the cake because he was hungry

arg_mod(by, kill, ’Brutus’). % killed by Brutus
ncsubj(she, eat, _). % she was eating
xsubj(win, require, _). % to win the America’s Cup requires heaps of cash
csubj(leave, mean, _). % that Nellie left meant she was angry

dobj(read, book,_). % read books
dobj(mail, ’Mary’, iobj). % mail Mary the contract (3rd arg is initial_gr)
iobj(in, arrive, ’Spain’). % arrive in Spain
obj2(give,present,_). % give Mary a present

xcomp(to, intend, leave). % Paul intends to leave
xcomp(_, be, easy). % Swimming is easy
xcomp(in, be, ’Paris’). % Mary is in Paris
ccomp(that, say, leave). % I said that he left

Table 7.1: Examples of grammatical relations in the GREVAL scheme

trated in figure 7.1 (the subj_or_dobj relation is left out as it is at least extremely
rare in English). As a rule of thumb, relations are distinguished among modifi-
cation, adjunct (mod versus argument (complement) arg; clausal (c) versus non-
clausal (e.g. nominal, nc); control (x) versus no control. For example He1 wants
[t1 to leave] (control) vs. He says [that she left] (no control). Examples are illus-
trated in table 7.1.

7.2 GREVAL: A standard 500 sentence test corpus

The 500 sentence evaluation corpus GREVAL has been introduced above. Its for-
mat is similar to the Pro3Gres parser output, but not identical. Therefore, a map-
ping function is necessary. Crouch et al. (2002) warn that mapping is a true chal-
lenge, and that due to mapping results can only be indicative. A small selection of
examples that lead to spurious errors is discussed in appendix B.
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7.2.1 Bidirectional Mapping of Pro3Gres to GREVAL

As a starting point, one could assume a naive direct mapping, where c-subscript
(short for Carroll et. al.) indicate GREVAL relations: subj corresponds to ncsubjc;
obj corresponds to dobjc; pobj corresponds to iobjc; modpp corresponds to ncmodc;
etc.

Such a mapping only partly works, because it misses a number of differences
between the Pro3Gres output and the GREVAL format, for example: Pro3Gres
makes no adjunct/complement distinction for PPs; Pro3Gres’ use of Tesnière trans-
lations complicates the picture; often, different grammatical assumptions are made.
For example, GREVAL does not consider relative pronoun antecedents to be sub-
jects or objects. The mapping thus becomes more involved, as will be explained
in the following. While the mapping that we introduce addresses many of the
differences, a considerable number of differences remain unmapped and can lead
to spurious errors, as is discussed in the appendix and in the detailed analysis of
errors. A graphical summary of the mapping is presented in figure 7.2.

Subjects

The subjects of reduced relative clauses, which are expressed in the Pro3Gres
modpart relation, are subjects in GREVAL (ncsubjc). Each subj and each modpart
relations is thus mapped to an ncsubjc relation.

The antecedent of a relative pronoun is not assumed to be a subject in GREVAL.
A long-distance subj relation expressing a relative pronoun antecedent corresponds
to a cmodc relation with a relative pronoun in the gold standard. cmodc is also used
for other types of clausal modification, but checking for a relative pronoun in the
correct argument position ensures that only cmodc relations expressing the resolu-
tion of relative pronouns are mapped.

Object

No distinction between primary obj and secondary obj2 object is made at this
stage. The mapping is straightforward, as table 7.2 shows.
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Subject


subj OR modpart ↔ ncsubjc OR cmodc(with relative pronoun)

—
Legend:
ncsubjc= non-clausal subject
cmodc= clausal modification, used e.g. for relative clauses

Object


obj OR obj2 ↔ dobjc OR obj2c

—
Legend:
dobjc=first object
obj2c=second object

PP-Attachment



modpp OR pobj ↔
ncmodc(with prep) OR
iobjc(with prep) OR
arg_modc OR
xcompc(with prep)

—
Legend:
ncmodc=non-clausal modification
iobjc=prepositional object
arg_modc=passive agent
xcompc for PP-attachment to copular verbs

Clausal



sentobj OR
modrel OR
modpart OR
obj(with copular verb) OR
pobj(with copular verb) OR
predadj

↔ xcompc OR xmodc OR
ccompc OR cmodc

—
Legend:
xcompc=clausal complement, control
xmodc=clausal modifier, control
ccompc=clausal complement, overt subordinate subject
cmodc=clausal modifier, overt subordinate subject

Figure 7.2: Bidirectional Mapping the Pro3Gres output to the GREVAL format.
GREVAL relations bear a c-subscript
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PP-attachment

The PP-attachment relations, modpp for verbal attachment and pobj for nominal
attachment, typically correspond to the following GREVAL relations: ncmodc,
non-clausal modification, which expresses adjunct dependencies; iobjc, indirect
object, which expresses prepositional arguments; and arg_modc, which expresses
the by agent of a passive verb. Such a mapping is not satisfactory, however. The PP-
attachment mapping would miss cases in which the PP-internal noun is a verb that
has undergone Tesnière translation to a noun, for example in the dangers of swim-
ming_VBG. Therefore, a PP-attachment relation that has a clausal modification
counterpart xmodc should also be counted as correct. xmodc typically expresses
clausal modification. It is important to restrict the mapping to a PP-attachment re-
lation to cases where xmodc contains a preposition in order to get a bidirectional
mapping.

Clausal Relations

The mapping needed for clausal relations is quite complex, as illustrated in figure
7.2. Clausal relations in Pro3Gres are sentobj for subordinated sentences, which
typically corresponds to xcompc or ccompc, and modrel for relative clauses. But
also the reduced relative clause modpart relation expresses a clausal dependency.
Both relative clauses and reduced relative clauses are typically expressed by cmodc

in GREVAL. Complements of copular verbs, which we express by an obj relation
if the complement is nominal, predadj if the complement is an adjective, or pobj
if the complement is a PP, are also clausal relations.

Since we do not distinguish between clausal adjuncts and arguments, sentobj
in a control situation corresponds to either xcomp or xmod, and either to ccomp
or cmod if the subordinate clause has an overt subject.

Results

The currently best results using this mapping are given in table 7.2. We have used
Ratnaparkhi’s Maximum Entropy tagger for this result. The mapping that we have
used is not perfect. For example, the assumption is made that each modpart re-
lation corresponds to an ncsubjc relation. This is not true if the modpart rela-
tion has a present participle governor, for example in a case involving/VBG seven
persons, where it should correspond to an object. If we exclude these modpart
relations from the subject evaluation, precision would increase to 92.7%. Since the
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Subject Object PP-attachment clausal
Prec. 92.3% (865/937) 85.3% (353/414) 76.9% (702/913) 74.3% (451/607)
Recall 78.0% (865/1095) 82.5% (353/428) 68.6% (702/1023) 61.7% (451/731)

Table 7.2: Currently best results on evaluating Pro3Gres on GREVAL test corpus on
subject, object and PP-attachment relations

GREVAL annotation does not contain part-of-speech tag information, it is not pos-
sible to exclude these modpart relations from the calculation of recall, otherwise
the mapping is not bidirectional. We thus had to accept the spurious error that the
bidirectional mapping introduces. Results are therefore a lower bound.

We get slightly above 90% subject precision, object precision is at about 80%.
Subject and object recall are about 80 %. PP-attachment precision is about 75%,
recall about 70%. For clausal relations, we get almost 75% precision, but only
about 60% recall.

Detailed Analysis of Subject Precision Errors

In order to get an impression of the error characteristics, the subject precision errors
from the entire GREVAL corpus have equally been classified in table 7.3. Chunk-
ing and tagging errors are the primary source of error for subject precision. Parsing
errors, which includes attachment errors, are less frequent.

7.2.2 Unidirectional Mapping of Pro3Gres to GREVAL

The mapping which we just presented has a few shortcomings. First, the PP-
attachment evaluation is too coarse as it does not allow us to fully examine verbal
and nominal attachment selectively. Secondly, it only evaluates some relations. In
this subsection we explore possible answers to the first shortcoming, in the follow-
ing subsections we explore possible answers to the second shortcoming.

The mapping we have discussed in figure 7.2 lumps all PP-attachments to-
gether, which is unsatisfactory as it does not allow us to distinguish between the
performance on verbal and nominal PP-attachment. When observing the data a
separation into verbal and nominal attachment seems straightforward. Precision
values are obtained by simply splitting the evaluation into modpp part for nominal
attachment and a separate pobj part for verbal attachment.

The calculation of recall values, where a mapping from the GREVAL relations
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to our scheme is needed turns out to be more problematic. Since the GREVAL
annotation does not provide part-of-speech tags there is no certain way to know if
the governor in a PP-attachment relation is a verb or a noun, the attachment verbal
or nominal. Nevertheless, strong tendencies exist: arg_modc is always verbal
attachment, ncmodc frequently nominal, and iobjc mostly verbal. This allows us
to get indicative recall values.

Strictly speaking, such a mapping is not mathematically well-defined, because
unidirectional mappings that do not completely overlap in both directions are used.
The mapping still preserves the characteristics of recall, expressing how many of
the expected relations are returned by the parser. The performance values they
allow us to deliver are more fine-grained and informative. We report them in table
7.4, with a word of warning. We will also the unidirectional mapping for PP-
attachment in subchapters 7.5 to 7.8, where we will not compare to other parsers,
but to other versions of Pro3res, such as a baseline system. A graphical summary
of the mapping is presented in figure 7.3.

Nominal PP-attachment

Nominal PP-attachment recall calculates how many of the nominal (non-argument)
relations expected in the gold standard, (expressed by the ncmodc relation, if it
has a preposition), are reported by Pro3Gres. Since the GREVAL format does
not contain part-of-speech tags, there is no certain way of knowing whether the
ncmodc head is a noun or a verb. Typically, the head of an ncmodc relation is a
noun, the relation thus corresponds to a modpp relation in Pro3Gres. But for verbal
adjuncts, an ncmodc relation corresponds to a pobj Pro3Gres relation (i.e. verbal
adjunct PP-attachment relation). This means that verbal adjunct PP-attachment
recall counts are counted as nominal PP-attachment.

Verbal PP-attachment

iobjc expresses the PP-attachment of an argument, it is typically verbal attachment.
arg_modc expresses the attachment of a by agent to a passive verb, it is always
verbal.

Nominal argument PPs, for example in ... Mr. Buckley holds the key to the
Democratic organization’s acceptance ... are also expressed by an iobjc rela-
tion, which mostly expresses the attachment of verbal arguments. Again, since
the GREVAL format does not contain part-of-speech tags, there is no certain way
of knowing whether the iobjc head is a noun or a verb. These iobjc relations, like
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noun-PP



Precision: modpp →
ncmodC(with prep) OR
xmodC(with prep) OR
iobjC(with prep)

Indicative Recall
(mostly nominal): modpp OR pobj ← ncmodC(with prep)

—
Legend:
ncmodC=non-clausal modification
xmodC=clausal modification for verb-to-noun translations
iobjC=prepositional object

verb-PP



Precision: pobj →

iobjC (with prep) OR
arg_modC OR
ncmodC (with prep OR (prt & dobj)) OR
xcompC (with prep) OR
xmodC (with prep)

Indicative Recall
(mostly verbal): pobj OR modpp ← iobjC (with prep) OR

arg_modC

—
Legend:
iobjC=prepositional object, arg_modC=passive agent
xcompC for PP-attachment to copular verbs

Figure 7.3: Mapping the Pro3Gres output to the GREVAL format for precision,
and the reverse mapping for recall
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Nominal PP-attachment Verbal PP-attachment
Precision 78.7% (354/450) 74.9% (347/463)
Indicative Recall 66.0% (529/801) 86.9% (173/199)

Table 7.4: Evaluating Pro3Gres on the GREVAL corpus on PP-attachment relations

all other iobjc relations, also appear as verbal PP-attachment, although they are
nominal.

As for verbal PP-attachment recall, the PP-adjunct cases are treated by ncmodc

recall and thus appear as nominal PP-attachment recall. The main verb-PP argu-
ment attachment relation is iobjc, the verb-passive agent attachment relation is
arg_modc. Recall of iobjc and arg_modc is either reported separately, or micro-
averaged, then labelled as verbal PP-attachment recall, but we should bear in mind
that it only covers arguments, while verbal PP-adjuncts form part of ncmodc re-
call, and that it also includes nominal PP-attachments in which the PP is a noun
argument.

Since Pro3Gres leaves the distinction between preposition and verbal particle
underspecified, a verbal particle plus a corresponding dobjc are also correct. Like
for nominal attachment, a verbal PP-attachment relation that has an xmodc coun-
terpart in the gold standard is a correct case involving a PP-internal noun that has
undergone translation from gerund to noun. PP-attachment to copular verbs is ex-
pressed by xcompc in GREVAL.

Results

Results using this unidirectional mapping are given in table 7.4. The verbal PP-
attachment recall appears considerably higher than nominal PP-attachment. This
is partly due the following two reasons. First, as the mapping describes, verb-PP
recall largely describes the attachment of arguments, while noun-PP recall largely
describes the attachment of adjuncts. For arguments, lexicalisation is considerably
more beneficial than for adjuncts. Second, in our putative context (see chapter 2) a
noun and a verb are in competition. If several nouns compete, then their attachment
probabilities are only compared indirectly via the likelihood of competing verbal
attachment.

Although better results have been reported for PP-attachment disambiguation
in isolation, the same results cannot be expected to be found in the context of real
parsing. On the one hand, some PP-attachments are unambiguous, which should
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lead to better results. On the other hand, some PP-attachments are multiply am-
biguous (they have more than two possible attachment sites) or occur fronted in
a sentence-initial position, or a participant in the PP-relation is mistagged or mis-
chunked. Mistagging and mischunking is involved in about 20-25 % of the PP-
attachment precision errors.

Detailed Analysis of PP-Attachment Errors

Detailed error analyses have been conducted by manually comparing the errors of
Pro3Gres and tracking down error sources. The errors of the first 100 GREVAL
sentences have been manually compared and broken down into error classes in
table 7.5. The analysis reveals that in addition to the expected attachment errors
(51%), mistagging and mischunking are important sources of error (24%), but also
that differing grammar assumptions are a problem for our hand-writen grammar
approach (12%), introducing spurious errors. The fact that the grammar is either
incomplete, a wrong rule leads to the most likely parse or that the parse does not
span the whole sentence is responsible for 13 % of the errors.

PP Complements and PP Adjuncts

It is especially rewarding to compare the difference in recall between PP comple-
ments (which have the iobjc label) and PP adjuncts (which have the ncmodc label).
Due to the strong lexical preference, performance on complements is considerably
higher (87% (173 / 199)) than on adjuncts (66% (529 / 801)), where lexical prefer-
ences are often absent: an adjunct can attach anywhere. The fact that adjuncts can
attach anywhere has been used to detect adjuncts by means of a entropy measure.
If the entropy for possible lexical heads is very high, this is a strong indicator for
adjuncthood (Merlo and Esteve Ferrer, 2006).

The fact that recall on complements is high entails that bilexical parsers, while
not very successful on adjuncts because they are based on an incorrect assumption,
are useful tools for lexicology and the discovery of argument structure. A manual
categorisation of the 21 iobjc recall errors on GREVAL has been conducted. The
first 10 errors are given for illustration in table 7.6. Only 3 of the 21 errors are
attachment errors, which is considerably lower than for PP attachment generally,
where about half of the errors are attachment errors (see table 7.5). Only one of
these 3 errors, the error in sentence 229, is not corrected in the second highest
ranked reading. This means that complement recall can be increased to a very high
level using high recall approaches as described in section 7.5.1. It also means that
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for IR tasks, where argument relations are typically more important than adjunct
relations, the parser may be more useful than it seems prima facie.

7.2.3 Long-Distance Dependencies

The reported results generally include both local and long-distance dependencies.
About 10% of the subjects in the GREVAL corpus are non-local, i.e. they involve
a long-distance dependency. The best subject precision data in table 7.2 yields
93.9% precision for local subjects and 87.7% for non-local dependency subjects.
The annotation in the GREVAL corpus does not always indicate if a relation is local
or not. We identify a subject relation as non-local if Pro3Gres reports it as a control
subject, an anaphor of a relative clause, or a WH-word. This allows us to report
precision values. But since the GREVAL corpus does, for example, not indicate
control relations as such, we cannot report reliable recall values for all relations,
since it is not always possible to attain a bidirectional mapping. For the example
of subject control recall, one can approximate the denominator by constraining the
subordinate clause relation xcompc to sentences where the subordinate clause is
introduced by the infinitive marker to, and where there are two ncsubjc relations
with an identical subject, one containing the matrix verb, the other containing the
subordinate verb. This constraint delivers 48 cases, out of which the parser returns
33. At the first sight, this corresponds to a recall of 69%, but the fact that we get
a lower numerator than for precision indicates that the constraint applied to the
gold standard does not deliver all cases, our calculation of the recall would only be
incomplete.

Table 7.7 shows a long-distance dependency evaluation, as far as the GREVAL
annotations permit. Since some of the counts are low, absolute numbers are in-
cluded. Generally, the performance on long-distance dependencies is only slightly
below the performance on local relations, which indicates that our approach to
treating long-distance dependencies is successful. We discuss this approach in de-
tail in chapter 6.

While the general parsing results can be compared to other approaches (see
following subsections), it is difficult to compare our results on long-distance de-
pendencies, for two reasons. First, most of the published results are on parts of the
Penn Treebank. Second, due to the GREVAL annotation we can only give selective
figures, and not always both precision and recall. Only some authors give selec-
tive evaluations, for example Dienes and Dubey (2003). We juxtapose our results
to their antecedent recovery based on the output of a lexicalised parser (Collins,
1999). We would like to stress that this can at best lead to an indicative compari-



7.2. GREVAL: A standard 500 sentence test corpus 188

R
elation

C
ounts

C
orrect

Precision
R

ecall
in

Penn
Treebank

W
H

-Subject
60

93.8%
73.2%

W
H

N
P-N

P
(row

3)
W

H
-O

bject
7

53.8%
100.0%

W
H

N
P-N

P
(row

3)
A

naphora
ofrel.clause

subject
43

91.5%
68.3%

–
Passive

subject
128

88.9%
80.0%

N
P-N

P
(row

1)
Subject-control

45
84.9%

n/a
N

P-N
P

(row
1)

O
bject-control

5
100.0%

50.0
%

N
P-N

P
(row

1)
m

od
p
a
rt

relation
32

74.4%
n/a

N
P

PR
O

(row
2)

Topicalized
verb-attached

PPs
26

70.3%
n/a

S-S
(row

6)

Table
7.7:E

valuation
ofL

ong-D
istance

D
ependencies



189 7.2. GREVAL: A standard 500 sentence test corpus

Antecedent POS Label Count Description/Example
1 NP NP * 22,734 NP trace

Sam was seen *
2 NP * 12,172 NP PRO

* to sleep is nice
3 WHNP NP *T* 10,659 WH trace

the woman who you saw *T*
(4) *U* 9,202 Empty units

$ 25 *U*
(5) 0 7,057 Empty complementizers

Sam said 0 Sasha snores
(6) S S *T* 5,035 Moved constituents

Sam had to go, Sasha said *T*
7 WHADVP ADVP *T* 3,181 WH-trace

Sam explained how to leave *T*
(8) SBAR 2,513 Empty clauses

Sam had to go, said Sasha (SBAR)
(9) WHNP 0 2,139 Empty relative pronouns

the woman 0 we saw
(10) WHADVP 0 726 Empty relative pronouns

the reason 0 to leave

Table 7.8: The distribution of the 10 most frequent types of empty nodes and their
antecedents in the Penn Treebank (adapted from Johnson 2002). Row numbers in
parentheses indicate cases that are inherently local in our functional DG

son. An overview of the most frequent Penn Treebank empty node and trace types
(chapter 6, table 6.2), is repeated as table 7.8 for reference.

For NP-NP traces (row 1 in table 7.8) Dienes and Dubey (2003) report 74%
precision and 67% recall. Passive subject and control contribute the majority of
NP-NP traces. We report 88% precision and 76% recall for constructing the de-
pendency (which requires both recognising the trace and finding the antecedent).
These values are encouraging, but we omit the difficult task of indexed gerund
recovery, and we use the incomplete subject control recall calculation discussed
above – as a consequence, recall can be expected to be considerably lower on
the identical task. For WHNP-NP traces (row 3 in table 7.8) Dienes and Dubey
(2003) report 91% precision and 75% precision. We have evaluated WH-subjects
and WH-objects, which completely or almost completely cover WHNP-NP traces.
We report 87% precision and 75% recall. While these numbers cannot be directly
compared, we are confident that they show that the performance of our approach is
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Pro3Gres
Subject Object PP-Attachment

Precision 92% 85% 77%
Recall 78% 82% 69%

Lin 1998 (on the whole Susanne corpus)
Subject Object PP-attachment

Precision 89% 88% 78%
Recall 78% 72% 72%

Table 7.9: Comparison of Pro3Gres to Lin’s MINIPAR

good.

7.2.4 Comparison to Lin’s MINIPAR

The results of the parsing evaluation that we have made can be compared to Lin
(1998), although Lin gives results for the whole Susanne corpus. The comparison
is shown in table 7.9. Results for subject and object are slightly better, results for
PP-attachment slightly worse when using Pro3Gres.

7.2.5 Comparison to Carroll and Briscoe’s RASP

Carroll and Briscoe have evaluated their own parser, RASP, with their own GREVAL
evaluation scheme in Carroll and Briscoe (2002) and Carroll, Minnen, and Briscoe
(2003) (see figure 7.1). Carroll, Minnen, and Briscoe (2003) reports the numbers
shown in table 7.10. The plus symbols indicate the level in the hierarchy.

The relations in bold are the relations that we have evaluated: the terminals
in the GREVAL hierarchy, except the relations that we do not express (xmodc,
xsubjc, and csubjc), and except for xcomp and ccomp, where we have evaluated
on the pre-terminal clausalc relation, since we do not make a distinction between
clausal relations with or without explicit subject.

In order to compare to this evaluation, we partly used the mapping presented
in 7.2.1, and we partly needed additional pre- and post-processing, as we explain
in the following.

For subj, the mapping discussed in subsection 7.2.1 (see figure 7.2) is used.
Mapping for obj is almost one to one, the one difference being that we had to assign
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Clausal



sentobj OR
obj(with copular verb) OR
pobj(with copular verb) OR
predadj

↔ xcompc OR
ccompc

—
Legend:
xcompc=clausal complement, control
xmodc=clausal modifier, control
ccompc=clausal complement, overt subordinate subject

Figure 7.4: Mapping for the preterminal clausalc relation

RASP Pro3Gres
Relation P R Precision Recall

% % % Counts % Counts
dependent incl. detmod & aux – – 84.5 4473/5292 71.9 4473/6221
dependent 75 75 81.1 3113/3840 66.0 3113/4716
+mod 74 70 84.3 1486/1763 57.2 1486/2599
++ncmod 78 73 84.4 1434/1699 60.0 1434/2391
++xmod 70 52 – – –
++cmod 67 48 81.3 52/64 25.0 52/208
+arg_mod 84 41 79.1 19/24 47.5 19/40
+arg 77 84 78.3 1608/2053 77.4 1608/2077
++subj 84 88 88.9 865/973 79.0 865/1095
+++ncsubj 85 88 88.9 865/973 79.0 865/1095
+++xsubj 100 40 – – –
+++csubj 14 100 – – –
++comp 70 79 68.8 743/1080 75.7 743/982
+++obj 68 79 75.8 454/599 78.0 454/582
++++dobj 86 84 84.0 340/405 83.1 340/409
++++obj2 39 84 90.0 9/10 56.3 9/16
++++iobj 42 65 57.1 105/184 66.9 105/157
+++clausal 73 78 60.1 289/481 72.3 289/400
detmod – – 93.5 1018/1089 90.6 1018/1124
aux – – 94.2 342/363 89.8 342/381

Table 7.10: RASP evaluation results compared to Pro3Gres
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copular verb complements to xcompc (see chapter 5). Mapping for obj2 is one to
one. The arg_modc relation can be approximated by filtering all passive verbs
that are introduced by the preposition by. Such a simple approach overgenerates,
including local and temporal by-phrases, which leads to the expected low precision,
while recall outperforms RASP.

The mapping that we use for the pre-terminal clausalc relation is given in
figure 7.4. For cmodc we use a very coarse approximation. A large subset of cmodc

are relative clauses, which can be clearly identified. Since relative clauses are only
a subset, we get very poor recall. The many cmodc that are expressed by a sentobj
relation cannot be easily recognised. They affect the precision of the clausalc
relation, to which the majority of sentobj relations correspond. The relations that
we do not express have low frequency (5 xsubjc, 5 csubjc, 128 xmodc). For the
top node in the GREVAL hierarchy, dependent, we give two numbers. The first
one does not include detmodc and auxc, for which Carroll, Minnen, and Briscoe
(2003) does not report values. The second number includes detmodc and auxc.

There are two prominent reasons why some relations are difficult to map: first,
we do not express relations that occur inside chunks. Second, we do not make a
distinction between PP arguments and adjuncts. We describe our pre- and post-
processing implementation to approximate these relations in the following.

Relations inside Chunks The following GREVAL relations often occur inside
chunks:

1. detmodc (modification by determiner) typically occurs inside a noun chunk

2. ncmodc (non-clausal modification): many types of non-clausal modifica-
tion, specifically adjectives and non-head nouns, occur inside noun chunks.

3. auxc (auxiliary) typically occurs inside verb chunks

We have implemented a pre-processing module into Pro3Gres that recovers
relations inside chunks. This module is called between tagging and parsing. The
module is rule-based, but has a statistical component. It is based on the following
assumptions.

1. Generally, all non-head words in a chunk modify the head. There are four
exceptions to this rule:

• In verb chunks, every verb modifies the succeeding verb (example:
would have been going).
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Relation P% R% Counts Correct
detmod 93.5 90.6 1018
ncmod 83.1 67.9 1080
aux 94.2 89.8 342

Table 7.11: Percentage and absolute values for chunk-internal relations

• If a noun chunk contains an adjective and more than one noun, the
adjective modifies the succeeding non-head noun if it is seen more of-
ten before the non-head noun lemma than the head noun lemma in the
British National Corpus (example: conventional forces strengthening).

• If a noun chunk contains more than two nouns, the frontmost noun
modifies the succeeding non-head noun if it is seen more often before
the non-head noun lemma than the head noun lemma in the British
National Corpus (example: Eisenhower administration effort).
• If a noun chunk contains more than two proper names, every proper

name modifies the succeeding proper name (example: Fulton County
Grand Jury).

2. Generally, the modification type deterministically follows from the part-of-
speech tag of the head and the modifier. There is one exception.

• Words that can be determiners or adjectives, for example several, many,
few, one are assigned a detmod relation to the head noun if they occur
as the frontmost word in the chunk, and a ncmod relation otherwise.

Using the Ratnaparkhi tagger, we get the performance shown in figure 7.11.
ncmod performs relatively poorly. There are several important sources of errors.
First, the statistical component often makes errors due to sparse data. For example,
in automobile title law, the counts are too low. Second, adverbs are included in
the verb chunk, although adverbs in copular verb chunks typically modify the verb
complement. For example generally in [was generally] favourable is prevented
from modifying the predicative adjective favourable. Third, very long base NPs
contain very many ncmod relations, but are also at highest risk of being chunked
incorrectly. The ncmod relation is thus much more affected by chunking errors
than the detmod relation.

PP arguments and adjuncts disjunction Merlo (2003) and Merlo and Esteve Fer-
rer (2006) have shown that there is a small correlation between attachment and ar-
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Relation P% R% Counts Correct
iobj 57.1 66.9 105
ncmod 78.7 44.2 354

Table 7.12: Percentage and absolute values for the PP-attachment argu-
ment/adjunct distinction

gumenthood. In a 4-way distinction peformance is up to 3 percent higher than if the
attachment ambiguity is resolved first, and the argument/adjunct ambiguity after-
wards. We miss out on this generalisation by using a post-processing approach that
classifies attached PPs as arguments (iobjc) or as adjuncts (ncmodc). The task is
problematic because inter-annotator agreement is low, and because the Penn Tree-
bank does not provide reliable training data. We use the conservative approach of
counting verbal PP-attachments with the functional label CLR as arguments, all
others as adjuncts. We get the results in table 7.12. ncmod recall is most seriously
affected by the bidirectional mapping, which in this case marks all verbal adjunct
PP-attachments as incorrect.

We can conclude that we perform slightly better on chunk-external relations
except clausal relations, and slightly worse on chunk-internal relations than RASP.
We can also conclude that we have higher precision than RASP, but lower recall.
The clausal relation is seriously affected by the very coarse post-processing that we
used. Especially recall is affected by the fact that Pro3Gres does not express some
of the distinctions made, and very coarse approximations have to be used. On a
more subjective level, we would like to conclude that the fact that our performance
at the underspecified subordinate clause level in table 7.2 is much higher than our
and Carroll’s performance for highly specified relations indicates that current tech-
nology is not mature yet to express this fine-grained level of specificity, that our
robust, underspecifying approach may be appropriate for many NLP tasks.

7.2.6 Comparison to Buchholz, Charniak, and Collins, according to
Preiss

Preiss (2003) is a comprehensive evaluation of statistical parsers according to the
GREVAL evaluation scheme. The tested parsers are Collins (1999), Charniak
(2000), Buchholz (2002), and Briscoe and Carroll (1993). The latter is a version
of RASP (Carroll, Minnen, and Briscoe, 2003). In her evaluation of RASP, Preiss
(2003) partly reports lower values than Carroll, Minnen, and Briscoe (2003). This
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Buchholz Charniak Collins 1 Collins 2 Pro3Gres
Relation P % R% P% R% P% R% P% R% P% R%
detmod 92.4 90.9 90.2 87.5 92.1 89.1 92.1 88.8 93.2 90.3
ncmod 66.7 51.6 79.8 46.3 81.5 47.4 81.1 47.3 84.4 60.0
aux 93.7 89.8 89.8 83.4 87.0 86.1 89.9 86.6 94.2 89.8
arg_mod 75.7 68.3 78.1 60.1 82.9 70.7 82.9 70.7 79.1 47.5
ncsubj 85.8 72.9 81.8 70.1 79.2 66.0 81.3 69.5 88.9 79.0
dobj 88.4 76.5 84.4 75.5 86.2 74.6 84.9 75.3 84.0 83.1
obj2 46.1 31.6 61.5 42.1 81.8 47.4 61.5 42.1 90.0 56.3
iobj 57.8 51.9 27.5 67.1 27.1 69.6 27.0 70.3 57.1 66.9

Table 7.13: Preiss’s precision (P) and recall (R) evaluation results of Buchholz,
Charniak, and Collins, compared to Pro3Gres

raises doubts about Preiss’s mapping function. Unfortunately, not much is said
about the mapping function, except that her evaluation software produces some
different results, such as not expanding conjunctions. Further clarifications would
be needed. The comparison of her results to Pro3Gres is shown in table 7.13.

Although these results are very encouraging, with Pro3Gres performing best
on all relations except arg_mod, it is not clear how reliable they are, due to the
shortcomings of Preiss’s presentation.

7.2.7 Comparison to Collins’s Model 1

As a consequence of our doubts about Preiss (2003), we have performed our own
evaluation of Collins’s Model 1 (Collins, 1999) on the GREVAL 500 sentence
corpus and compared the results to Pro3Gres. We have used the Ratnaparkhi tagger
(Ratnaparkhi, 1996) for preprocessing, with the same parameters as for Pro3Gres.
Parsing with Collins’s Model 1 is an order of magnitude slower than with Pro3Gres.

We have applied the Treebank patterns described in chapter 6 to the output
of Collins’s Model 1 parser. Some of the patterns needed to be adapted, so that
they do not depend on functional labels or long-distance dependencies, which are
not expressed in Collins’s parser output. An example of such a relation is the subj
relation, where this shortcoming entails that, for example, control relations are nec-
essarily lost. In other relations, the original extraction patterns could be kept, for
example in the PP-attachment relations. In this case, long-distance relations such
as fronted PPs are equally lost for our Pro3Gres training and in the Collins parser
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output. But since fronted PPs are annotated in the GREVAL corpus and often
parsed correctly by Pro3Gres, a decrease in recall can also be expected, especially
for verb-PP attachment, because fronted PPs normally modify the verb. An addi-
tional modification was necessitated by the fact that Collins attaches punctuation
to arbitrary constituents.

Evaluation results are given in table 7.14. We use the mapping scheme pre-
sented in subsection 7.2.1 and illustrated in figure 7.2. While the precision values
are similar, recall values are considerably lower for the Collins Parser. This is partly
due to the following two reasons. First,Collins does not express long-distance de-
pendencies: out of the 892 subjects reported by Pro3Gres on the GREVAL corpus,
58 are control subjects and 44 are resolved relative pronouns. More than 10% of
all subject relations are thus long-distance dependencies and necessarily left unex-
pressed in Collins. This explains over two thirds of the recall loss for the subject
relation in comparison to Pro3Gres. Still, Pro3Gres outperforms Collins Model 1
also on the local subjects. Other relations are also affected by the lack of long-
distance dependencies, though to a lesser degree. For example, 34 of the reported
494 verb-PP attachment relations are fronted PPs. Second, there are parsing errors
across the subtrees: Whenever a subtree involved in a dependency relation con-
tains an error, the risk that the extraction patterns cannot find the dependency is ex-
tremely high, as Johnson (2002) stresses. Relations across more subtrees are more
seriously affected, which explains that difference is bigger in the PP-attachment
relations than in the subject or object relation. We would like to point out that
there is the potential problem that there is no way to guarantee that the patterns
we have devised have full recall. Although we have checked the output carefully,
some correct parses may escape unmapped. We can be confident that its effect is
far smaller than the reported recall performance difference between Collins Model
1 and Pro3Gres.

The conversion from trees to syntactic dependencies is complex and deliv-
ers worse results when based on Collins Model 1 than when using Pro3Gres di-
rectly. Functional dependencies are closer to predicate-argument structures and
shallow semantic structures and thus a more suitable level for applications that
need such structures, such as text mining, answer extraction, information retrieval,
and knowledge management generally. Pro3Gres directly delivers functional de-
pendencies, in an order of magnitude less time then Collins.
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Dependency Type Description
AMOD Modifier of adjective or adverb (phrase adverbial)
DEP Other dependent (default label)
NMOD Modifier of noun (including complement)%
OBJ Object
P Punctuation
PMOD Modifier of preposition (including complement)
PRD Predicative complement
ROOT Dependent of special root node
SBAR Head verb of subordinate clause dependent on complementizer
SBJ Subject
VC Verb chain
VMOD Modifier of verb

Table 7.15: Nivre (2006) Dependency Types

7.3 Tentative Comparison to Nivre’s MaltParse

The set of dependencies used only contains 12 dependency types, so that it ap-
pears slightly less fine-grained than ours, and considerably less fine-grained than
GREVAL (Carroll, Minnen, and Briscoe, 2003).

7.3.1 Comparison Across Different Corpora

Nivre (2006b) also reports selective evaluations on each dependency type. Nivre
(2006b) gives a detailed evaluation of his parser. A comparison can only be indica-
tive, because he uses a different evaluation corpus, Penn Treebank section 23. The
set of dependency types, according to Nivre (2006b), is shown in table 7.15.

The dependency types are derived form the Penn Treebank as follows. Collins
(1999)’s complex labels <mother (M), head (H), daughter (D), direction> are used
as input and converted into a single label r. In order of descending priority, the
rules are as follows.

1. if D is a punctuation category, r = P.

2. if D contains the function tag SBJ, r = SBJ.

3. if D contains the function tag PRD, r = PRD.
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4. if M = VP, H is a part-of-speech tag and D = NP (without any function tag),
r = OBJ.

5. if M = VP, H is a part-of-speech tag and D = VP, r = VC.

6. if M = SBAR and D = S, r = SBAR.

7. if M = VP, S, SQ, SINV or SBAR, r = VMOD.

8. if M = NP, NAC, NX or WHNP, r = NMOD.

9. if M = ADJP, ADVP, QP, WHADJP or WHADVP, r = AMOD.

10. if M = PP or WHPP, r = PMOD.

11. Otherwise, r = DEP.

This mapping is arguably simplistic (see, e.g. Samuelsson (2007)) and less
elaborate then ours, which is listed in the appendix. More research addressing
mapping questions is needed.

We give a few examples of the linguistic errors and inconsistencies that such
a mapping introduces. This list is not meant to be complete or representative,
but reflects a few cases that are obvious when browsing the gold standard corpus
provided in the CoNLL-XI shared task (Nivre et al., 2007).

• Adjuncts as Objects: Nouns with adjunct function are very often erroneously
attached as objects. In But while the New York Stock Exchange did n’t fall
apart Friday as the Dow Jones Industrial Average plunged 190.58 points the
adjuncts Friday and points are both labelled OBJ. Adjuncts are not consis-
tently mislabelled, however. In Shares of UAL, the parent of United Airlines,
were extremely active all day Friday, the adjunct Friday is correctly labelled
as VMOD (verbal modification)

• Indirect Objects The label IOBJ exhibits the same error. In Big Board Chair-
man John J. Phelan said yesterday the circuit breaker “ worked well me-
chanically. ... yesterday is labelled as IOBJ. The majority of noun labelled
IOBJ are direct objects, only few are really indirect objects. In ... he has
had trouble finding stocks he likes. the object trouble is labelled IOBJ. This
error is potentially triggered by the error that finding is attached to the verb
had instead of the expected noun trouble. For the IOBJ label, the mapping
generally introduces more errors than correct results.
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Dependency Type Occurrence Precision Recall
AMOD 2072 80.7 % 76.7 %
DEP 259 56.5 % 30.1 %
NMOD 21002 91.1 % 90.8 %
OBJ 1960 86.5 % 76.7 %
PMOD 5593 87.7 % 89.5 %
PRD 832 75.9 % 71.8 %
ROOT 2401 78.8 % 86.4 %
SBAR 1195 87.1 % 85.1 %
SBJ 4108 90.6 % 88.1 %
VC 1771 93.4 % 96.6 %
VMOD 8175 76.5 % 77.1 %
Total 49368 86.3 % 86.3 %

Table 7.16: Nivre (2006) Evaluation Results

• Parentheticals The status of parentheticals is unclear

• Internal structure of noun chunk

• Status of infinitive clauses

• Attachment of punctuation The attachment of punctuation is partly arbitrary.

• verb-chain attachment

Mapping is an error-prone task in principle and usually not possible in a loss-
free fashion. Our answer to the problem of mapping the Penn Treebank to depen-
dency is to use an involved, linguistically motivated mapping that has very high
precision but slightly incomplete recall, and that does not map all structural con-
figurations. This leads to a mapping that delivers reliable relations but not fully
connected trees.

The reported labelled attachment results are shown in table 7.16. If we assume
that subject and object dependency types are comparable, we get similar results,
although Nivre (2006b) is better at subject recall, and we are better at object re-
call. Nivre’s NMOD relation comprises our noun-PP attachment modpp, and
additionally our chunk-internal detmod and ncmod relations. At first sight, with
a precision of 88.2% on this set of relations we seem to perform worse. There
is an important difference in the annotation of chunk-internal modifiers, however.
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a.

the New York Stock Exchange
�
ncmod

�

ncmod

�
ncmod

�

detmod

b.

the New York Stock Exchange
�
ncmod

�

ncmod

�

ncmod

�

ncmod

Figure 7.5: Semantic and syntactic dependency annotation of New York Stock Ex-
change

While GREVAL (Carroll, Minnen, and Briscoe, 2003) uses a semantic annota-
tion in which New York Stock Exchange is annnotated as in figure 7.5 a) – as we
have discussed in subsection 7.2.5 – Nivre derives and uses the cascading anno-
tation shown in 7.5 b) that always leaves the semantic dependencies underspeci-
fied. Nivre’s V MOD relation corresponds to our pobj and clausal relations. We
achieve similar precision (74.6 %), while recall is difficult to establish due to the
GREVAL annotation scheme, although on PP attachment and clausal relations we
generally get a slightly lower recall. Nivre’s PMOD relation corresponds to our
prep relation, where we achieve similar precision (89.6%) and slightly lower recall
( 82.3%). Nivre’s V C relation corresponds to our aux relation, where we achieve
similar precision (94.2%) and slightly lower recall ( 89.8%). We can conclude that,
as a tendency, we seem to get similar precision at slightly lower recall. A major
reason for lower recall is that we do not always get a full parse.
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7.3.2 Comparing with the same Corpus: Participation in CoNLL-XI
Shared Task

An opportunity to compare Pro3Gres to MaltParse and many other dependency
parsers was provided by the recent CoNLL 2007 shared task on on dependency
parser domain adaptation (Nivre et al., 2007) in which we participated (Schneider
et al., 2007). We have achieved average results in the CoNLL domain adaptation
track open submission (Marcus, Santorini, and Marcinkiewicz, 1993a; Johansson
and Nugues, 2007; Kulick et al., 2004; MacWhinney, 2000; Brown, 1973). Two
domains were used for adaptation: chemical texts (Kulick et al., 2004) and child
language (MacWhinney, 2000; Brown, 1973). The performance of the parser is se-
riously affected by mapping problems to the particular dependency representation
used in the shared task, which is a representation that is identical or very close to
the one used in (Nivre, 2006b).

Domain Adaptation Based on our experience with parsing texts form the biomed-
ical domain, we have used the following two adaptations to the domain of chem-
istry.

(Hindle and Rooth, 1993) exploit the fact that in sentence-initial NP PP se-
quences the PP unambiguously attaches to the noun. We have observed that in
sentence-initial NP PP PP sequences, also the second PP frequently attaches to
the noun, the noun itself often being a relational noun. We have thus used such
sequences to learn relational nouns from the unlabelled domain texts.

Multi-word terms, adjective-preposition constructions and similar domain-specific
expressions have strong collocational force. We have thus used the collocation ex-
traction tool XTRACT (Smadja, 2003) to discover collocations from large domain
corpora. Since the tagging quality of the Chemistry testset is high, the impact of
multi-word term recognition was lower than the biomedical domain when using a
standard tagger, as we have shown in (Rinaldi et al., 2007).

For the CHILDES domain, we have not used any adaptation. The hand-written
grammar fares quite well on most types of questions, which are very frequent in
this domain. In the spirit of the shared task, we have not attempted to correct tag-
ging errors, which were frequent in the CHILDES domain. We have restricted the
use of external resources to the hand-written, domain-independent grammar, and to
WordNet. Due to serious problems in mapping our LFG f-structure based depen-
dencies to the CoNLL representation, much less time than expected was available
for the domain adaptation.
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deprel gold correct system recall (%) prec. (%)
ADV 366 212 302 57.92 70.20
AMOD 87 8 87 9.20 9.20
CC 11 0 0 0.00 NaN
COORD 402 233 342 57.96 68.13
DEP 9 0 0 0.00 NaN
EXP 2 0 0 0.00 NaN
GAP 14 0 0 0.00 NaN
IOBJ 3 0 0 0.00 NaN
LGS 37 0 0 0.00 NaN
NMOD 1813 1576 1763 86.93 89.39
OBJ 185 146 208 78.92 70.19
P 587 524 525 89.27 99.81
PMOD 681 533 648 78.27 82.25
PRN 34 13 68 38.24 19.12
ROOT 195 138 190 70.77 72.63
SBJ 279 217 296 77.78 73.31
VC 129 116 136 89.92 85.29
VMOD 167 116 149 69.46 77.85
unknown 0 0 287 NaN 0.00

Table 7.17: Prec.&recall of DEPREL

Our results: We have reported the following results: Labeled attachment score:
3151 / 5001 * 100 = 63.01, unlabeled attachment score: 3327 / 5001 * 100 =
66.53, label accuracy score: 3832 / 5001 * 100 = 76.62. These results are about
10 % below what we typically obtain when using our own dependency represen-
tation or GREVAL (Carroll, Minnen, and Briscoe, 2003), a deep-syntactic anno-
tation scheme that is close to ours. Our mapping was quite poor, especially when
conjunctions are involved. Also punctuation is attached poorly. 5.7 % of all depen-
dencies remained unmapped (unknown in the figure). We give an overview of the
the relation-dependent results in figures 7.17 and 7.18. Relations between heads
of chunks, which are central for predicate-argument structures which Pro3Gres
aims to recover, such as SBJ, NMOD, ROOT, perform better than those for which
Pro3Gres was not originally designed, particularly ADV, AMOD, PRN, P. Perfor-
mance on COORD was particularly disappointing.

We have obtained results slightly above average on the CHILDES domain,
although we did not not adapt the parser to this domain in any way (unlabeled at-
tachment score: 3013 / 4999 * 100 = 60.27 %). The hand-written grammar, which
includes rules for most types of questions, fares relatively well on this domain since
questions are rare in the Penn Treebank (see (Hermjakob, 2001)).

We have learnt from our participation that mapping to different representations
is an often underestimated task (see e.g. Crouch et al. (2002)) and that a discus-
sion of different representations possibly leading to a standardisation is vital. We
believe that mapping problems between different representations would be smaller
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deprel gold correct system recall (%) prec. (%)
ADV 366 161 302 43.99 53.31
AMOD 87 5 87 5.75 5.75
CC 11 0 0 0.00 NaN
COORD 402 170 342 42.29 49.71
DEP 9 0 0 0.00 NaN
EXP 2 0 0 0.00 NaN
GAP 14 0 0 0.00 NaN
IOBJ 3 0 0 0.00 NaN
LGS 37 0 0 0.00 NaN
NMOD 1813 1392 1763 76.78 78.96
OBJ 185 140 208 75.68 67.31
P 587 221 525 37.65 42.10
PMOD 681 521 648 76.51 80.40
PRN 34 12 68 35.29 17.65
ROOT 195 138 190 70.77 72.63
SBJ 279 190 296 68.10 64.19
VC 129 116 136 89.92 85.29
VMOD 167 85 149 50.90 57.05
unknown 0 0 287 NaN 0.00

Table 7.18: Prec.&recall of DEPREL+ATTACHMENT

if one used a dependency representation that maximally abstracts away from form
to function, such as (Carroll, Minnen, and Briscoe, 2003). Our performance on
the CHILDES task, where we did not adapt the parser at all, indicates that hand-
written, carefully engineered competence grammars may be relatively domain-
independent while performance disambiguation is more domain-dependent.

7.4 Evaluation on Biomedical Term-Annotated Corpora

In order to test Pro3Gres in one of its application areas, we have evaluated it on
texts from the biomedical domain. We have evaluated Pro3Gres on texts form
the biomedical domain with 3 questions in mind. First, biomedical texts are an
important field of application for Pro3Gres (see e.g. Rinaldi et al. (2006) or Weeds
et al. (2005)), so that its usefulness depends on the performance. Second, we
wanted to test how the Pro3Gres parser performs over domains markedly different
from the training corpus. Third, we wanted to test whether terminology is the key
to a successful parsing system, and to assess the impact of tagging and chunking
errors.
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7.4.1 Evaluation on 100 Random Sentences from the GENIA Corpus

The parser has been applied to the GENIA corpus (Kim et al., 2003b), 2000 MED-
LINE abstracts of more than 400,000 words describing the results of biomedical
research. GENIA is annotated for multi-word terms. This includes information
on where a multi-terms starts and where it ends. Multi-word term boundaries can
be understood as base NP boundaries, thus delivering near-perfect chunking for
domain terms.

GENIA presents very technical and complex language: average sentence length
is 26.5 words, opposed to 21.2 for the Penn Treebank. The most striking charac-
teristic of this domain is the frequency of multi-word terms which are known to
cause serious problems for NLP systems (Sag et al., 2002; Dowdall et al., 2003).
The token to chunk ratio (NPs = 2.3 , VPs = 1.3, number of tokens divided by
the number of chunks) is unusually high. Also the complexity of PPs is a striking
characteristic of this domain. Figure 7.6 provides an example of a typical domain
sentence, showing the tagged parser input and a predicate-argument version of the
parser output for the top-ranked reading.

The GENIA corpus does not include any syntactic annotation (making stan-
dard evaluation more difficult) but approximately 100,000 multi-word terms are
annotated and assigned a semantic type from the GENIA ontology. We wanted to
determine how parsing performance interacts with multi-word term recognition as
well as the applicability and possible improvements to the probabilistic model over
this domain.

100 random sentences from the GENIA corpus have been manually annotated
and compared to the parser output (Rinaldi et al., 2004b). The results are given
in table 7.191. When the terminology information contained in the GENIA corpus
is used (“clean”), parsing results are comparable to, or even better than those on
general text.

This slightly better performance on Genia is partly due to the fact we have an-
notated our test corpus with the Pro3Gres scheme (there are no mapping errors),
and partly due to the fact that the near-perfect tagging and multi-word term infor-
mation is better than automatic chunker output. But it also indicates that the gram-
mar and even the lexicalization is not very domain-specific. Without knowledge
on terminology (“dirty”) parser performance drops considerably due to mistagging
and mischunking on unknown medical domain words.

1This is a small set. Average sentence length is 17.9 chunks, compared to 17.0 in the whole
GENIA, so we can assume that it is fairly representative
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Interaction_NN of_IN nuclear_JJ extracts_NNS from_IN
various_JJ cell_NN lines_NNS and_CC tissue_NN
with_IN the_DT MNP_NN site_NN leads_VBZ to_TO
the_DT formation_NN of_IN fast-migrating_JJ
protein-DNA_JJ complexes_NNS with_IN similar_JJ
but_CC distinct_JJ electrophoretic_JJ mobilities_NNS

prep(’extract#3’, ’of#2’, _, ’(<-)’).
prep(’line#5’, ’from#4’, _, ’(<-)’).e
conj(’tissue#7’, ’and#6’, _, ’(<-)’).
conj(’line#5’, ’tissue#7’, ’and#6’, ’(->)’).
prep(’site#9’, ’with#8’, _, ’(<-)’).
modpp(’line#5’, ’site#9’, ’with#8’, ’(->)’).

modpp(’extract#3’, ’line#5’, ’from#4’, ’(->)’).
modpp(’interaction#1’, ’extract#3’, ’of#2’, ’(->)’).
subj(’lead#10’, ’interaction#1’, _, ’(<-)’).
prep(’formation#12’, ’to#11’, _, ’(<-)’).
prep(’complex#14’, ’of#13’, _, ’(<-)’).
modpp(’formation#12’, ’complex#14’, ’of#13’, ’(->)’).
pobj(’lead#10’, ’formation#12’, ’to#11’, ’(->)’).
prep(’mobility#16’, ’with#15’, _, ’(<-)’).
pobj(’lead#10’, ’mobility#16’, ’with#15’, ’(->)’).

Figure 7.6: A sample sentence illustrating the complexity of noun-modifying PPs, with
its top-ranked grammatical relation annotation
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GENIA “dirty” GENIA “clean”
Relation P% R% P% R%
Subject 83 74 90 86
Object 70 77 94 95
noun-PP 68 64 83 82
verb-PP 67 68 82 84
subord. clause 63 60 71 75

Table 7.19: Evaluation comparing LTChunk chunking (“dirty”) and near-perfect
multi-word knowledge (“clean”) on GENIA corpus

This indicates that base phrase parsing is more domain-specific than parsing
between these base phrases. This entails that taggers and chunkers or base-phrase
rules for parsers need to be adapted more to a given domain than the rules for
parsing between base phrases, that parsing between base phrases as Pro3Gres does
is quite domain-independent and robust.

We have added one domain-specific extension for parsing texts from the biomed-
ical domain. Pro3Gres failed to attach more than one PP to relational nouns from
the domain, such as phosphorilation, triggering or down-regulation. Based on the
fact that sentence-initial <NP PP*> sequences are typically unambiguous (Hindle
and Rooth, 1993), we have added an unsupervised module that learns which nouns
are typically allowed to be modified by several PPs. This extension explains the
high noun-PP attachment recall.

7.4.2 Evaluation with the Stanford Dependency Scheme on 900 BioIn-
fer sentences

Haverinen et al. (2008) have mapped the output of Pro3Gres to the Stanford depen-
dency scheme and evaluated the parser’s performance. The Stanford scheme (de
Marneffe, MacCartney, and Manning, 2006) is a recent extension of Carroll, Min-
nen, and Briscoe (2003) and is a widely used dependency representation. Haver-
inen et al. (2008) have evaluated the output of Pro3Gres after the automatic con-
version to the Stanford scheme. They report a total F-score of 74.3% on the 900
sentence BioInfer corpus (Pyysalo et al., 2007). They conclude that Pro3Gres has
state-of-the-art performance.
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7.4.3 Task-Oriented, Practical Evaluation of Pro3Gres relation ex-
traction

The interest of an application of Pro3Gres to the biomedical domain lies in the
discovery of domain specific relations, such as “Protein activates Gene”. Most
of the NLP techniques applied to the domain of molecular biology focus on the
discovery of entities, such as genes and proteins, (see for instance Ananiadou and
Tsujii (2003)). However there are also interesting applications aiming at detecting
syntactic and semantic relations among those entities. Examples of systems aiming
at detecting relations are the following.

Craven and Kumlien (1999) identifies possible drug-interaction relations be-
tween proteins and chemicals using a “bag of words” approach applied to the sen-
tence level. Ono et al. (2001) reports on extraction of protein-protein interactions
based on a combination of syntactic patterns. Friedman et al. (2001) describes a
system (GENIES) which extracts and structures information about cellular path-
ways from the biological literature. Pustejovsky et al. (2002) processes titles and
abstracts of MEDLINE articles focusing on relation identification (in particular the
inhibit relation). Gaizauskas et al. (2003) uses a template-based Information Ex-
traction approach, focusing on the roles of specific amino-acid residues in protein
molecules.

In order to discover domain specific relations we believe that an accurate de-
tection of predicate-argument relations is essential. We have asked domain experts
to evaluate the quality of the extracted relations, so far focusing on triples of the
form (predicate - subject - object).2 The analysis of the whole GENIA corpus re-
sulted in 10072 such triples (records). For the evaluation of biological relevance
we selected only the records containing the following predicates: activate, bind and
block. This resulted in 487 records. The extraction algorithm aims at maximally
expanding the arguments of the predicate, following all their dependencies. Each
argument is then assigned a type (a concept of the GENIA Ontology), based on
its head. The type assignment depends on the manual annotation performed by the
GENIA annotators, so we have taken it as reliable and have not further evaluated it.
We then removed all records where a type had not been assigned to either subject
or object: this left 169 fully qualified records.3 This remaining set was inspected
by a domain expert.

2This evaluation has been performed in collaboration with Biovista (http://www.
biovista.com/)

3This step is meant to remove records where one of the arguments cannot be clearly assigned
a type. This is generally caused by pronouns, which explains why in the error evaluation (see ta-
ble 7.21) the number of pronouns appears so low.
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A first evaluation was based on assigning a simple key code to each record: ‘P’
for positive (biologically relevant and correct, 53 cases), ‘Y’ for acceptable (bio-
logically relevant but not completely correct, 102 cases) and ‘N’ (not biologically
relevant or seriously wrong, 14 cases). This result was considered encouraging as
it showed 91.7% of relevant records.

We then asked the expert to evaluate in detail. In this second evaluation the
expert had to evaluate each argument separately and mark it according to the fol-
lowing codes:

• [Y] the argument is correct and informative

• [N] the argument is completely wrong

• [Pr] the argument is correct, but it is a pronoun, and it would need to be
resolved to be significant (e.g. “This protein”).

• [A+] the argument is “too large” (which implies that a prepositional phrase
has been erroneously attached to it)

• [A-] the argument is “too small” (which implies that an attachment has been
omitted)

In table 7.20 we show as an example the evaluation of the following sentences:

178. Interleukin-2 ( IL-2 ) rapidly activated Stat5 in fresh PBL, and Stat3 and
Stat5 in preactivated PBL.

807. Thus, we demonstrated that IL-5 activated the Jak 2 -STAT 1 signaling
pathway in eosinophils.

5212. Spi-B binds DNA sequences containing a core 5-GGAA-3 and activates
transcription through this motif.

16919. The higher affinity sites bind CVZ with 20- to 50-fold greater affinity,
consistent with CVZ’s enhanced biological effects.

The values of this evaluation are shown in table 7.21. They indicate that the
performance of Pro3Gres is sufficient for the application to this task. The biggest
source of error is over-expansion of the object, plus there was a small but significant
problem in the detection of the subject which we have corrected in the meantime.
Overexpansion (A+) is only a minor problem for an expert searching for interac-
tion between entities, since the reported subject or object does contain the entity
(followed by additional, irrelevant information, typically PPs). Underexpansion
(A-) means that an expert needs to scan the documents along a few words (usually
to the right) to find all the relevant information.
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Y N Pr A+ A-
Subject 146 11 4 6 2
Object 99 1 4 59 6

Table 7.21: Distribution of GENIA parsing errors in the application-oriented evaluation

Despite parsing errors the results can be considered satisfactory, as they show
86.4% and 58.6% correct results in the detection of subjects and objects (respec-
tively). If all overexpanded and underexpanded cases are considered as positive
(excluding only the ‘N’ cases), these results increase to 93.5% and 99.4% (respec-
tively).

7.5 Exploring Precision and Recall Trade-Offs

Although the performance of Pro3Gres is competitive, its output is far from perfect.
This section addresses the question of how much manual interaction is necessary
to obtain perfect analyses, of how much precision can be optimised at the expense
of recall, or vice versa. A scenario where recall can be maximised at the cost
of precision is building up a corpus, where it is much less labour-intense for an
annotator to choose the correct analysis among a relatively short, ordered list than
to annotate from scratch. For an application building up a knowledge base, we
rather want to be almost certain that a given relation is correct. Natural language
redundancy often compensates for recall errors, but precision errors leading to the
assertion of wrong facts to a knowledge base is a more serious problem. This
constitutes a scenario where precision can be maximised at the cost of recall.

The percentages reported for the reference model in subsections 7.5 to 7.8 dif-
fer slightly from those in section 7.2. The reasons are that we have used a slightly
older version of Pro3Gres, that we have used the unidirectional mapping described
in subsection 7.2.2 for PP-attachment, that we have not included modpart in the
evaluation of subjects, and that we have excluded obj2 from the evaluation of ob-
jects. Since the evaluations shown in subsections 7.5 to 7.8 do not compare to other
parsers, but each experiment compares to a version of the parser that is identical
except for the parameters discussed in the experiment, these small differences are
not relevant for the discussion.
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High Recall on Carroll Corpus

80.8
81.4

81.6
81.8

81.9
83.4

83.6
84.1

84.1
84.4

64.9

70.4

73.9
75.2

75.4

86.4

89.9
90.4

91.4
91.4

60 65 70 75 80 85 90 95

100

1 analysis 
m

ax. 2 analyses 
m

ax. 4 analyses 
m

ax. 8 analyses 
m

ax. 16 analyses 

Percent

 Subject
 Object
 noun-PP
 verb-PP

Figure
7.7:

G
raph

ofpercentage
results

ofrecallam
ong

firstN
-ranked

analyses
on

the
G

R
E

VA
L

corpus



213 7.5. Exploring Precision and Recall Trade-Offs
Hi

gh
 R

ec
all

 o
n 

GE
NI

A 
Co

rp
us

86
.6

87
.7

90
.3

91
.3

91
.8

91
.1

91
.1

91
.1

91
.1

91
.1

81
.6

85
.4

91
.8

93
.7

94
.2

83
.3

83
.3

86
.2

86
.2

86
.2

606570758085909510
0

1 
an

aly
sis

 
m

ax
. 2

 an
aly

se
s 

m
ax

. 4
 an

aly
se

s 
m

ax
. 8

 an
aly

se
s 

m
ax

. 1
6 

an
aly

se
s 

Percent

 S
ub

jec
t

 O
bj

ec
t 

no
un

-P
P 

ve
rb

-P
P 

Fi
gu

re
7.

8:
G

ra
ph

of
pe

rc
en

ta
ge

re
su

lts
of

re
ca

ll
am

on
g

fir
st

N
-r

an
ke

d
an

al
ys

es
on

G
E

N
IA



7.5. Exploring Precision and Recall Trade-Offs 214

7.5.1 High Recall Parsing

An annotation task is greatly facilitated if the annotator, instead of being asked
to annotate every sentence manually, can choose from a (relatively short) ranked
list of analyses. Brants and Plaehn (2000) have shown that parser-assisted anno-
tation (in their case an interactive scenario with a shallow parser (Brants, 1999))
greatly increases annotation speed. Also for classical corpus linguistics tasks, op-
timising on recall is desired. While it is important to retrieve most instances of the
investigated phenomenon, a modest amount of manual filtering of results is seen as
acceptable and often unavoidable.

Figures 7.7 and 7.8 show the increase in recall in relation to the length of the
list of analyses. Lists longer than 16 readings of a sentence (which convey 4 2-way
ambiguous relations) were assumed to be prohibitively long for manual scanning.

The subj, obj and the two PP-relations together average above 90% recall in
GENIA, which means that less than one in ten of these relations would need to be
added manually by an annotator.

7.5.2 High Precision Parsing

In order to keep the necessity for intervention of a human annotator during corpus
annotation to a minimum, it is desirable to recognise a maximum number of un-
problematic relations. In an annotation scenario one can report the highest ranked
parse and point out to the human annotator the few difficult and highly ambiguous
relations in a given analysis. Parsing methods that optimise precision while reduc-
ing recall up to an acceptable point are required. A related study on this subject is
Carroll and Briscoe (2002). High-precsion parsing is also important for building
up knowledge databases automatically, where recall deficiencies are often com-
pensated by natural language redundancy, but asserting wrong knowledge arising
from low precision poses a serious problem. The following experiments have been
conducted to improve precision.

Experiment 1: Tagger Agreement Different taggers often make different mis-
takes. We have used two alternative taggers for preprocessing, LTPos (Mikheev,
1997) and Ratnaparkhi’s Maximum Entropy tagger (Ratnaparkhi, 1996). In a sim-
ple experiment, only sentences where both taggers deliver identical tags are used.
Precision increases, but the large cost of decrease in recall is unacceptable, as
shown in table 7.22.
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Experiment 1 Subject Object noun-PP verb-PP
Precision 92.2 95.4 85.6 71.6
Recall 31.5 30.7 23.2 27.8

Table 7.22: Percentage results of Experiment 1: keeping only sentences with identical
tags from two taggers, on the GREVAL corpus on subject, object and PP-attachment rela-
tions

Experiment 2 Subject Object noun-PP verb-PP
Precision 94.1 93.0 73.3 75.4
Recall 76.4 78.8 60.5 80.3

Table 7.23: Percentage results of Experiment2: keeping only agreeing relations aris-
ing from parsing with two taggers, on the GREVAL corpus on subject, object and PP-
attachment relations

Experiment 2: Grammatical Relations Agreement when using different Tag-
gers In order to minimise the loss in recall in the previous experiment, the output
of each tagger is used as input to the LTChunk chunker and the Pro3Gres parser.
Only grammatical relations that are different due to the tagging differences are dis-
carded. The increase in precision is similar to experiment 1 (noun PP-attachment
is slightly worse) while the decrease in recall is much more moderate, as table 7.23
shows.

Experiment 3: Parsing Alternatives Agreement In this experiment, the rela-
tion intersection between the two top ranked analyses is kept. This amounts to
discarding only the most ambiguous relation of any given sentence. The decrease
in recall (table 7.24) is higher than in experiment 2. Mainly the PP-attachment
relations profit, which are often the most ambiguous relations, and which are more
affected by attachment ambiguities than other relations.

Experiment 4: Trust Short Distances Relation spanning short distances are
intuitively thought to be easier for the parser to find. Experiment 4 discards all
relations that are longer than a certain threshold. Length is measured in chunks.
The experiment has been conducted at several distances for the GREVAL corpus
(figures7.9 and 7.10) and for the 100 manually annotated GENIA sentences (figures
7.11 and 7.12).

The results reveal interesting differences between different relation types. For
subj, longer distances are almost as reliable. obj relations are almost exclusively
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Experiment 3 Subject Object noun-PP verb-PP subord. S
GREVAL Precision 92.6 90.1 76.6 76.7 68.2

Recall 76.8 63.6 53.7 67.2 n/a
GENIA Precision 91.1 93.4 87.0 84.2 65.2

Recall 78.1 65.8 68.0 70.5 60.4

Table 7.24: Percentage results of Experiment 3: discarding the most ambiguous relation
in each sentence, for subject, object, PP-attachment and subordinate sentence relations

very short. Subordinate clause relations are difficult and mostly very long, about
20% spanning at least 5 chunks. For envisaged applications, e.g. protein interac-
tion relations, sentence subordination is less important. PP-attachment relations
very strongly depend on distance. This is largely due to the fact that many PP-
attachments across longer distances4 are in competition with intervening other PPs
and thus exponentially lower the baseline5.

When comparing the two evaluation corpora and genres a major difference is
constituted by PP-attachments. The complexity of medical language partly stems
from very complex nouns with embedded PPs (see e.g. fig. 7.6). The noun-
PP-attachment per sentence ratio is 2.1 in our GENIA 100 test corpus and 1.6
in GREVAL. The fact that the performance on GENIA is better than on GREVAL
can largely be explained by our remarks in section 7.5.1.

Experiment 5: Cut low probability parsing decisions In a first attempt, exper-
iments with an increased probability cut-off at parse time were conducted. How-
ever, they had the effect of greatly increasing the amount of partial parses, thus
returning many local analyses that the syntactic parsing context would have disam-
biguated. Precision remained comparable, while recall dropped. In a second ap-
proach, the parsing algorithm remains unchanged, but only relations whose prob-
ability is above a certain threshold are reported. Pro3Gres probabilities express
decision probabilities at each given ambiguous point. Experiment 5 have been
made on the highly ambiguous PP-attachment relations. The results are shown in
figures 7.13 and 7.14 for the GREVAL corpus, and in figures 7.15 and 7.16 for the
GENIA corpus.

4Observe that “longer distances” does not entail a long-distance dependency traditionally ex-
pressed by coindexing or movement, although a considerable portion of the “longer distances” here
are long-distance dependencies, for example fronted PPs attaching to the verb

5(Church and Patil, 1982) describe for PP attachment that a sequence <verb-NP-PP*> with n
PPs has Cn+1 analyses, where Cn+1 is the (n + 1)’th Catalan number. The Catalan number Cn is
defined as 1

n+1

`
2n
n

´
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Precision-corrected Experim

ent 5 on Carroll: Recall Values

65.42
65.29

65.04
65.04

64.79
64.04

62.92
61.55

58.68

44.32
33.46

16.60

85.99
85.99

85.99
85.99

85.99
84.71

84.08

81.53

76.43

59.87

42.68
21.66

80.49
80.49

78.05

75.61
75.61

65.85

63.41

58.54
58.54

19.51
9.76

0.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

Threshold
0.0

Threshold
0.1

Threshold
0.2

Threshold
0.3

Threshold
0.4

Threshold
0.5

Threshold
0.6

Threshold
0.7

Threshold
0.8

Threshold
0.9

Threshold
0.95

Threshold
0.99

Percent

ncm
od_recall

iobj_recall
argm

od_recall

Figure
7.14:

G
raph

ofR
ecallofE

xperim
ent5

on
G

R
E

VA
L



223 7.5. Exploring Precision and Recall Trade-Offs
Ex

pe
rim

en
t 5

 P
re

cis
io

n 
on

 G
EN

IA

84
.5

85
.3

86
.2

87
.4

87
.6

88
.1

88
.2

81
.6

81
.3

79
.8

82
.3

81
.5

80
.3

79
.7

5055606570758085909510
0

Th
re

sh
ol

d 
0.

3
Pr

ec
isi

on
Th

re
sh

ol
d 

0.
4

Pr
ec

isi
on

Th
re

sh
ol

d 
0.

5
Pr

ec
isi

on
Th

re
sh

ol
d 

0.
6

Pr
ec

isi
on

Th
re

sh
ol

d 
0.

7
Pr

ec
isi

on
Th

re
sh

ol
d 

0.
8

Pr
ec

isi
on

Th
re

sh
ol

d 
0.

9
Pr

ec
isi

on

Percent

no
un

-P
P

ve
rb

-P
P 

Fi
gu

re
7.

15
:G

ra
ph

of
Pr

ec
is

io
n

of
E

xp
er

im
en

t5
on

G
E

N
IA



7.5. Exploring Precision and Recall Trade-Offs 224
Experim

ent 5 Recall on GENIA

79
78.1

72.4
70.4

68.6

64.8
64.8

82.7
80.5

71.2

59.7

51.8

45.3
43.9

50 55 60 65 70 75 80 85 90 95

100

Threshold 0.3
Recall 

Threshold 0.4
Recall 

Threshold 0.5
Recall 

Threshold 0.6
Recall 

Threshold 0.7
Recall 

Threshold 0.8
Recall 

Threshold 0.9
Recall 

Percent

noun-PP
verb-PP 

Figure
7.16:

G
raph

ofR
ecallofE

xperim
ent5

on
G

E
N

IA



225 7.5. Exploring Precision and Recall Trade-Offs

Backoff Levels
0 full: head & prep & description noun
1 head & prep & description noun class
2 head & prep
3 / 3.1 head class & prep & description noun
4 / 4.1 head class & prep & description noun class
5 prep & description noun
6 prep
7 NONE

Table 7.25: PP-attachment backoff level legend

MaxEnt-tagged Parsing Subject Object noun-PP verb-PP
Keeping all

Precision 92.6 89.6 76.6 74.4
Recall 81.1 83.9 67.4 89.2

Discarding levels 5 and 6 for non-by-PP-attachment
Precision 92.6 89.6 78.4 74.8
Recall 81.1 83.9 65.3 85.6

Table 7.26: Evaluation of the currently best parser output on the GREVAL corpus
on subject, object and PP-attachment relations, discarding backoff levels 5 and 6
for non-by-PP-attachment

Below threshold values of about 0.5 there is a reasonable trade-off in gained
precision for lost recall. With higher thresholds, precision stagnates while recall
drops off. While there is a clear correlation between noun attachment probability
and correctness, verb attachment less clearly exhibits the expected correlation.

Experiment 6: Informedness and Backoff Levels Better informed decisions,
i.e. decisions that can be made earlier in the back-off process, are expected to be
better. Experiment 6 reveals that this is indeed the case, the difference in precision
is considerably larger than in any of the other experiments. This is a strong indi-
cation that lexicalization is pivotal for disambiguation Experiment 6 has only been
done on GREVAL, and only using the Ratnaparkhi tagger.

After a first inspection of the results it was noticed that verb-PP attachment
with the preposition by still performs very well at late backoff stages. This is due
to the fact that active sentence subjects and passive sentence by-agent counts are



7.5. Exploring Precision and Recall Trade-Offs 226
PP-Attachm

ent Precision Values by Back-off Level
Num

bers of [Noun,Verb] occurrences returned by the parser in angular brackets

100

83.07
85

64.65

30.77

84.62

73.84

76.19

62.16

55.56

50 55 60 65 70 75 80 85 90 95

100

Level 0 [24,26]
Level 2 [254,279]

Level 3 &
 3.1 [21,20]

Level 4 &
 4.1 [99,74]

Levels 5 &
 6 [26,18]

Percent

nounpp
verbpp

Figure
7.17:

G
raph

ofPrecision
ofE

xperim
ent6

on
G

R
E

VA
L



227 7.6. Baseline, Distance Measure, Lexicalisation

Experiments GREVAL GENIA
3,4,5 combined ubject Object noun-PP verb-PP Subject Object noun-PP verb-PP
Precision 92.6 90.1 78.9 80.5 92.4 93.5 87.9 88.1
Recall 75.0 63.4 51.2 67.2 67.3 67.0 66.7 65.5

Table 7.27: Percentage results of Experiments 3, 4 and 5 combined at threshold 0.4 and
distances 1 to 5

not mapped to each other, so that because of the general rarity of passives, counts
are very sparse. But the attachment is not very ambiguous – a passive verb is never
followed by an object – performance is thus quite good. We have therefore re-run
the experiment excluding the preposition by. The result on GREVAL is shown in
graph 7.17. Counts reported by the parser are in square brackets. A description of
the PP backoff levels is in table 7.25.

PP-attachment backoff bevels 5 and 6, where the governor candidate’s head is
dropped, are low-count and performance drops off completely. It may therefore
be beneficial to generally discard them. Applying a filter that discards all level 5
and level 6 PP-attachment relations except for by-PPs to the currently best model
(shown in table 7.2, repeated here) results in the high-precision performance figure
in table 7.26.

Combinations Most of the above high-precision experiments can be combined
in various ways. E.g. combinations of experiment 3, 4 and 5 are reported in tables
7.27 with threshold 0.4 and distances 1 to 5. This sample combination on the
GENIA annotation task allows us to reach about 9 out of 10 precision at 2 out of 3
recall for all reported relations.

7.6 Baseline, Distance Measure, Lexicalisation

In order to assess the difficulty of the task for the statistical disambiguation model,
we have built a baseline system. Then we show how much the two factors in the
model, the distance measure and the lexicalisation, contribute to improving the
performance of the parser. Finally, we discuss questions related to lexicalisation.

7.6.1 The Baseline System

In the baseline system, dependencies can span unlimited distances, subject to the
fact that dependencies are not allowed to cross each other, and lexical information
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is not taken into account. The most left-hand quarter of figure 7.18 shows the
performance, which is, as expected, rather poor. The values for verb-PP-attachment
are especially low because ambiguous attachments get equal weight, which means
that whether a verb- or noun-PP-attachment is ranked as the first parse depends on
chance factors: The CYK algorithm finds the closer noun attachment first, but the
module that finds the best path through a sentence is stack-driven, starting with the
last found analyses and preferring them if all analyses have equal weight, which
leads to a strong preference for verb-PP-attachment.

It would theoretically be possible to extend the grammar to include distance
and lexicalisation information. Wide-coverage lexical information, and especially
distance information are very cumbersome to include in a grammar. The use of
empirical measures is desirable.

7.6.2 The Distance Measure

The distance between a head and a dependent is a limiting factor for the probability
of a dependency between them. Not all relations have the same typical distances,
however. While objects are most frequently immediately following the verb, a PP
attached to the verb may easily follow only at the second or third position, after
the object and other PPs etc. A relation-specific simple MLE estimation is thus
employed to prefer typical distances. Distance is measured in chunks.

Formula 7.1 shows our MLE calculation (see chapter 2): the probability of a
certain Distance across which to span, given the relation R, corresponds to the
corpus count of the instances of relation R that span this distance divided by the
count of all instances of relation R.

P (Distance|R) =
#(R

∧
Distance)
#R

(7.1)

The distance measure leads to a large increase in performance, as shown in the
second leftmost quarter of figure 7.18, which confirms our intuitions. To a lesser
degree, the algorithm’s preference for verb-PP attachment is still apparent. We give
separate values for the two verb-PP relations. Verb-PP arguments profit very much
from distance information, while the by/agent of passive phrases, expressed by the
arg_modc relation, already shows quite good performance in the baseline model,
and hardly improves.

The full model with distance only is the full model without lexicalisation. In
the following we now investigate the lexicalisation model, which is the full model
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without distance measure.

7.6.3 Lexicalisation

The contribution of the distance measure system can be illustrated by comparing
the distance measure system to the full system, and to the full system without the
distance measure (the purely lexicalized system). All these systems are compared
in figure 7.18. Used in combination, a significant increase can be observed in the
full system. This confirms our intuition that the types of information provided
by distance and by lexicalisation are not redundant. The subject relation already
performs well without the statistical model, the object relation profits slightly, the
PP-attachment relations increase very much.

The results are presented in a different arrangement in figure 7.19. The ef-
fects of the interdependence between precision and recall have been eliminated by
showing f-scores only. The groups are arranged by model, so that the increase and
the changes in the increase from model to model become apparent. One can see
that the increase in performance from lexicalisation is bigger than the one form
distance.

The arg_modc recall has not been included, since it is least affected by distance
and lexicalisation. This change has the effect that Verb-PP recall is now dominated
by arguments, and the noun-PP recall is dominated by adjuncts. Since noun-PP
attachments are far more often adjuncts than verb-PP attachments are, noun-PP
precision is also quite strongly dominated by adjuncts. Arguments show strong se-
lectional restrictions, while adjuncts occur in a wide distribution over different gov-
ernors. As a consequence, one would expect lexicalisation to work considerably
better on PP-argument than on PP-adjuncts. On the one hand, this is confirmed
by the bigger increase that verb-PP attachment shows over the baseline, and the
generally better performance on verb-PP attachment. On the other hand, the dif-
ference between the distance model and the lexicalised model is bigger in noun-PP
attachment. This, however, does not indicate that lexicalisation works particularly
well for noun-PP attachment, for two reasons. First, noun-PP performance is still
below verb-PP performance in the lexicalisation model; second, distance is simply
a relatively bad model for noun-PP. Figures 7.9 and 7.11 show that short distances
perform almost as poorly for noun-PP as long distances, in sharp contrast to verb-
PP, where short distances perform very well. A noun does usually not attach across
a verb, but a verb (or a different noun) very often attaches across a noun; a short
distance is therefore no good indication for attachment.
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Lexicalisation and Backing Off

The probability model is backed off across more levels than in Collins and Brooks
(1995), following Merlo and Esteve Ferrer (2006). Before discarding lexical par-
ticipants, semantic classes are also used in all the modelled relations, for verbs
the Levin classes (Levin, 1993) and/or the top Wordnet class of the most frequent
sense, for nouns the top Wordnet class (Fellbaum, 1998), also of the most frequent
sense.

Where Decisions are Taken The backoff decision points for the GREVAL cor-
pus are shown in table 7.28. It reveals that full count decisions, especially in the
case of PP-attachment, are relatively rare. This is due to sparse data, most pro-
nouncedly in noun-PP-attachment, where a Zipfian head noun as well as a Zipfian
description noun (the noun inside the PP) is involved.

The values at level 6 and 7 of verb-PP-attachment are very high because there
are prepositions that are very rarely verb-attaching (e.g. of) and because the Penn
Treebank preposition tag (IN) is also used for complementizers. In these cases,
very low MLE probabilities occur at the preposition-backoff level 6 or 7, in which
case a low non-zero probability is assigned. If aggressive pruning is used, these
values at level 6 and 7 are much lower.

How Important is Lexicalization? We have seen in experiment 6 of section
7.5.1 (figure 7.17) that full lexicalization seems to be pivotal. Decisions taken at
early stages in the back-off chain are far better. Results by (Klein and Manning,
2003) and by (Gildea, 2001) suggest the opposite: partial lexicalisation is as good
as full lexicalisation, suggesting that the earliest levels in the back-off chain are re-
dundant. (Gildea, 2001) compares a bilexical parser (conditioned on the head word
and the dependent word) parser that follows Collins Model 1 (Collins, 1996) to an
equivalent model that is only monolexicalized (conditioned only on the dependent
word). He reports that performance is only half a percent higher for the bilexi-
calized parser. Tested on a domain that differs from the training corpus ((Gildea,
2001) trains on the Treebank and tests on Brown) performance is largely equiv-
alent. Also in experiments that we conducted with Pro3Gres, full lexicalisation
hardly increases performance. More research is needed to answer this question.
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Relation Degree of Lexicalisation Counts
subj 0 full 377

1 verbclass & nounclass 530
2 verb 384
3 noun 41
4 NONE 15

obj 0 full 437
1 verb & nounclass 939
2 verbclass & noun 32
3 verbclass & nounclass 145
4 verb 92
5 noun 40
6 NONE 12

pobj 0 full 124
1 verb & prep & nounclass 2624
2 verb & prep 2631
3 verbclass & prep & noun 337
4 verbclass & prep & nounclass 5004
5 prep & noun 995
6 prep 4762
7 NONE 4747

modpp 0 full 30
1 noun & prep & descnounclass 197
2 nounclass & prep & descnoun 100
3 noun & prep 208
4 nounclass & prep 696
5 prep & descnoun 73
6 prep 227
7 NONE 281

modpart 0 full 0
1 nounclass & verbclass 144
2 verb 45
3 noun 7
4 NONE 11

Table 7.28: Backoff decision points for the Fully Lexicalized, Backed-Off System
on the GREVAL corpus
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Different Semantic Classifications for Backing Off

Originally, Pro3Gres uses Wordnet for nouns and Levin classes for verbs. We have
decided to use Levin Classes because they are situated at the interface level be-
tween syntax and semantics. As an alternative, Wordnet can also be used for verbs.
We have re-run experiment experiment 5 from section 7.5.2, this time comparing
the use of Wordnet or Levin at the corresponding backoff-level. The results on PP-
attachment are shown in figure 7.20. As expected, mainly the verb-PP attachment
relation’s performance changes (there is also an indirect influence on noun-PP at-
tachment, with which verb-PP attachment is typically in competition). Both verb-
PP precision and iobj-recall (which measures verb argument recall) is higher when
using Wordnet. Only the rare argmod relation, which has not been included in the
graph, has lower recall: e.g. 33 out of 41 at 0.1 threshold with Levin compared to
31 out of 41 with Wordnet. Due to the low count this result is not reliable. We can
see that Wordnet verb classes perform better for PP-attachment than Levin classes.
Since Levin classes have considerably lower coverage than Wordnet classes, no
theoretical conclusions should be drawn from this practical result.

7.7 Disambiguation from the Parsing Context

We have illustrated the extent to which the distance model and the lexicalisation
model disambiguate the sentences during parsing, and we have evaluated their per-
formance. There is an additional factor that disambiguates parses in a parsing
approach: parsing itself. In this section we investigate the impact that parsing has
on the performance of discovering syntactic relations.

7.7.1 Parsing Speed, Pruning, and Local Maxima

Parsing speed is an important factor for the practical applicability of parser, and
hence an aspect of its evaluation. Parsing speed largely depends on the pruning
parameters used. In complex real-world sentences, constructing all possible chart
entries can become very time-consuming. It has been shown (see e.g. Brants and
Crocker (2000)) that discarding locally very improbable partial analyses hardly
affects a parser’s performance, because the chance that locally very improbable
analyses become parts of the most probable analysis later is very small.

We have conducted similar experiments. In the experiment that we report here,
we have limited the number of alternatives per span, using a fixed beam search.
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# Span Alternatives 1 2 3 4 5 10
Execution time (secs.) 53 71 82 92 105 149
Subject Precision 92.33 92.77 93.18 93.18 93.18 93.18
Subject Recall 81.27 81.79 81.79 81.79 81.79 81.79
Object Precision 85.49 85.44 85.71 85.71 85.71 85.71
Object Recall 84.65 85.42 85.67 85.67 85.67 85.67
Noun-PP Precision 78.78 78.47 78.22 78.44 78.44 78.49
Noun-PP Recall 65.29 65.66 65.79 65.91 65.91 66.04
Verb-PP Precision 74.89 74.30 74.56 74.56 74.56 74.73
Verb-PP Recall 87.37 87.37 87.37 87.37 87.37 87.37
Subord. Clause Precision 69.15 72.18 73.11 73.11 73.11 73.11
Subord. Clause Recall 66.86 66.86 66.86 66.86 66.86 66.86

Table 7.29: Beam size effects on parsing speed and performance

Even if only one alternative is used, which means that local maxima are deter-
ministically assumed to be global maxima, the performance does not suffer very
much, while parsing speed increases considerably. We have parsed the 500 sen-
tence GREVAL corpus. Execution times are for the whole corpus, in seconds. The
results are summarised in table 7.29. At a maximum of about 5 alternatives, the
improvement flattens out completely.

The subordinate clause relation (sentobj) precision improves 4 percent from
a beam of size 1 to size 10. There are relatively many situations affecting this
relation, especially in relation with zero relative clauses (modpart), a configuration
that can sometimes give rise to a garden path reading. A simple example is the
following sentence (number 303 in the GREVAL corpus).

(112) You want a job guaranteed when you return, I continued my attack.

Locally, the probability that job is the subject of guarantee is higher than the
correct reading in which job is relativised by the participle guaranteed. When using
a beam of size 1, the correct reading is pruned, and a global analysis constructed.
This global analysis expresses the meaning of You want that a job guaranteed
something when you return .... When using a bigger beam, the correct, locally less
likely modpart reading is kept and later becomes part of the globally most prob-
able reading. The parsing context corrects the local paring error. Also the subject
and object relations improve up to a percent between a beam of 1 and 10. An exam-
ple of improvement for the subject relation is also sentence 111, where job becomes
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subject of guarantee. Table 7.29 also illustrates that PP-attachment is largely un-
affected by the parsing context. We mainly get small, random fluctuations for the
PP-attachment relations. This indicates that disambiguation algorithms like Collins
and Brooks (1995) or Merlo and Esteve Ferrer (2006) can also profitably be ap-
plied to the output of a parser or chunker in a post-processing phase.

The parsing times reported in table 7.29 can be further reduced by setting other
pruning parameters, which have been unused for this experiment in order to ex-
clude interactions. The different parameters have been introduced in chapter 2.
Parsing speed for a sentence is a fraction of a second on average. The entire British
National Corpus (BNC) parses in just over 24 hours on the latest fast multi-core
Apple Macintosh server.

The fact that local maxima do not always lead to global maxima are one of the
reasons why Briscoe and Carroll (2002) are sceptical whether shallow parsing can
reach the levels of accuracy of full parsing.

7.7.2 Local Readings Constrain Each Other

We have just illustrated in subsection 7.7.1 that the parsing context corrects sit-
uations in which a locally most likely reading is not globally most likely. There
is a second method by which parsing approaches disambiguate, again by refuting
locally probable readings. Many locally possible readings are ruled out because
they cannot be accommodated with the surrounding readings into a possible global
reading. Let us consider the following example sentence.

(113) Experts fear the virus will spread.

The locally possible object relation with fear as governor and virus as depen-
dent is ruled out because the rest of the sentence cannot be attached, while the
reading in which virus is the subject of a subordinate clause allows the parser to
construct a span covering the entire sentence.

It is difficult to assess this effect of the parsing context exactly, but some indi-
cations can be given. If we restrict the CYK parsing levels (see chapter 2) to only
sentence fragments, structures of a certain maximal length only can be constructed,
thus enforcing a restricted parsing context. The locally most likely readings for the
partial structures of this maximal length are collected by the parse collector and
returned. We have again parsed the 500 sentence GREVAL corpus. Execution
times are for the whole corpus, in seconds. The results of this experiment are
shown in table 7.30. Parsing less than 3 CYK levels is not very interesting, since
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# CYK levels 3 5 7 10 15
Execution time (secs.) 21 41 54 70 74
Subject Precision 88.24 91.39 92.75 92.96 93.91
Subject Recall 71.65 80.75 81.79 81.58 81.79
Object Precision 89.09 85.31 85.44 85.71 85.71
Object Recall 76.47 83.12 85.42 85.67 85.67
Noun-PP Precision 72.39 74.92 78.29 78.82 78.44
Noun-PP Recall 30.21 52.93 62.04 65.66 65.91
Verb-PP Precision 46.63 56.53 68.27 73.77 74.56
Verb-PP Recall 62.12 69.69 80.80 86.86 87.37
Subord. Clause Precision 71.21 67.14 70.67 72.50 73.11
Subord. Clause Recall 35.54 61.44 66.26 66.26 66.86

Table 7.30: Disambiguation from the Context. Maximal span size effects on pars-
ing speed and performance

no PP-attachment has been made. After 15 levels, the improvement has flattened
out completely.

Recall is low when the CYK levels are restricted, for the obvious reason that
structures which are longer than the maximum length cannot be found. But preci-
sion is also considerably lower (except for the object relation), although we have
seen in section 7.5.2 that relations across short distances are generally more re-
liable. This increase in precision gives us an indication of the degree to which
parsing improves the discovery of syntactic relations6. The increase in precision
from 2 CYK levels to 15 levels varies: 2 % for the subordinate clause relation, 5 %
for the subject relation (see example 113), 6 % for noun-PP attachment, almost
30 % for the verb-PP attachment relation. We can see that the parsing contexts
considerably constrain each other. This is a significant advantage of parsing ap-
proaches. The effect on performance is bigger then the correction of local maxima
that wee have discussed in subsection 7.7.1.

6Non-parsing approaches that use a sophisticated context model, for example Buchholz (2002),
model these parsing context restrictions up to a point
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with standard grammar Subject Object noun-PP verb-PP subord. clause
Precision 93.2 86.1 78.4 74.7 73.1
Recall 81.6 85.2 65.9 87.4 66.7
grammar without constraints Subject Object noun-PP verb-PP subord. clause
Precision 72.3 58.8 67.4 68.5 47.8
Recall 60.1 76.7 58.1 84.3 57.8

Table 7.31: Currently best system on the GREVAL corpus with the standard grammar and
the grammar without restrictions compared

7.8 Linguistic constraints

Linguistic knowledge has allowed us to place strong restrictions on the co-occurrence
of different relation types. Verbs that have attached adjuncts cannot attach comple-
ments, since this would violate X-bar constraints. Verbs that have no object cannot
attach a secondary object. The application of dependency rules can often be lex-
cially restricted: for example, only temporal expressions occur as NP adjuncts. We
have formulated constraints based on a long tradition of grammar writing. We have
explained these constraints in detail in chapter 5. Dependency rules specify a head
tag, a dependent tag, sometimes also a head word and or head tag, and the said lin-
guistic constraints. We have created a version of the grammar in which all rules –
except for conjunction, comma, and nchunk rules, which overgenerated massively
– have no linguistic constraints. We have again parsed the 500 sentence GREVAL
corpus. Parsing speed was two orders of magnitude slower due to the search space
explosion. This means that the linguistic constraints have even a bigger impact
than pruning. The performance results are shown in table 7.31, but they should be
interpreted with caution.

One important reason why the performance is so low is that due to inflated
search spaces when restrictions are absent, many sentences created so many chart
entries that they ran into aggressive pruning mode (normally only a small fraction
of sentences do). We had to use default pruning settings in this experiment, other-
wise the parser exited with memory overflow. Aggressive pruning leads to a strong
fragmentation into partial parses, like in the experiment in subsection 7.7.2 above.
A second important reason is that Pro3Gres was not written to be used without
linguistic constraints. Minor relations, for example a subject relation to the right,
or strandprep, relations which are normally constrained to very specific tasks,
overgenerate and lead to absurd results.

Still, we can conclude that linguistic constraints make an important contribu-



7.9. Conclusions 240

tion to the parser’s speed and robustness, and that at least on practical grounds, the
parser owes much of its performance to linguistic constraints.

7.9 Conclusions

We have evaluated Pro3Gres and shown that its performance is very good. We have
shown a detailed comparison of Pro3Gres to RASP (Carroll, Minnen, and Briscoe,
2003). We have shown that we outperform Collins Model 1 (Collins, 1999). We
have reported a tentative comparison to (Nivre, 2006b). We have reported the re-
sults of a task-based practical application evaluation of using Pro3Gres on texts
from the biomedical domain. We have shown that if high-quality recognition of
multi-word domain terms is provided, the parser performs as well on the biomedi-
cal domain as on general text.

We have shown how the parser can be used for applications that need to opti-
mise on precision or on recall. We have compared our full model to a baseline and
shown how the two main factors in our probability estimation, distance and lexi-
calisation, contribute to the performance. We have raised a crucial question that is
still open: how important is lexicalisation?

Concerning the practical applicability of Pro3Gres we have illustrated the speed
of the parser, and how pruning affects parsing speed and performance. We have
given quantitative indications of how much the use of a parsing approach improves
the discovery of syntactic relations, and we have shown the tremendous impact that
linguistic constraints have.



Chapter 8

Conclusions

We have presented a parsing architecture that is fast, robust and efficient enough
to allow users to do broad-coverage parsing of unrestricted texts from different
domains. We have discussed its implementation, Pro3Gres, and shown that its
performance is very good.

8.1 The Cornerstones of Pro3Gres

We have presented five elements that combine to make Pro3Gres a fast, robust, and
high-performance parser. Each of the five elements, which are summarised in the
following, is essential to achieve this goal.

Hand-written Grammar with Linguistic Constraints We have discussed the
hand-written grammar in detail in chapter 5. We have shown that the expense
needed to write a broad-coverage grammar for English is manageable. A hand-
written grammar allows one to model structures that are rare in the training corpus,
for example questions. A hand-written grammar also allows one to place powerful
constraints on the application of rules, for example by restricting the co-occurrence
of dependency types, thereby implementing linguistic principles like subcategori-
sation, X-bar theory, lexical semantics and other non-local restrictions. We have
shown in the evaluation in chapter 7 that the grammar covers the majority of the
structures found in English. We have also shown (in section 7.8) that the power-
ful linguistic constraints boost performance and the parsing speed. Parsing speed
increases by two orders of magnitude thanks to the linguistic constraints. The lin-

241
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guistic constraints are probably the element that increases parsing speed most. We
have discussed in section 4.6.3 that such linguistic constraints are related to super-
tagging.

Lexicalisation We have presented the statistical performance model as an exten-
sion of PP-attachment research (Collins and Brooks, 1995) to all syntactic relations
in chapters 2 and 4. We have compared our model to Collins (1999) in chapter 4.
Pro3Gres is different from Collins (1999) because it exploits the possibilities that
Dependency Grammar offers (see chapter 3), for example using dependency la-
bels to process subcategorisation or representing entire subtrees corresponding to
long-distance dependencies in a single dependency. We have presented a sophis-
ticated back-off model which is partly based on Merlo and Esteve Ferrer (2006),
including semantic classes in the back-off. We have shown in the evaluation in
section 7.6.3 that lexicalisation leads to a tremendous increase in performance over
the non-lexicalised base model. Lexicalisation is the one of its seven elements that
increases performance most.

Distance Measure We use a distance measure that differs from Collins (1999)
(see chapter 4). Instead of a vector of features, we measure the real distance in
chunks. We have shown in section 7.6.2 how the distance measure improves on
the baseline model. We have shown that the lexicalisation model and the distance
model are not redundant.

Tagging, Lemmatising and Chunking Preprocessing We have shown that the
parser Pro3Gres uses a task-specific division of labour, delegating tasks that can
be solved with sufficient accuracy by methods that use less resources than parsing.
They are finite-state based lemmatising, part-of-speech tagging, and base-phrase
chunking. Kaplan et al. (2004b) describe the integration of finite-state morphology
and part-of-speech tagging as an essential step for the development of truly broad-
coverage grammar and robust parser such as Riezler et al. (2002). Prins (2005)
shows that tagging preprocessing systems are up to an order of magnitude faster,
and that the accuracy increases slightly if reasonable filtering parameters are used.
Abney (1996) suggests a parsing architecture for DG that only parses between
heads of chunks. We have followed this suggestion. DG is especially suitable
for such an architecture because of endocentricity, and because it partly eliminates
the need for dependencies that have no valency interpretation. Prins (2005) shows
that chunking preprocessing in parsing generally leads to a moderate increase in
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speed1.

Treatment of Long-Distance Dependencies We have shown that inherently com-
plex linguistic problems can be broken down and approximated sufficiently well
by less complex methods. This applies in particular to long-distance dependencies.
We have shown in chapter 6 that the majority of them can be approximated by
using a labeled DG that extends locality to the clause level, by context-free finite-
state based patterns, and by post-processing. The few remaining long-distance de-
pendencies, complex WH-questions, only need mild context-sensitivity. We have
shown that a slightly extended DG allows us to use mildly context-sensitive oper-
ations known from Tree-Adjoining Grammar (TAG).

Besides these five elements, Pro3Gres relies on a number of standard tech-
niques, such as pruning and full parsing. While pruning does not improve the
accuracy of the parser, it increases parsing speed by one or several orders of magni-
tude (Brants and Crocker, 2000). We have presented the pruner and its parameters
in chapter 2. We have shown in an evaluation in section 7.7.1 that the accuracy of
the parser is hardly affected until extremely aggressive pruning parameters are set.
We have parsed the entire 100 million word British National Corpus (BNC) with
the default pruning settings that we have used for the standard evaluations reported
in this thesis. Pro3Gres parses the BNC in just over 24 hours on the latest fast
multi-core Apple Macintosh server. We have shown that the parsing context im-
proves the performance if a full parsing approach is used. First, structures mutually
constrain each other. Second, local maxima do not always lead to global maxima.
We give indications of the impact of these effects in evaluations in sections 7.7.2
and 7.7.1.

8.2 A Hybrid Architecture

We have discussed that Pro3Gres is a hybrid approach at several levels. First, it is
hybrid because it uses a hand-written linguistic competence grammar (see chapter
5) combined with a statistical performance disambiguation model (see chapter 2).
Unlike formal grammars to which post-hoc statistical disambiguators are added in
a later stage, Pro3Gres has been designed to be hybrid, carefully distinguishing
between tasks that can best be solved by finite-state methods, rule-based methods
and statistical methods. While grammar writing is easy for a linguist, the scope

1There is no doubt that speed increases with chunking preprocessing, but accuracy potentially
decreases slightly, see e.g. Haverinen et al. (2008)
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of application and the amount of ambiguity a rule creates is considerable and best
handled by a statistical system.

Second, it is hybrid because it uses a task-based division of labour: a finite-
state based approach for lemmatising, tagging and the base phrase level, context-
free parsing for the surface syntactic level, and graph rewriting and mild context-
sensitivity for the deep syntactic processing. The designing philosophy for Pro3Gres
has been to stay as shallow as possible to obtain reliable results for each task nec-
essary to transform raw text into a functionally annotated structure. Long-distance
dependencies are expressed in a context-free fashion as far as it is possible (see
chapter 6) . The full expressiveness of context-sensitivity is never called for. In
the very few sentences where context-sensitivity is needed for English, in com-
plex WH-questions, we use a simple mildly context-sensitive extension based on
Tree-Adjoining Grammar (see chapter 6). Recent research in DG suggests that
mild context-sensitivity as expressed in TAG is precisely the extension to context-
freeness that is needed to cover naturally occurring text (Kuhlmann and Nivre,
2006).

Third, it is hybrid because it is a DG approach trained on a constituency tree-
bank. On the one hand, the use of our own functional concept of DG has allowed
us to treat long-distance dependencies in a simple and elegant way, as discussed
in chapter 6. It has also allowed us to parse directly for a simple LFG f-structre
without needing c-structure as an intermediate step. On the other hand, our ap-
proach exhibits a number of mapping challenges (see chapters 6 and 7), which
have especially made the evaluation difficult. Since we do not have a gold standard
expressed in our formalism, our current evaluation of long-distance dependencies
is not complete.

Fourth, it is hybrid between a statistical parser and a formal grammar-based
parser. Kaplan et al. (2004a) compare speed and accuracy of a successful proba-
bilistic context-free parser (Collins, 1999) to a robust LFG system based on Riezler
et al. (2002). They show that the gap between probabilistic context-free parsing
and deep-linguistic full LFG parsing can be closed.

A conclusion that can be drawn from previous and our own research is that
simplifying, restricting and limiting formal grammar expressiveness is bridging
the gap between probabilistic parsing and formal grammar-based parsing, and be-
tween shallow parsing and full parsing. We argue that our parser covers the middle
ground between statistical parsing and formal grammar-based parsing. The parser
has competitive performance (see chapter 7) and has been applied widely. We have
also presented a practical, user-based evaluation on an application domain.
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A further conclusion that can be drawn from our research on parsing texts from
the biomedical domain is that base phrase parsing is more domain-specific than
parsing between these base phrases. This entails that taggers and chunkers or base-
phrase rules for parsers need to be adapted more to a given domain than the rules for
parsing between base phrases, and that parsing between base phrases by Pro3Gres
is quite domain-independent, robust and efficient enough for large-scale applica-
tion.

8.3 Applications

Pro3Gres has been employed in a number of applications. To conclude, we list
some of the applications and relevant publications.

• Information Retrieval: Burger and Bayer (2005).

• Question Answering: Rinaldi et al. (2004a).

• Parsing and Text Mining in Biomedicine: Rinaldi et al. (2004), Rinaldi et al.
(2006), Rinaldi et al. (2007), Haverinen et al. (2008), Rinaldi et al. (2008).

• Terminology and Ontology Detection: Weeds et al. (2005).

• Corpus Linguistics: We have given a presentation and led the workshop at
the International Corpus Archive of Modern and Medieval English Confer-
ence (ICAME) 2008. Our proceedings article has been accepted for publica-
tion.

• Psycholinguistics: Schneider et al. (2005).
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Appendix A

tgrep Queries for Grammatical
Relations

tgrep and tgrep2 are popular query languages for structural searches on annotated
Treebank style corpora. In the following, the comprehensive lists of queries for
each grammatical relation and sample queries for locality tests are presented to the
interested reader.

Active Subject The arbitrary level of nestedness has been spelled out explicitly
which accounts for the big number of similar queries. Only pattern instances for
which non-zero counts are found in the Penn Treebank are listed. A < B in tgrep
stands for A dominates B, or equivalently B dependends on A. A < −B means that
A dominates B, and that B is the rightmost dependent. At the terminal NP level, in
NP < −N N is usually the head of NP. The $.. operator means succeeding sister.
The restriction that the VP head is a verb with no VP sister is expressed by the
negation operator !. Due to our treatment of conjunctions, only the first noun of an
noun conjunction is extracted. Therefore, only the first (< 1) NP line of a nested
NP is descended into.

/NP-SBJ$/ <- ‘(/NN/|PRP|WDT|WP|CD|EX) $.. (VP < (‘/VB/ \!$ VP) )
/NP-SBJ$/ <- ‘(/NN/|PRP|WDT|WP|CD|EX) $.. (VP < (VP < (‘/VB/ \!$ VP)) )
/NP-SBJ$/ <- ‘(/NN/|PRP|WDT|WP|CD|EX) $.. (VP < (VP < (VP < (‘/VB/ \!$ VP))) )
/NP-SBJ$/ <- ‘(/NN/|PRP|WDT|WP|CD|EX) $.. (VP < (VP < (VP < (VP < (‘/VB/ \!$ VP)))) )
/NP-SBJ$/ <- ‘(/NN/|PRP|WDT|WP|CD|EX) $.. (VP < (VP < (VP < (VP < (VP < (‘/VB/ \!$ VP))))) )
/NP-SBJ$/ <1 (NP <- ‘(/NN/|PRP|WDT|WP|CD|EX)) $.. (VP < (‘/VB/ \!$ VP) )
/NP-SBJ$/ <1 (NP <- ‘(/NN/|PRP|WDT|WP|CD|EX)) $.. (VP < (VP< (‘/VB/ \!$ VP)) )
/NP-SBJ$/ <1 (NP <- ‘(/NN/|PRP|WDT|WP|CD|EX)) $.. (VP < (VP< (VP < (‘/VB/ \!$ VP))) )
/NP-SBJ$/ <1 (NP <- ‘(/NN/|PRP|WDT|WP|CD|EX)) $.. (VP < (VP< (VP < (VP < (‘/VB/ \!$ VP)))) )
/NP-SBJ$/ <1 (NP <- ‘(/NN/|PRP|WDT|WP|CD|EX)) $.. (VP < (VP< (VP < (VP < (VP < (‘/VB/ \!$ VP))))) )
/NP-SBJ$/ <1 (NP<(NP <- ‘(/NN/|PRP|WDT|WP|CD|EX))) $.. (VP < (‘/VB/ \!$ VP) )
/NP-SBJ$/ <1 (NP<(NP <- ‘(/NN/|PRP|WDT|WP|CD|EX))) $.. (VP < (VP< (‘/VB/ \!$ VP)) )
/NP-SBJ$/ <1 (NP<(NP <- ‘(/NN/|PRP|WDT|WP|CD|EX))) $.. (VP < (VP< (VP < (‘/VB/ \!$ VP))) )

265
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/NP-SBJ$/ <1 (NP<(NP<(NP <- ‘(/NN/|PRP|WDT|WP|CD|EX)))) $.. (VP < (‘/VB/ \!$ VP) )
/NP-SBJ$/ <1 (NP<(NP<(NP <- ‘(/NN/|PRP|WDT|WP|CD|EX)))) $.. (VP < (VP< (‘/VB/ \!$ VP)) )
/NP-SBJ$/ <1 (NP<(NP<(NP <- ‘(/NN/|PRP|WDT|WP|CD|EX)))) $.. (VP < (VP< (VP < (‘/VB/ \!$ VP))) )
/NP-SBJ$/ <1 (NP<(NP<(NP<(NP <- ‘(/NN/|PRP|WDT|WP|CD|EX))))) $.. (VP < (‘/VB/ \!$ VP) )

tgrep extraction pattern instances for active subject-verb relations

Object

VP << ‘/VB/ < (/NP$/|NP-PRD <- ‘(/NN/|PRP|WDT|WP|CD))
VP << ‘/VB/ < (/NP$/|NP-PRD <1 (NP <- ‘(/NN/|PRP|WDT|WP|CD)))
VP << ‘/VB/ < (/NP$/|NP-PRD <1 (NP<1(NP <- ‘(/NN/|PRP|WDT|WP|CD))))
VP << ‘/VB/ < (/NP$/|NP-PRD <1 (NP<(NP<1(NP <- ‘(/NN/|PRP|WDT|WP|CD)))))
VP << ‘/VB/ < (/NP$/|NP-PRD <1 (NP<(NP<(NP<1(NP <- ‘(/NN/|PRP|WDT|WP|CD))))))
VP << ‘/VB/ < (/NP$/|NP-PRD <1 (NP<(NP<(NP<(NP<1(NP <- ‘(/NN/|PRP|WDT|WP|CD)))))))

tgrep extraction pattern instances for object-verb relations

Object2 The negated CC sister condition makes sure that the two nouns appear-
ing at the same level are not a conjunction.

VP << ‘/VB/ < (/NP$/ <- (/NN/|PRP|WDT|WP|CD) \!$ /CC/ $.. (/NP$/ <- ‘(/NN/|PRP|WDT|WP|CD)))
VP << ‘/VB/ < (/NP$/ <- (/NN/|PRP|WDT|WP|CD) \!$ /CC/ $.. (/NP$/ < (NP <- ‘(/NN/|PRP|WDT|WP|CD))))
VP << ‘/VB/ < (/NP$/ <- (/NN/|PRP|WDT|WP|CD) \!$ /CC/ $.. (/NP$/ < (NP<(NP <- ‘(/NN/|PRP|WDT|WP|CD)))))
VP << ‘/VB/ < (/NP$/ <- (/NN/|PRP|WDT|WP|CD) \!$ /CC/ $.. (/NP$/ < (NP<(NP<(NP <- ‘(/NN/|PRP|WDT|WP|CD))))))
VP << ‘/VB/ < (/NP$/ << (NP <- (/NN/|PRP|WDT|WP|CD)) \!$ /CC/ $.. (/NP$/ << (NP <- ‘(/NN/|PRP|WDT|WP|CD))))
VP << ‘/VB/ < (/NP$/ << (NP <- (/NN/|PRP|WDT|WP|CD)) \!$ /CC/ $.. (/NP$/ <- ‘(/NN/|PRP|WDT|WP|CD)))

tgrep extraction pattern instances for object2-verb relations

Passive Subject

/NP-SBJ-/ <- ‘(/NN/|PRP|WDT|WP|CD) $.. \\
(VP < (‘/VBN/ \!$ VP $.. (/NP$/ < (/NONE/)) ) )

/NP-SBJ-/ <- ‘(/NN/|PRP|WDT|WP|CD) $.. \\
(VP < (VP < (‘/VBN/ \!$ VP $.. (/NP$/ < (/NONE/)) )) )

/NP-SBJ-/ <- ‘(/NN/|PRP|WDT|WP|CD) $.. \\
(VP < (VP < (VP < (‘/VBN/ \!$ VP $.. (/NP$/ < (/NONE/)) ))) )

/NP-SBJ-/ <- ‘(/NN/|PRP|WDT|WP|CD) $.. \\
(VP < (VP < (VP < (VP < (‘/VBN/ \!$ VP $.. (/NP$/ < (/NONE/)) )))) )

/NP-SBJ-/ <- ‘(/NN/|PRP|WDT|WP|CD) $.. \\
(VP < (VP < (VP < (VP < (VP < (‘/VBN/ \!$ VP $.. (/NP$/ < (/NONE/)) ))))) )

/NP-SBJ-/ <1 (NP <- ‘(/NN/|PRP|WDT|WP|CD)) $.. \\
(VP < (‘/VBN/ \!$ VP $.. (/NP$/ < (/NONE/)) ) )

/NP-SBJ-/ <1 (NP <- ‘(/NN/|PRP|WDT|WP|CD)) $.. \\
(VP < (VP< (‘/VBN/ \!$ VP $.. (/NP$/ < (/NONE/)) )) )

/NP-SBJ-/ <1 (NP <- ‘(/NN/|PRP|WDT|WP|CD)) $.. \\
(VP < (VP< (VP < (‘/VBN/ \!$ VP $.. (/NP$/ < (/NONE/)) ))) )

/NP-SBJ-/ <1 (NP <- ‘(/NN/|PRP|WDT|WP|CD)) $.. \\
(VP < (VP< (VP < (VP < (‘/VBN/ \!$ VP $.. (/NP$/ < (/NONE/)) )))) )

/NP-SBJ-/ <1 (NP <- ‘(/NN/|PRP|WDT|WP|CD)) $.. \\
(VP < (VP< (VP < (VP < (VP < (‘/VBN/ \!$ VP $.. (/NP$/ < (/NONE/)) ))))) )

/NP-SBJ-/ <1 (NP<(NP <- ‘(/NN/|PRP|WDT|WP|CD))) $.. \\
(VP < (‘/VBN/ \!$ VP $.. (/NP$/ < (/NONE/)) ) )

/NP-SBJ-/ <1 (NP<(NP <- ‘(/NN/|PRP|WDT|WP|CD))) $.. \\
(VP < (VP< (‘/VBN/ \!$ VP $.. (/NP$/ < (/NONE/)) )) )

/NP-SBJ-/ <1 (NP<(NP <- ‘(/NN/|PRP|WDT|WP|CD))) $.. \\
(VP < (VP< (VP < (‘/VBN/ \!$ VP $.. (/NP$/ < (/NONE/)) ))) )

/NP-SBJ-/ <1 (NP<(NP<(NP <- ‘(/NN/|PRP|WDT|WP|CD)))) $.. \\
(VP < (‘/VBN/ \!$ VP $.. (/NP$/ < (/NONE/)) ) )

/NP-SBJ-/ <1 (NP<(NP<(NP <- ‘(/NN/|PRP|WDT|WP|CD)))) $.. \\
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(VP < (VP< (‘/VBN/ \!$ VP $.. (/NP$/ < (/NONE/)) )) )
/NP-SBJ-/ <1 (NP<(NP<(NP <- ‘(/NN/|PRP|WDT|WP|CD)))) $.. \\
(VP < (VP< (VP < (‘/VBN/ \!$ VP $.. (/NP$/ < (/NONE/)) ))) )

/NP-SBJ-/ <1 (NP<(NP<(NP<(NP <- ‘(/NN/|PRP|WDT|WP|CD))))) $.. \\
(VP < (‘/VBN/ \!$ VP $.. (/NP$/ < (/NONE/)) ) )

tgrep extraction pattern instances for subject-passive-verb relations

Control Verbs If we expand this pattern to tgrep queries we get the set shown in
fig. A. The last line contains the only object-control query that is needed, as no
instance of a complex object-control object has been found.

/NP-SBJ-/ <- ‘(/NN/|PRP|WDT|WP) $.. (VP < (‘/VB/ \!$ VP $.. (S < (/NP-SBJ/ < /NONE/))) )
/NP-SBJ-/ <- ‘(/NN/|PRP|WDT|WP) $.. (VP < (VP <(‘/VB/ \!$ VP $.. (S < (/NP-SBJ/ < /NONE/)))) )
/NP-SBJ-/ <- ‘(/NN/|PRP|WDT|WP) $.. (VP < (VP <(VP <(‘/VB/ \!$ VP $.. (S < (/NP-SBJ/ < /NONE/))))) )
/NP-SBJ-/ <- ‘(/NN/|PRP|WDT|WP) $.. (VP < (VP <(VP <(VP<(‘/VB/ \!$ VP $.. (S < (/NP-SBJ/ < /NONE/)))))) )
/NP-SBJ-/<1(NP <- ‘(/NN/|PRP|WDT|WP)) $.. (VP < (‘/VB/ \!$ VP $.. (S < (/NP-SBJ/ < /NONE/))) )
/NP-SBJ-/<1(NP <- ‘(/NN/|PRP|WDT|WP)) $.. (VP < (VP <(‘/VB/ \!$ VP $.. (S < (/NP-SBJ/ < /NONE/)))) )
/NP-SBJ-/<1(NP <- ‘(/NN/|PRP|WDT|WP)) $.. (VP < (VP <(VP <(‘/VB/ \!$ VP $.. (S < (/NP-SBJ/ < /NONE/))))) )
/NP-SBJ-/<1(NP <- ‘(/NN/|PRP|WDT|WP)) $.. (VP < (VP <(VP <(VP<(‘/VB/ \!$ VP $.. (S < (/NP-SBJ/ < /NONE/)))))) )
/NP-SBJ-/<1(NP<(NP <- ‘(/NN/|PRP|WDT|WP))) $.. (VP < (‘/VB/ \!$ VP $.. (S < (/NP-SBJ/ < /NONE/))) )
/NP-SBJ-/<1(NP<(NP <- ‘(/NN/|PRP|WDT|WP))) $.. (VP < (VP <(‘/VB/ \!$ VP $.. (S < (/NP-SBJ/ < /NONE/)))) )
/NP-SBJ-/<1(NP<(NP <- ‘(/NN/|PRP|WDT|WP))) $.. (VP < (VP <(VP <(‘/VB/ \!$ VP $.. (S < (/NP-SBJ/ < /NONE/))))) )
/NP-SBJ-/<1(NP<(NP<(NP <- ‘(/NN/|PRP|WDT|WP)))) $.. (VP < (‘/VB/ \!$ VP $.. (S < (/NP-SBJ/ < /NONE/))) )

VP << ‘/VB/ < (/NP-/|/NP-PRD-/ <- (‘/NN/|PRP|WDT|WP|CD)) < (S < (/NP-SBJ/ < (/-NONE-/ < /*-/))) ’

tgrep extraction pattern instances for control relation

Reduced Relative Clause: the modpart relation

NP <- ‘(/NN/|PRP|WDT|WP|CD) $.. (VP < (‘/VB/ \!$ VP) )
NP <- ‘(/NN/|PRP|WDT|WP|CD) $.. (VP < (VP < (‘/VB/ \!$ VP)) )
NP <- ‘(/NN/|PRP|WDT|WP|CD) $.. (VP < (VP <(VP< (‘/VB/ \!$ VP))) )
NP < (NP <- ‘(/NN/|PRP|WDT|WP|CD)) $.. (VP < (‘/VB/ \!$ VP) )
NP < (NP <- ‘(/NN/|PRP|WDT|WP|CD)) $.. (VP < (VP< (‘/VB/ \!$ VP)) )
NP < (NP<(NP <- ‘(/NN/|PRP|WDT|WP|CD))) $.. (VP < (‘/VB/ \!$ VP) )

NP << ‘(/NN/|PRP|WDT|WP|CD) $.. (RRC << (VP <‘/VB/))’

Locality test sample Queries

Passive subject: How many filler and gap indices coincide in our fixed pattern?
We arbitrarily pick an exemplary pattern instance of medium complexity (line 6)
for this and the following passive subject test.

/NP-SBJ-/ <1 (NP <- ‘(/NN/|PRP|WDT|WP|CD)) $.. (VP < (‘/VBN/ \!$ VP $.. (/NP$/ < (/NONE/)) ) )

The pattern instances A differ from 6.4 as they fail to enforce the identity of
the filler and gap index. This gives rise to a first test.
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tgrep does not allow the user to do any book-keeping of LDD indices, therefore
the most frequent values are tried manually, first without enforcing filler identitiy,
then with. The number returned is the number of matches plus 1 (tgrep adds an
empty line).

tgrep -as " " -n ’/NP-SBJ-1$/ <1 ( NP <- (/NN/|PRP|WDT|WP|CD)) $.. \\
(VP < (VP< (/VBN/ \!$ VP $.. ( /NP$/ < ( /NONE/ < /-/ ) ) ) ) )’ | wc -l

675
tgrep -as " " -n ’/NP-SBJ-1$/ <1 ( NP <- (/NN/|PRP|WDT|WP|CD)) $.. \\
(VP < (VP< (/VBN/ \!$ VP $.. ( /NP$/ < ( /NONE/ < /-1$/ ) ) ) ) )’ | wc -l

675
tgrep -as " " -n ’/NP-SBJ-2$/ <1 ( NP <- (/NN/|PRP|WDT|WP|CD)) $.. \\
(VP < (VP< (/VBN/ \!$ VP $.. ( /NP$/ < ( /NONE/ < /-/ ) ) ) ) )’ | wc -l

73
tgrep -as " " -n ’/NP-SBJ-2$/ <1 ( NP <- (/NN/|PRP|WDT|WP|CD)) $.. \\
(VP < (VP< (/VBN/ \!$ VP $.. ( /NP$/ < ( /NONE/ < /-2$/ ) ) ) ) )’ | wc -l

73
tgrep -as " " -n ’/NP-SBJ-3$/ <1 ( NP <- (/NN/|PRP|WDT|WP|CD)) $.. \\
(VP < (VP< (/VBN/ \!$ VP $.. ( /NP$/ < ( /NONE/ < /-/ ) ) ) ) )’ | wc -l

33
tgrep -as " " -n ’/NP-SBJ-3$/ <1 ( NP <- (/NN/|PRP|WDT|WP|CD)) $.. \\
(VP < (VP< (/VBN/ \!$ VP $.. ( /NP$/ < ( /NONE/ < /-3$/ ) ) ) ) )’ | wc -l

33
tgrep -as " " -n ’/NP-SBJ-4$/ <1 ( NP <- (/NN/|PRP|WDT|WP|CD)) $.. \\
(VP < (VP< (/VBN/ \!$ VP $.. ( /NP$/ < ( /NONE/ < /-/ ) ) ) ) )’ | wc -l

9
tgrep -as " " -n ’/NP-SBJ-4$/ <1 ( NP <- (/NN/|PRP|WDT|WP|CD)) $.. \\
(VP < (VP< (/VBN/ \!$ VP $.. ( /NP$/ < ( /NONE/ < /-4$/ ) ) ) ) )’ | wc -l

9

This log shows total identity between the LDD indices.

Passive subject: How many fillers do not find their gap in the passive verb
sister? In this experiment, we test in how many cases a filler occurs without a
gap position in the position expected by our fixed pattern, i.e. the passive verb
object position. In order to exclude some mismatches when using the negation, we
restrict ourselves to cases where the gap immediately follows the verb sister.

tgrep -as " " -n ’/NP-SBJ-/ <1 ( NP <- (/NN/|PRP|WDT|WP|CD)) $.. \\
(VP < (VP< (/VBN/ \!$ VP $. ( /NP$/ < /NONE/))))’ | wc -l

844
tgrep -as " " -n ’/NP-SBJ-/ <1 ( NP <- (/NN/|PRP|WDT|WP|CD)) $.. \\
(VP < (VP< (/VBN/ \!$ VP $. ( /NP$/ \!< /NONE/))))’ | wc -l

31

Of the 30 cases where the NP immediately follows the verb, none involves a
verb in the passive voice.

A remark on dub verbs There is a class of verbs, following citelevin93 often
called dub verbs, that take a noun phrase as object complements. Examples of
dub verbs are name, appoint, consider, like in the queen appointed William Ce-
cil her personal secretary. As dub verbs are in complementary distribution with
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ditransitive verbs, we can give the object complement the secondary object label
obj2. Dub verbs are very frequently in the passive voice. The (slightly different)
extraction patterns for them, involving a small clause, are as follows:

/NP-SBJ-/ <- ‘(/NN/|PRP|WDT|WP|CD) $.. \\
(VP < (‘/VBN/ \!$ VP) < (S< (NP-SBJ < /-NONE-/) ))’

/NP-SBJ-/ <- ‘(/NN/|PRP|WDT|WP|CD) $.. \\
(VP < (VP < (‘/VBN/ \!$ VP) < (S< (NP-SBJ < /-NONE-/) )))’

/NP-SBJ-/ <- ‘(/NN/|PRP|WDT|WP|CD) $.. \\
(VP < (VP < (VP < (‘/VBN/ \!$ VP) < (S< (NP-SBJ < /-NONE-/) ))))’

/NP-SBJ-/ <- ‘(/NN/|PRP|WDT|WP|CD) $.. \\
(VP < (VP < (VP < (VP < (‘/VBN/ \!$ VP) < (S< (NP-SBJ < /-NONE-/) )))))’

/NP-SBJ-/ <1 (NP <- ‘(/NN/|PRP|WDT|WP|CD)) $.. \\
(VP < (‘/VBN/ \!$ VP) < (S< (NP-SBJ < /-NONE-/) ))’

/NP-SBJ-/ <1 (NP <- ‘(/NN/|PRP|WDT|WP|CD)) $.. \\
(VP < (VP< (‘/VBN/ \!$ VP) < (S< (NP-SBJ < /-NONE-/) )))’

/NP-SBJ-/ <1 (NP <- ‘(/NN/|PRP|WDT|WP|CD)) $.. \\
(VP < (VP< (VP<(‘/VBN/ \!$ VP) < (S< (NP-SBJ < /-NONE-/) ))))’

tgrep extraction pattern instances for subject-passive-verb relations with ’dub’
verbs

Control: How many filler and gap indices coincide in our fixed pattern? We
take line 3 for our subject control tests, and the single object control pattern for
object control tests.

Again, the most frequent values are tried manually, first without enforcing filler
identitiy, then with. The number returned is the number of matches plus 1 (tgrep
adds an empty line). For subject control, we get:

tgrep -as " " -n ’/NP-SBJ-1/ <- (/NN/|PRP|WDT|WP) $.. \\
(VP < (VP <(VP <(/VB/ \!$ VP $.. (S < (/NP-SBJ/ < (/NONE/ < /-/) ))))) ) ’ | wc -l

215
tgrep -as " " -n ’/NP-SBJ-1/ <- (/NN/|PRP|WDT|WP) $.. \\
(VP < (VP <(VP <(/VB/ \!$ VP $.. (S < (/NP-SBJ/ < (/NONE/ < /-1/) ))))) ) ’ | wc -l

210
tgrep -as " " -n ’/NP-SBJ-2/ <- (/NN/|PRP|WDT|WP) $.. \\
(VP < (VP <(VP <(/VB/ \!$ VP $.. (S < (/NP-SBJ/ < (/NONE/ < /-/) ))))) ) ’ | wc -l

74
tgrep -as " " -n ’/NP-SBJ-2/ <- (/NN/|PRP|WDT|WP) $.. \\
(VP < (VP <(VP <(/VB/ \!$ VP $.. (S < (/NP-SBJ/ < (/NONE/ < /-2/) ))))) ) ’ | wc -l

73
tgrep -as " " -n ’/NP-SBJ-3/ <- (/NN/|PRP|WDT|WP) $.. \\
(VP < (VP <(VP <(/VB/ \!$ VP $.. (S < (/NP-SBJ/ < (/NONE/ < /-/) ))))) ) ’ | wc -l

25
tgrep -as " " -n ’/NP-SBJ-3/ <- (/NN/|PRP|WDT|WP) $.. \\
(VP < (VP <(VP <(/VB/ \!$ VP $.. (S < (/NP-SBJ/ < (/NONE/ < /-3/) ))))) ) ’ | wc -l

24
tgrep -as " " -n ’/NP-SBJ-4/ <- (/NN/|PRP|WDT|WP) $.. \\
(VP < (VP <(VP <(/VB/ \!$ VP $.. (S < (/NP-SBJ/ < (/NONE/ < /-/) ))))) ) ’ | wc -l

6
tgrep -as " " -n ’/NP-SBJ-4/ <- (/NN/|PRP|WDT|WP) $.. \\
(VP < (VP <(VP <(/VB/ \!$ VP $.. (S < (/NP-SBJ/ < (/NONE/ < /-4/) ))))) ) ’ | wc -l

6

For object control, we get:

tgrep -as " " -n ’VP << /VB/ < (/NP-1/|/NP-PRD-1/ <- (/NN/|PRP|WDT|WP|CD)) < \\
(S < (/NP-SBJ/ < (/-NONE-/ < /*-/))) ’ | wc -l
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149
tgrep -as " " -n ’VP << /VB/ < (/NP-1/|/NP-PRD-1/ <- (/NN/|PRP|WDT|WP|CD)) < \\
(S < (/NP-SBJ/ < (/-NONE-/ < /*-1/))) ’ | wc -l

149
tgrep -as " " -n ’VP << /VB/ < (/NP-2/|/NP-PRD-2/ <- (/NN/|PRP|WDT|WP|CD)) < \\
(S < (/NP-SBJ/ < (/-NONE-/ < /*-/))) ’ | wc -l

74
tgrep -as " " -n ’VP << /VB/ < (/NP-2/|/NP-PRD-2/ <- (/NN/|PRP|WDT|WP|CD)) < \\
(S < (/NP-SBJ/ < (/-NONE-/ < /*-2/))) ’ | wc -l

73
tgrep -as " " -n ’VP << /VB/ < (/NP-3/|/NP-PRD-3/ <- (/NN/|PRP|WDT|WP|CD)) < \\
(S < (/NP-SBJ/ < (/-NONE-/ < /*-/))) ’ | wc -l

32
tgrep -as " " -n ’VP << /VB/ < (/NP-3/|/NP-PRD-3/ <- (/NN/|PRP|WDT|WP|CD)) < \\
(S < (/NP-SBJ/ < (/-NONE-/ < /*-3/))) ’ | wc -l

32
tgrep -as " " -n ’VP << /VB/ < (/NP-4/|/NP-PRD-4/ <- (/NN/|PRP|WDT|WP|CD)) < \\
(S < (/NP-SBJ/ < (/-NONE-/ < /*-/))) ’ | wc -l

9
tgrep -as " " -n ’VP << /VB/ < (/NP-4/|/NP-PRD-4/ <- (/NN/|PRP|WDT|WP|CD)) < \\
(S < (/NP-SBJ/ < (/-NONE-/ < /*-4/))) ’ | wc -l

9

This log shows an almost perfect identity for object-control, and very high
identity for subject-control. An example of the few sentences where the subject-
control pattern goes astray is:

(NP-SBJ-1 (DT Some)
(NNP Golenbock)
(NNS lawyers))

(VP (MD wo)
(RB n’t)
(VP (VB be)

(VP (VBN invited)
(NP-2 (-NONE- *-1))
(S (NP-SBJ (-NONE- *-2))

(VP (TO to)
(VP (VB join)

(NP (NNP Whitman)
(CC &)
(NNP Ransom)))))

(, ,)
(PP (VBG according)

(PP (TO to)
(NP (NP (NNS partners))

(PP-LOC (IN at)
(NP (DT both)

(NNS firms)))))))))

Complex interaction between different types of LDDs, in this case between
passive and control, means that the pattern can make errors.

Control: How many fillers do not find their gap in the subordinate subjectless
clause? In this experiment, we test in how many cases a filler occurs without
a gap position in the position expected by our fixed pattern, i.e. the subordinate
clause subject position.

For subject control, we get:

tgrep -as " " -n ’/NP-SBJ-/ <- (/NN/|PRP|WDT|WP) $.. \\
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(VP < (VP <(VP <(/VB/ \!$ VP $. (S < (/NP-SBJ/ < (/NONE/ < /-/) ))))) ) ’ | wc -l
302

tgrep -as " " -n ’/NP-SBJ-/ <- (/NN/|PRP|WDT|WP) $.. \\
(VP < (VP <(VP <(/VB/ \!$ VP $. (S < (/NP-SBJ/ \!< (/NONE/ < /-/) ))))) ) ’ | wc -l

9

For object control, we get:

tgrep -as " " -n ’VP << /VB/ < (/NP-/|/NP-PRD-/ <- (/NN/|PRP|WDT|WP|CD)) < \\
(S < (/NP-SBJ/ < (/-NONE-/ < /*-/))) ’ | wc -l

334
tgrep -as " " -n ’VP << /VB/ < (/NP-/|/NP-PRD-/ <- (/NN/|PRP|WDT|WP|CD)) < \\
(S < (/NP-SBJ/ \!< (/-NONE-/ < /*-/))) ’ | wc -l

16
tgrep -as " " -n ’VP << /VB/ < (/NP-TMP/ <- (/NN/|PRP|WDT|WP|CD)) < \\
(S < (/NP-SBJ/ \!< (/-NONE-/ < /*-/))) ’ | wc -l

14

The 8 subject-control cases where no gap is the subordinate clause subject po-
sition include a conjunction that triggers a mismatch, an annotation error, a com-
plex interaction between passive and control, and one case where the movement is
longer than what the pattern matches, but not a typical case of control:

(NP-SBJ-1 (PRP we))
(VP (MD should)

(VP (VB be)
(VP (VBG helping)

(S (NP-SBJ (NNP U.S.)
(NNS companies))

(VP (VB improve)
(NP (VBG existing)

(NNS products))
(PP (RB rather)

(IN than)
(S-NOM (NP-SBJ (-NONE- *-1))

(ADVP-TMP (RB always))
(VP (VBG developing)

(NP (JJ new)
(NNS ones))))))))))

The 15 object-control cases where no gap is the subordinate clause subject po-
sition include 13 cases where the pattern by mistake matches a temporal expression
(TMP ) in the object position, made explicit in the last query.



Appendix B

Gradience and Mapping: A Small
Selection of Problematic Cases

Inter-annotator-agreement in the Carroll test corpus is “around 95 %” (Carroll,
Minnen, and Briscoe, 1999). (Crouch et al., 2002) warn that mapping between
differing annotation schemes is a true challenge, and that due to mapping results
can only be indicative. Here we briefly discuss some of the cases where different
annotators may come to different conclusions, where both the gold standard and
Pro3Gres output seem reasonable and correct but are in disagreement. The cases
are all from the Carroll test corpus (Carroll, Minnen, and Briscoe, 1999; Carroll,
Minnen, and Briscoe, 2003). Our selection of cases cannot be assumed to be com-
plete nor fully representative.

• What could rescue the bill would be some quick progress on a bill ...

In the gold standard, What could rescue the bill is analysed as a clausal
subject.

csubj( ’be’ , ’rescue’ , _ , 92 ).

Pro3Gres gives the analysis in figure B.1, which was intended by the gram-
mar, in which What could rescue the bill is analysed as a nominal subject
that is modified by a relative clause, analogous to That which could rescue
the bill.

• ... the measure would provide means of enforcing the law ...
ncsubj( ’enforce’ , ’measure’ , _ , 21 ).

The gold standard assumes a subject control relation between measure and
enforce. It is not clear to us if a control relation across an of-genitive, and

272
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to inside the object instead of to inside a subordinate clause, is syntactically
possible.

• ... there is nothing left of the conservative party ...
ncsubj( ’nothing’ , ’leave’ , ’obj’ , 71 ). % gold
standard: there-movement
modpart(nothing, leave, _, ’→’, 71). % parser analysis:
reduced relative

The gold standard assumes a there-movement, while the intentional parser
analysis reports a reduced relative clause.

• ... prove [one of the difficult problems] ...
dobj( ’prove’ , ’one’ , _ , 48 ). % gold standard:
syntactical analysis
obj(prove, problem, _, ’→’, 48). % parser analysis:
based on chunker output

The gold standard assumes one as the head of the object, which is in turn
modified by an of-PP. The LTPos chunker analyzes the entire NP one of
the difficult problems as a base NP. This is syntactically questionable but
semantically convincing, and the fact that sequences like one of, some of,
many of, all of etc. are almost unambiguous cases of nominal PP-attachment
can be exploited. But in evaluating Pro3Gres it leads to 3 errors:

1. an object precision error: obj(prove, problem, _, ’→’, 48).

2. an object recall error: dobj( ’prove’ , ’one’ , _ , 48 ).

3. a nominal PP-attachment recall error: ncmod(’of’, ’one’, ’problem’,
_, 48 ).

• ... (the government) made blunders in Cuba
ncmod( ’in’ , ’blunder’ , ’cuba’ , 51 ). % gold standard:
to noun
pobj(make, cuba, in, ’→’, 51). % parser: to verb

PP-attachment is a classical source of low inter-annotator agreement. Since
both the action make and the effect blunders are in the same location, the PP-
attachment disambiguation is semantically vacuous in this case, and hence
inherently ambiguous. See also our discussion of PP-attachment in chapter
4.
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