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Abstract

We investigate methods to adapt translation models in SMT to a specific target domain.
We discuss two major problems, unknown words because of data sparseness in the (in-
domain) training data, and ambiguities arising from out-of-domain parallel texts with dif-
ferent domain-specific translations. We propose novel solutions to both problems.

The main contributions of this thesis are as follows:

• We present a novel translation model architecture that supports domain adaptation at
decoding time from a vector of component models. The combination is implemented
through instance weighting, and all statistics necessary for the computation of trans-
lation probabilities are stored in the models.

• We present an architecture to combine multiple MT systems, using techniques and
ideas from domain adaptation. The hypotheses by external MT systems are treated
as out-of-domain knowledge, and combined with in-domain data through instance
weighting.

• We introduce a sentence alignment algorithm that is able to robustly align even noisy
parallel texts. We found that higher-quality sentence alignment of the in-domain par-
allel text has a significant effect on translation quality in our target domain.

• We propose new translation model features that express how flexible, or general, trans-
lation units are, in order to prevent translations that only occur in the context of mul-
tiword expressions from being overgeneralised.
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Wir untersuchen Methoden zur Anpassung von Übersetzungsmodellen in SMÜ an eine be-
stimmte Zieldomäne. Wir diskutieren zwei Hauptprobleme: spärliche Daten in den Train-
ingsdaten der Zieldomäne führen zu unbekannten Wörtern, und der Herbeizug von Daten
aus Fremddomänen verursacht Mehrdeutigkeiten. Für beide Probleme präsentieren wir neue
Lösungsansätze.

Die Hauptbeiträge dieser Dissertation sind folgende:

• Wir präsentieren eine Architektur für Übersetzungsmodelle, welche aus einem Vek-
tor von Teilmodellen besteht und Domänenadaption während der Übersetzung selbst
erlaubt. Die Kombination der Teilmodelle wird über eine Gewichtung von Vorkom-
menshäufigkeiten vollzogen.

• Wir stellen eine Architektur zur Kombination verschiedener Übersetzungssysteme
mittels Techniken aus der Domänenadaption vor. Die Hypothesen externer Überset-
zungssysteme werden dabei wie Wissen aus einer Fremddomäne behandelt, und mit
Daten aus der Zieldomäne kombiniert.

• Wir präsentieren ein Satzalignierungsverfahren, welches auch verrauschte parallele
Texte robust auf Satzebene alignieren kann. Durch die Erhöhung der Satzalignierungs-
qualität erreichen wir eine signifikant bessere Übersetzungsqualität.

• Wir schlagen neue Merkmale für Übersetzungsmodelle vor, welche die Flexibilität
von Übersetzungseinheiten ausdrücken, und verhindern, dass inflexible Übersetzun-
gen, welche nur innerhalb eines Mehrwortausdrucks vorkommen, übergeneralisiert
werden.
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1 Introduction

Statistical Machine Translation (SMT) is data-driven, and SMT systems learn from millions
and billions of words of human-translated texts, and texts in the target language. The quality
of SMT systems depends heavily on the data that we use for training, not only its quality
and amount, but also on how relevant it is for the texts that we wish to translate. While the
mantra that “more data is better data” is often true, we can find exceptions to this rule if we
also consider the relevance of training data. A corpus of texts from the same domain as the
texts that we wish to translate helps us to learn surprisingly good translations, often much
better than an equal (or larger) amount of less relevant training data. This thesis proposes
novel ways to improve translation quality for a given target domain, focusing on adapting
the translation model.

1.1 Problem: Domain-specific Statistical Machine Translation

There are multiple reasons why tailoring Statistical Machine Translation to a specific target
domain is important. Every domain comes with its own domain-specific vocabulary, and
because languages are very much alive and subject to change, we can never hope to obtain
a system with full vocabulary coverage.

Even more common, and a harder problem for general-domain systems, are homonyms
and polysemies, words with multiple meanings. In computing, a mouse is a mechanical, not
an organic entity, and no spiders go hungry when people remove bugs from the web. While
some ambiguities may coincide between languages – German Maus also refers to both the
animal and the pointing device –, it is a potential cause for mistranslations if they do not.
Take the English bug for example, which refers to insects, programming errors, or covert
listening devices, among others. German Käfer refers to insects, but programming errors
are simply called Fehler (Engl. error), or the English term may even be used as a loan word.
Listening devices could be referred to as Abhörgerät or Wanze in German. Choosing the
wrong translation variant can result in incomprehension, or even worse, miscomprehension.
One example for the latter is stomach bug, which is a Magen-Darm-Entzündung in German.
A literal translation into Bauchkäfer could be very misleading: Bauchkäfer, or Käfer im
Bauch, is commonly used as a nickname for unborn babies.

17



1 Introduction

SMT is data-driven and requires human-translated texts to learn translations. These are
costly to obtain, considering that typical SMT systems build on millions of sentences of
manually translated texts. Luckily, large amounts of texts are already translated for daily
communication needs, and can be re-used to train SMT systems.

While training data from the target domain, i.e. from the same domain as the texts which
we want to translate, is beneficial for SMT systems, in-domain data is usually relatively
scarce, and we have access to a much larger amount of out-of-domain resources. When
we want to optimize our system for a specific domain, i.e. perform domain adaptation, a
major challenge is how to best combine in-domain and out-of-domain resources, so that
additional data complements, but does not dilute the domain-specific translations that we
can learn from in-domain data. In this thesis, we address this problem with new methods
that not only focus on improving translation quality, but also on reducing the cost of domain
adaptation – both the creation and maintenance of adapted systems come at a significant
cost in terms of computational and human resources –, and applying it to new problems,
i.e. settings in which there is no clear distinction of in-domain and out-of-domain texts, or
in which general-domain MT systems take the place of out-of-domain training data. We
propose ways to perform domain adaptation quickly, and to support multiple domains in a
single translation system.

1.2 Thesis Contributions

• We present a novel translation model architecture with a vector of component models
that supports domain adaptation at decoding time. The combination is implemented
through instance weighting, and all statistics necessary for the computation of trans-
lation probabilities are stored in the models. With this architecture, one translation
system can support multiple domains, and we also introduce a method to adapt in-
stance weights to new domains within minutes. We perform an extensive evalua-
tion with other domain adaptation methods to show that instance weighting is a low-
maintenance and low-risk form of domain adaptation, and is thus suitable for general
deployment.

• We expand the discussion of domain adaptation to settings in which there is no binary
split into in-domain and out-of-domain training data. We investigate how different
methods scale to 4–10 component models, and propose a method to perform domain
adaptation even if there is only a single, heterogeneous training text, using unsuper-
vised clustering of training data and domain adaptation methods.

18



1.3 Outline

• We demonstrate that we can conceptualize the combination of translation systems as a
domain adaptation problem. Using an in-domain translation system as backbone, and
rule-based and online translation systems to generate additional translation hypothe-
ses for the text that we want to translate, we present combination methods that exploit
the relative strengths and weaknesses of these systems. The in-domain translation
system is most specific, and should be relied on for well-evidenced source words and
phrases, but rule-based systems and large-scale online systems are a suitable way to
fill in any lexical gaps that arise from data sparseness. We show that such a combina-
tion can markedly outperform the best individual system.

• We introduce a sentence alignment algorithm that is able to robustly align even noisy
parallel texts. Given the relative impact of in-domain parallel data on translation qual-
ity, it is insufficient to rely on already aligned (or easily alignable) parallel texts. We
found that higher-quality sentence alignment of the in-domain parallel text has a sig-
nificant effect on translation quality in our target domain.

• We propose new translation model features that express how flexible, or general,
translation units are, in order to prevent translations that only occur in the context
of multiword expressions from being overgeneralised. We argue that many multi-
word expressions are domain-specific, and that these features can improve translation
quality if training and test domain do not match.

1.3 Outline

We review the theoretical background of SMT in chapter 2, with a focus on translation
modelling and the state of the art of domain adaptation in SMT. In chapter 3, we discuss
differences between two text collections, and perform a qualitative analysis to show why
data from the same domain is more valuable for SMT training than out-of-domain data, and
motivate our experiments in domain adaptation.

In chapter 4, we describe our experimental data and methods, and offer a quantitative
analysis of SMT performance with in-domain and out-of-domain data. In chapter 5, we
present an MT-based sentence alignment algorithm which is suitable even for noisy parallel
texts, and allows us to increase the amount of extractable high-quality in-domain training
data. We then proceed to a discussion of how to best mix data from multiple domains into
a single model (chapter 6), evaluating existing methods and presenting a novel architecture.
In chapter 7, we consider rule-based and other machine translation systems as additional
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1 Introduction

knowledge sources, and propose methods of integrating these into a domain-specific trans-
lation system. We discuss multiword expressions as a source of ambiguities in SMT in
chapter 8, and present an algorithm to prevent overgeneralisations of translations learned
from (often domain-specific) multiword expressions. We conclude and offer an outlook for
future research in chapter 9.
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2 Statistical Machine Translation

This chapter gives some background on Statistical Machine Translation. The goal is not
exhaustiveness; this would be beyond the scope of this thesis, and good introductions can
be found in (Cancedda et al., 2008; Koehn, 2010). Rather, we will focus on algorithms and
techniques which are most relevant for our experiments.

2.1 Statistical Models for Machine Translation

The basic idea in Statistical Machine Translation is that we can learn to translate from a
corpus of translated text (subsequently called a parallel corpus) by looking at translation
frequencies. If a word or sentence in one language is consistently paired with the same
word or sentence in the other language, this indicates that the two are good translations of
each other. We formalize this expectation that frequent translations are good translations
through probabilistic models.

2.1.1 Word-based SMT

The seminal paper by Brown et al. (1993) marks the (re-)birth of Statistical Machine Trans-
lation, after the original proposal by Weaver (1949/1955) to use computers to learn transla-
tions did not come to fruition in the following decades.

Brown et al. (1993) base their model on Bayes’ theorem to estimate the probability that a
sentence in the target language T is the translation of a source sentence S (equation 1). The
translation problem is the search for the most probable translation T̂ for a given S (equa-
tion 2). P(S|T ) is estimated in a translation model; P(T ) can be estimated monolingually
by a target-side language model (LM), and expresses the probability that the translation is
a sentence in the target language, regardless of the source. P(S) from equation 1 can be
ignored, since the source sentence S is given, and its probability is thus constant for all
possible translations T and does not affect the search for the best translation T̂ .
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P(T |S) =
P(S|T )P(T )

P(S)
(1)

T̂ = argmax
T

P(S|T )P(T ) (2)

The advantage of this decomposition is that we can make simplifying independence as-
sumptions when learning each model. The probability of T is modelled as a Markov chain,
specifically an N -gram language model, i.e. assuming that the probability of each word only
depends on the N − 1 preceding words. Brown et al. (1993) model translation probabilities
on a word level, the individual word translations being independent from each other. For
such a model, the main challenge is to estimate translation probabilities from parallel text
without supervision, and the larger part of (Brown et al., 1993) is devoted to the so-called
IBM models which word-align parallel text through expectation maximization algorithms.
From the aligned parallel text, probability estimates are estimated through Maximum Like-
lihood Estimation (MLE), which in the unrestricted case corresponds to relative frequency
estimation.

2.1.2 Log-Linear Models

A more general version of equation 2 does not simply multiply the model probabilities,
but assigns an exponential weight to each (equation 3). In the logarithmic space, we get
equation 4.

T̂ = arg max
T

P(S|T )λ1 · P(T )λ2 (3)

= arg max
T

exp(λ1 log(P(S|T )) +λ2 log(P(T )))

= arg max
T

λ1 log(P(S|T )) +λ2 log(P(T )) (4)

Equation 4 is a special case of log-linear models (equation 5), with the logarithms of P(S|T )
and P(T ) as features hi.

T̂ = arg max
T

n
∑

i=1

λihi(S, T ) (5)

The log-linear model allows for an inclusion of arbitrary additional features, and given a
method of finding the optimal weights λi, the model is able to distinguish between useful
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and redundant features. The problem of optimizing the weights λi is discussed in sec-
tion 2.3.

State-of-the-art SMT systems no longer only consist of a translation model probability
P(S|T ) and a language model probability P(T ), but use a number of additional features that
have been proven useful, such as smoothed and unsmoothed bidirectional translation model
probabilities P(S|T ) and P(T |S), lexical reordering models (Koehn et al., 2005), and many
more (Och et al., 2004; Chiang et al., 2009).

2.2 Phrase-based Translation Models

Word-based translation models make a strong independence assumption, namely that trans-
lation probabilities can be estimated on a word-level, ignoring the context that a word occurs
in. This assumption does not hold true in natural languages. The translation of a word may
depend on its context for morphosyntactic reasons (e.g. agreement within noun phrases), or
because it is part of an idiomatic expression that cannot be translated compositionally. Also,
some (but not all) translation ambiguities can be disambiguated in a larger context.

Phrase-based translation models improve performance by estimating translation proba-
bilities not only for single words, but also for word sequences.1 Because our experiments
mostly modify phrase-based translation models, subsequently referred to as phrase tables,
we will give some background on how they are learned, and what additional features they
typically contain.

2.2.1 Learning Phrase Translations

Koehn et al. (2003) discuss methods to extract phrase translation pairs from a parallel cor-
pus, and to estimate phrase translation probabilities and other features. They base phrase
pair extraction on the symmetrized results of the IBM word alignment algorithms (Brown
et al., 1993), and then extract all phrase pairs that are consistent with word alignment (Och
et al., 1999), i.e. so that no word in the source phrase is aligned to a word outside the target
phrase, and vice versa. The phrase translation probabilities φ(s|t) are estimated by relative
frequency.

Phrase-based models can treat a sequence of words as a single translation unit, but in-
creasing the length of the unit results in data scarcity. Long phrases tend to be less frequent,
and many are only observed a few times during training. For such low frequencies, relative
frequencies are unreliable probability estimates. Thus, Koehn et al. (2003) propose lexical

1The term phrase is here used for arbitrary word sequences, and is not linguistically motivated.
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weights as an additional feature for phrase pairs. Lexical weights are estimated from the
IBM word alignment probabilities, and are less prone to data sparseness than the directly
estimated phrase translation probabilities. Foster et al. (2006) introduce more smoothing
methods for phrase tables, all aimed at penalizing probability distributions that overfit the
training data because of data sparseness.

Johnson et al. (2007) show another way of dealing with spurious phrase pairs. For each
phrase pair, they perform the Fisher exact test to measure whether phrase pairs co-occur
more often than one would expect by chance to a statistically significant degree. Phrase
table size can be reduced by an order of magnitude without losing translation performance
– translation quality can even increase – by discarding phrase pairs that do not pass a given
significance threshold.

2.3 Discriminative Training

Log-linear models are a powerful framework for SMT because they allow for the inclusion
of various useful features in the model. However, they require a method to obtain optimal
log-linear weights.

While Och and Ney (2002) used the maximum entropy criterion and generalised itera-
tive scaling, Och (2003) proposes to directly optimize translation quality by minimizing
automatic SMT metrics such as word error rate, or maximizing BLEU2. The algorithm,
minimum error rate training (MERT), approximates the search space by storing the n-best
candidate translations given a set of parameters, then iteratively uses the parameters that are
optimal for the accumulated n-best candidates to compute a new n-best list and repeating the
optimization, until convergence. MERT is a wide-spread and important component of SMT
systems, but also a major cause of instability in terms of quality, since it suffers from both
local optimum and overfitting effects. Research has been performed to increase the stability
of MERT (e.g. Cer et al., 2008; Foster and Kuhn, 2009) or account for its instability during
evaluations (Clark et al., 2011).

Alternative discriminative training algorithms for SMT have been proposed in recent
years, such as using a margin infused relaxed algorithm (MIRA) (Watanabe et al., 2007)
and pairwise ranking optimization (PRO) (Hopkins and May, 2011). Apart from the insta-
bility of MERT, these algorithms address the fact that MERT scales poorly to a high number
of features.3 PRO still uses n-best lists for its search space, but instead of Och’s (2003)
line search, generates ranked pairs of translation hypotheses, and trains a linear classifier to

2see section 2.4.
3See (Hopkins and May, 2011) for a demonstration in a synthetic experiment.
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separate the winners of the pairwise comparisons from the losers. The hyperplane of the
classifier is then used as weight vector in the log-linear model. Hopkins and May (2011)
have demonstrated that this approach scales better to a high number of features than MERT.

2.4 SMT Evaluation

Any claims as to the effectiveness of SMT and experimental algorithms need to be sup-
ported by evidence. A quality metric should ideally fulfill several requirements, and the
ISO standard on external metrics (ISO/IEC, 2003) lists several desirable properties for met-
rics. Ideally, a metric should be reliable (free of random error), objective, give repeatable
results, and, most importantly, produce results that are meaningful in regards to quality
characteristics that are evaluated.

For this thesis, we use two automatic metrics, BLEU and METEOR, and we will discuss
potential problems and how we address them.

2.4.1 BLEU and METEOR

BLEU (Papineni et al., 2002) is the classic automatic metric for machine translation. Its core
idea is to use a test set that has been translated by humans, and to consider an automatic
translation to be good if it is similar to the human reference translation(s).

For every N -gram in the translation hypothesis (with N typically from 1 to 4), we check
if it occurs in one or more of the reference translations. This yields N -gram precision
scores, which are averaged out over different N -gram levels by taking the geometric mean.
For N -grams occurring multiple times in the translation hypothesis, the number of matches
is clipped to its frequency in the reference. BLEU does not consider N -gram recall, but
introduces a sentence brevity penalty to penalize translation hypotheses that are shorter than
the reference translation.

There are various criticisms that have been levelled at BLEU, for instance its lack of
recall or its use of a geometric average, which makes BLEU score 0 if there is no match at
the highest N -gram level (Banerjee and Lavie, 2005; Callison-Burch et al., 2006).

METEOR (Banerjee and Lavie, 2005) is a metric that addresses these criticisms by con-
sidering both precision and recall, and by explicitly counting crossing alignments between
the hypothesis and the reference, rather than using higher-order N -grams to measure flu-
ency. METEOR 1.3 (Denkowski and Lavie, 2011) also supports various non-exact matches
between hypothesis and reference: matches on the level of stems, Wordnet synonyms, and
with a paraphrase table.
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system sentence
source We know all too well that the present treaties are inadequate [. . .]
reference Uns ist sehr wohl bewusst, daß die geltenden Verträge unzulänglich sind [. . .]
hypothesis Wir wissen nur zu gut, dass die gegenwärtigen Verträge nicht ausreichen [. . .]

Table 2.1: High-quality translation hypothesis with minimal overlap to human reference
translation.

However, reference-based metrics in general suffer from the fact that the underlying as-
sumption, namely that the similarity of a translation to a human reference allows conclusions
about its quality, need not always be true. There are usually multiple good ways of translat-
ing a sentence, which can be very dissimilar on the surface level, as the example in table 2.1
demonstrates.

To evaluate how meaningful automatic translation metrics are, they can be correlated to
human evaluations. This is done regularly in the Workshops on Statistical Machine Trans-
lation (WMT), where a variety of MT systems are ranked by human judgements (Callison-
Burch et al., 2009, 2010, 2011, 2012). In the 2012 Workshop, most automatic metrics
achieved a relatively low segment-level Kendall’s tau correlation with human judgements
(METEOR: 0.25 into English; 0.20 out of English). Note, however, that even the inter-
and intra-annotator agreement of the manual rankings is relatively low, with inter-annotator
agreement ranging from 0.176 to 0.336 for the different translation directions. This may
be due to the fact that ranking translations by quality becomes harder if the quality gap be-
tween systems is small, as Callison-Burch et al. (2011) point out. Lopez (2012) considers
the problem of producing reliable and repeatable human rankings of machine translation
systems unsolved.

On a system level, BLEU obtained a Spearman correlation with human judgements of
0.81, whereas METEOR-1.3 achieved a correlation of 0.83, for translations into English.
This indicates that at least on the system level, automatic metrics are indeed meaningful in
that a higher score correlates with a higher rank. There are a few famous counter-examples,
for instance the fact highlighted by Callison-Burch et al. (2006) that rule-based systems tend
to do worse in an automatic evaluation than in a human one. This may be one reason why
correlation with human judgements was found to be low for the translation pair EN–DE,
where 3 out of the best 4 systems in the 2012 Workshop were rule-based systems. BLEU’s
correlation with human judgements was found to be 0.22, that of METEOR 0.18. Despite
this sobering meta-evaluation of MT metrics, we will use them in our evaluations for lack
of better alternatives. Since we mostly discuss systems that are technically similar, we hope
that there is no systematic bias in our results that would be contrary to human judgement.
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2.4.2 Randomness and Statistical Significance

Clark et al. (2011) discuss three extraneous variables in SMT systems which cause random-
ness in the results and need to be controlled when evaluating the quality difference between
two systems.

One variable is the test set selection. While a test set should be representative of the
domain for which we want to evaluate SMT performance, different test sets (or subsets
thereof) typically yield different scores due to idiosyncrasies such as sentence length or the
number of unknown words. To estimate whether the score difference between two systems
can be explained by this random variance, or is indeed caused by the underlying systems,
statistical significance tests have been proposed, based on bootstrap resampling (Koehn,
2004) or approximate randomization (Riezler and Maxwell, 2005).

Two other variables that Clark et al. (2011) discuss are related to the optimization of the
weights in the log-linear model (see section 2.3). Since the optimization problem is non-
convex, and approximations are made during the search, optimizers may find different local
optima. Also, different local optima may be overfitted to the development set to different
degrees, which results in randomness in the test set score. If we want to make claims about
the relative performance of the underlying systems, we want to control these variables. Clark
et al. (2011) propose multiple optimizer runs and bootstrap resampling to account for both
optimizer and test set instability.

In the experiments, we use MultEval, an implementation of the approach by Clark et al.
(2011), for statistical significance testing. Note that a low p-value indicates that the differ-
ence between two systems is unlikely to be caused by either test set selection or optimizer
instability. A larger test set and a higher number of optimizer runs typically help to reject the
null hypothesis, i.e. that a random process causes the difference between two systems. How-
ever, passing a statistical significance test does not guarantee that the results are meaningful;
it remains true that automatic metrics do not correlate perfectly with human judgements.

2.5 Alternative Translation Models

In the experiments, we will focus mostly on phrase-based translation models. In this section,
we will discuss some alternative translation models for SMT.

Some of the experiments that we present in this thesis could be applied to these alternative
models. For instance, methods to improve the extraction of training data (chapter 5) and to
apply weights to different training data sets (chapter 6) are relatively model-independent.
Other aspects, such as a decoding-time recomputation of translation probabilities (sec-
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tion 6.6) are less generic, and are unlikely to be applicable to continuous space translation
models or conditional random field models, which do not use simple maximum-likelihood
estimates for translation probability estimation, but iterative optimization.

2.5.1 Hierarchical and Syntax-based Translation Models

Hierarchical phrase-based models (Chiang, 2005) have been proposed as a way to model
discontinuous phrase pairs and reorderings in the translation model instead of requiring a
separate distortion model. The model allows hierarchical phrases that consist of words
(terminals) and subphrases (nonterminals), as in this German-to-English example:

• X → 〈 hat X1 gesehen, has seen X1〉

The model is thus a weighted synchronous context-free grammar (CFG), and decoding is
performed by CYK parsing. Chiang’s hierarchical phrase-based model does not use any lin-
guistically motivated rules, and the hierarchical phrases are learned using similar phrase ex-
traction heuristics as in phrase-based models. However, the formalism can easily be applied
to rules learned from a syntactic parser, and Chiang (2010) gives an overview of approaches
that use syntactic information on the source or target side, or both.

Hierarchical models outperform phrase-based models in some settings, but not in others.
Birch et al. (2009) compare performance of phrase-based and hierarchical models and con-
clude that their respective performance depends on the type of reorderings necessary for
the language pair. Specifically, “phrase-based models account for short-range reorderings
better than hierarchical models do, [...] by contrast, hierarchical models clearly outperform
phrase-based models when there is significant medium-range reordering, and [...] none of
these systems adequately deal with longer range reordering.” (Birch et al., 2009)

Excepting phrase-based models, hierarchical models are the only type of translation
model with which we experiment in this thesis, namely in chapter 8. While phrase-based,
hierarchical and syntax-based models use different types of translation units, model estima-
tion is mathematically similar, and our domain adaptation experiments with phrase-based
models (chapter 6) should be easily transferable to hierarchical and syntactic models.

2.5.2 N -Gram Translation Models

N -gram translation models (Mariño et al., 2006) emerged from finite-state modelling. Sim-
ilar to n-gram language models (which are simply weighted finite-state automata), the prob-
abilities in n-gram translation models are not conditioned on the respective units in the
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other language (p(s|t)), but on their n-gram history (p((t, s)k|(t, s)k−1)). N -gram transla-
tion models can thus be seen as “a language model of a sort of ‘bilanguage’ composed of
bilingual units [tuples]” (Mariño et al., 2006, 528). Apart from this difference in probabil-
ity estimation, the main difference from phrase-based translation models are the extraction
heuristics of the translation units, called phrase pairs in phrase-based SMT, tuples in n-gram
based SMT (see Crego et al., 2004). One difference (and a shortcoming of n-gram transla-
tion models) is that tuple extraction is monotonic, i.e. that the extracted segments must have
the same order in both languages, and that reordering phenomena are thus not modelled
well. The problem can be alleviated by learning linguistically motivated reordering patterns
during training to extend the monotonic search (Crego and Mariño, 2006).

Lavergne et al. (2011) formulate a discriminative variant of n-gram based models, with
the tuple probabilities computed through a conditional random field (CRF). Their system did
not reach the level of performance of phrase-based or n-gram based systems, and Lavergne
et al. (2011) cite their poor reordering model and a sensibility to alignment errors as possible
reasons.

2.5.3 Continuous Space Translation Models

In the models discussed so far, translation probabilities are estimated for a discrete set of
translations units, using MLE, and possibly some smoothing algorithm. For language mod-
elling, continuous space models have proven a strong alternative (Schwenk, 2007). Re-
cently, several continuous space translation models have been introduced (Le et al., 2012;
Schwenk, 2012). The models map the translation units to a continuous representation in a
multi-layer neural network, and perform probability estimation in this continuous space. A
theoretical motivation for this continuous space representation is its generalisation power to
translation units that have not been seen during training.

The continuous space model by Le et al. (2012) is conceptually more similar to n-gram
translation models, the one by Schwenk (2012) to phrase-based models. Since the estima-
tion of translation probabilities through neural networks comes at a significant computa-
tional cost, the authors employ simplifying modelling assumptions, and/or a two-pass de-
coding approach, in which a conventional translation model is used to generate an n-best
list of translations, which are then reranked through the continuous space model.
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2.6 Domain Adaptation in SMT

In chapter 3, we will conduct a qualitative analysis to show some features of domain-specific
language. For this overview of related work on domain adaptation techniques in SMT, we
will follow a loose definition of domain adaptation, subsuming all methods that try to make
better use of the part of the training data that is more similar, and thus more relevant, to
the text that is being translated. Some methods are fully unsupervised (e.g. Zhao et al.,
2004; Yamamoto and Sumita, 2007), and thus have little control over whether they really
adapt their system to different domains, or to some other factor that distinguishes parts
of the text. Finch and Sumita (2008) explicitly target one of these factors, namely the
distinction between questions and declaratives, showing that for some language pairs, and
with a conversation corpus in which both classes of sentences are frequent, the use of class-
specific SMT models improves performance.

2.6.1 Language Model Adaptation

The focus of this thesis is domain adaptation for translation models, but we will shortly dis-
cuss some language model adaptation techniques. Language model adaptation is relevant
to our work for two reasons. Firstly, we will also apply language model adaptation in our
experiments to observe how it interacts with translation model adaptation. Specifically, both
translation model adaptation and language model adaptation aim at moving the probability
distribution towards favouring in-domain translations in case of ambiguity. Earlier studies
reported that adapting both the language and the translation model does not have a cumu-
lative effect (Foster et al., 2010). A second reason is that some language model adaptation
techniques can be (and have been) applied for translation model adaptation.

Zhao et al. (2004) use information retrieval techniques to retrieve sentences from a mono-
lingual text collection that are relevant for the current translation hypothesis. A language
model is built from these sentences, which is then interpolated with a general background
language model.

Foster and Kuhn (2007) investigate mixture-modelling for language models, with compo-
nent models trained on the individual corpora, then mixed through a linear or log-linear com-
bination. They tested several distance metrics on which to base the optimization of model
weights, and propose an expectation–maximization algorithm that minimizes the perplexity
of an in-domain development set. Linear interpolation with perplexity minimization has be-
come common practice in SMT (in the WMT 2008 shared task, e.g. Déchelotte et al., 2008;
Schwenk et al., 2008; Blackwood et al., 2008). As an alternative to linear interpolation,

30



2.6 Domain Adaptation in SMT

the component models can also be added as separate features to the global log-linear SMT
model, with weights optimized on BLEU or other MT metrics through MERT/PRO/MIRA
(Koehn and Schroeder, 2007).

Moore and Lewis (2010) propose a perplexity-based data selection for out-of-domain
monolingual corpora. Given an in-domain and an out-of-domain corpus, their idea is to
select sentences from the out-of-domain corpus based on cross-entropy difference between
an in-domain and an out-of-domain LM, thus selecting sentences that are more similar to
the in-domain corpus than to the out-of-domain corpus.

2.6.2 Translation Model Adaptation

This is a short overview of domain adaptation approaches in SMT that target the translation
model. Selected approaches will be discussed in more detail and evaluated in chapter 6.
Hildebrand et al. (2005) extend the information retrieval approach by Zhao et al. (2004) to
sentence pairs, which are used to train a domain-specific translation model. Yamamoto and
Sumita (2007) propose another unsupervised method, which first clusters parallel training
data through monolingual measures, and then generates cluster-specific models for each
cluster – interpolated with a general model to combat data sparseness. At decoding time,
the closest cluster is predicted for each source sentence, and the sentence is translated with
the cluster-specific system. We will discuss this method more fully in section 6.5.

Foster and Kuhn (2007), in addition to applying mixture-modelling to language models,
do the same with translation models, using interpolation weights optimized on language
models. They find that “both TM and LM adaptation are effective”, but that “combined LM
and TM adaptation is not better than LM adaptation on its own”. While this finding has been
revised since, with results showing that adapting both models can outperform the adaptation
of only one model (Foster et al., 2010), it is conceivable that the two methods are not fully
additive, since both aim at moving the probability distribution towards favouring in-domain
translations in case of ambiguity.

Bertoldi and Federico (2009) build an adapted translation model from monolingual in-
domain data in the target language. They do this by translating the data into the source
language, thus creating a synthetic parallel in-domain corpus. This approach is potentially
useful if a large amount of monolingual in-domain data is available, but no parallel data.
However, the authors also find that a human-translated in-domain corpus is a vastly better
training resource than a synthetic one.

Matsoukas et al. (2009) and Foster et al. (2010) propose instance-weighting based on
a classifier, assigning weights on the level of sentences or phrase pairs. In Foster et al.
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(2010), the instance-weighted out-of-domain corpus is linearly interpolated with an in-
domain model.

Some authors investigate data selection for parallel corpora (Yasuda et al., 2008; Axelrod
et al., 2011). Parts of the out-of-domain corpus that are similar to the in-domain corpus
are selected for training, and the rest is discarded. Note that for parallel corpora, discard-
ing training data may help to learn a probability distribution that better matches the target
domain, but also brings the risk of aggravating data sparseness. Banerjee et al. (2012)
describe data selection techniques that are tailored to reduce the translation model’s out-of-
vocabulary (OOV) rate.

Another common method is the extension of the translation model with additional fea-
tures that indicate whether a phrase pair was learned from in-domain or out-of-domain data
(e.g. Niehues and Waibel, 2010; Nakov and Ng, 2009; Daumé III and Jagarlamudi, 2011).
Niehues and Waibel (2010) use factored translation models to enrich the translation output
with information as to which corpus the phrase pair was learned from. Additional features
in the log-linear model then use this information for scoring. Recently, Chen et al. (2013)
introduced a feature that expresses the similarity between a phrase pair and an in-domain
deveopment set in a vector space model.

Nakov and Ng (2009) perform a deterministic merge of phrase tables, creating a phrase
table that consists of all phrase pairs of the original one, plus all phrase pairs from an out-
of-domain phrase table that do not occur in the original one. The phrase table is extended
by additional features to indicate each phrase pair’s origin. Such a deterministic merge was
also shown to be effective in (Bisazza et al., 2011; Haddow and Koehn, 2012).

We can also add multiple translation models to the global log-linear SMT model, setting
the weights through MERT. Koehn and Schroeder (2007) investigate such a method, but
do not score a phrase pair with both translation models. If a phrase pair occurs only in
one model, and we define the probability of non-occurring phrase pairs as 0, this would
limit the system’s phrase table to the intersection of the two components, exacerbating data
sparseness. Rather, they exploit a framework by Birch et al. (2007) with alternative decoding
paths. During decoding, phrase pairs from each model (with their associated scores) are
considered alternative translation options. If a phrase pair occurs in multiple phrase tables,
this results in multiple translation options being generated, each using only the features from
one model, rather than features from both.

A more in-depth discussion of some domain adaptation techniques, specifically mixture-
modelling (linear, log-linear or through instance weighting), phrase table merging, and data
selection, will follow in chapter 6. We contribute techniques for weight optimization for
instance weighting, unsupervised methods to deal with heterogeneous training or test data,
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and novel ways to use mixture-modelling for multi-engine MT (chapter 7). First, we will
discuss why domain adaptation is important, and what problems it addresses, on the basis
of two sample text collections.

33



2 Statistical Machine Translation

34



3 Domain-specific Language

It is a well-known fact that the performance of language technology tools depends on the
type of text they are applied to. Domain adaptation research aims at improving performance
for different types of texts, but often without discussing how these texts differ. We can
empirically show that performance depends on whether training data is from similar (in-
domain) texts or not, which often is motivation enough. We will do such an empirical
evaluation in section 4.2.

In this chapter, we will offer a qualitative analysis of differences between two text collec-
tions, the mountaineering texts from the Text+Berg corpus, and Parliamentary Proceedings
from the Europarl corpus, with a focus on the translation pair German–French. While we
focus on just two example domains, this analysis will nevertheless give some insight into
the differences between domains, and the consequences for translation.

We will here follow the terminology by Lee (2001), and use domain to refer to the subject
matter of the respective texts, but we acknowledge that they also differ in other dimensions,
such as the situational context and function of the texts, i.e. their genre. As mentioned
in section 2.6, most techniques in domain adaptation research do not make such linguistic
distinctions, and we will also use the term domain vaguely in the subsequent chapters.

3.1 The Text+Berg Corpus

The Text+Berg corpus is a collection of the yearbooks of the Swiss Alpine Club since 1864
(Volk et al., 2010a). The yearbooks have been published in both German and French since
1957, which provides us with a sizeable amount of parallel data for Statistical Machine
Translation. The majority of the texts are originally German and translated into French, but
in rare cases, the original is in French (or a third language).

The corpus is thematically homogeneous. The topic of most articles are the mountains,
or is closely related to mountains. However, there are various sources of heterogeneity.
The diachronic nature of the corpus has an effect on the orthographical and lexical level,
since the spelling of words has changed since the 19th century, and new words have been
introduced since. Also, the goals of the Swiss Alpine Club have changed over time, which
had an effect on the types of texts being published. While the (scientific) exploration of

35



3 Domain-specific Language

the Alps was at the foreground in the early years, mountaineering has since become a sport
(Bubenhofer and Schröter, 2012).

But even within a single year, there is a wide array of topics. Some examples from the
1911 yearbook illustrate the diversity. There are the typical reports on mountain expeditions:
“Klettereien in der Gruppe der Engelhörner” (English: Climbing in the Engelhörner group)
or “Aus den Hochregionen des Kaukasus” (English: From the high regions of the Caucasus).
But the 1911 book also contains scientific articles on the development of caves (“Über die
Entstehung der Beaten- und Balmfluhhöhlen”) and on the periodic variations of the Swiss
glaciers (“Les variations périodiques des glaciers des Alpes suisses”).

3.2 Europarl

Europarl is a collection of Parliamentary Proceedings of the European Parliament (Koehn,
2005). It is well-known in SMT research because the proceedings are currently available
in 21 European languages, and parallel data sets can thus be extracted for 210 translation
directions.

A peculiarity of the Europarl corpus is that it is actually a transcription of (formal) speech.
The corpus is annotated with metatextual information, such as the speaker and original
language of the individual speech segments. Also, the high number of original languages
entails that, no matter the language pair which we want to translate, the majority of text
is originally written in a third language. For the language pair DE–FR, only about 15%
of the speech segments are originally German, another 15% originally French, with 70%
originally being in a third language. Although the original language and translation direction
do influence the text and affect SMT (see Lembersky et al., 2012), we will ignore such
effects in our discussion.

3.3 Linguistic Differences between Text+Berg and Europarl

In order to find linguistic differences between the two corpora, we use three search methods:

• find the most frequent words in one corpus that do not occur in the other.

• find words whose probability (relative frequency) is non-zero in both corpora, but
markedly different.
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German French
word freq. word freq.
Mitgliedstaaten (member states) 31 300 Mesdames (Ladies) 7800
Maßnahmen (measures) 16 900 monétaire (monetary) 3500
Änderungsantrag (amendment) 9400 OMC (WTO) 2900
Menschenrechte (human rights) 6700 budgets (budgets) 2200
schließlich (eventually) 5900 troisièmement (thirdly) 2000
Ausschuß (committee) 5000 Prodi (Prodi) 1700
Berichterstatterin (rapporteur) 4200 commissaires (commissaries) 1700
Binnenmarkt (internal market) 3200 codécision (co-decision) 1300
Arbeitnehmer (employee) 3100 fiscale (fiscal) 1300
Rechtsgrundlage (legal basis) 1900 ACP (ACP) 1300
types (exclusive): 180 000 types (exclusive): 55 000
types (total): 235 000 types (total): 100 000

Table 3.1: Selection of most frequent terms in Europarl corpus that do not occur in
Text+Berg.

• find words that occur in both corpora, but that have different translations, measured by
the most probable translation in one being improbable (or non-existent) in the other,
and vice-versa.

We then qualitatively analyse the top-ranked hits by manually classifying the cause of
the lexical divergences, and discussing their consequences. The search operates on a purely
lexical level and may not find linguistic differences on other levels. However, we can infer
some patterns on the basis of lexical frequencies. For instance, the high frequency of daß
in Europarl (as compared to Text+Berg) can be traced back to regional spelling differences,
namely the fact that in Switzerland, ss is used instead of ß.

Tables 3.1 and 3.2 show words that are typical of Europarl, those in table 3.1 not occurring
in Text+Berg, those in table 3.2 only rarely so. Tables 3.3 and 3.4 do the same for words
typical of Text+Berg.1 Firstly, we can observe that the number of types that both corpora
share is relatively low, between 25% (German) and 45% (French). Both corpora have around
the same number of German types; for French, the Text+Berg corpus even has 50% more
(150 000 as opposed to 100 000). This is especially surprising considering that the parallel
part of Text+Berg is around 5 times smaller than Europarl. The main reason for the high
number of types in Text+Berg is the fact that the corpus was digitised using OCR software,
and many types that are only observed a few times are the result of OCR errors. These

1All statistics on Text+Berg were computed on the part that is parallel DE–FR.
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German French
term ratio term ratio
Änderungsanträge (amendments) 1880 amendement (amendment) 2390
Kommissar (commissary) 1470 directive (directive) 1460
daß (that) 1390 rapporteur (rapporteur) 870
muß (must) 1080 terrorisme (terrorism) 760
Präsidentschaft (presidency) 1010 parlement (parliament) 680
Parlament (parliament) 800 communautaires (of the community) 680
Fraktion ([parliamentary] group) 720 souhaiterais ([I] would like) 550
Terrorismus (terrorism) 660 Kosovo (Kosovo) 460
Vebraucher (consumer) 490 euro (euro) 290
Kosovo (Kosovo) 430 voté (voted) 250

Table 3.2: Selection of terms typical of Europarl. Ratio: (relative frequency in Europarl /
relative frequency in Text+Berg).

erroneous types tend to be infrequent, although we do see evidence of them in table 3.4 in
the form of *meme (instead of même).

There are a few characteristics that types typical of Europarl and those typical of
Text+Berg have in common. These highlight reasons for the fact that a natural language
corpus will never achieve full vocabulary coverage. Compounding in German is a produc-
tive word formation process, and covers the whole frequency spectrum, from the frequent
Menschenrechte and Änderungsantrag in Europarl, Bergführer und Steigeisen in Text+Berg,
to compounds such as Bleistiftstriche (Engl: pencil lines) and Gleitschirmtypen (Engl: types
of paragliders), which only appear once in Text+Berg. The same is true for other word for-
mation processes such as affixation (codécision, Berichterstatterin) or abbreviations (OMC,
SAC).

Some of the types that are rare or unseen in one corpus demonstrate the inflectional
morphology of both German and French. French souhaiterais (Engl: [I] would like) occurs
3000 times in Europarl, but only once in Text+Berg; other types such as commissaires and
budgets do not occur in Text+Berg, whereas their base forms commissaire and budget do.
Other reasons for types being exclusive to one corpus are regional spelling differences, e.g.
the fact that ß is not used in Switzerland, and named entities which are only mentioned in
one corpus, such as Prodi, Bern and Cervin.

This categorisation highlights how new words are formed, but not why the vocabulary
is so different in the two corpora. Following the terminology by Lee (2001), some of the
differences can be attributed to the situational context and function of a text, or its genre.
Europarl consists of political speeches, which are persuasive in nature and directed to an au-
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3.3 Linguistic Differences between Text+Berg and Europarl

German French
term freq. term freq.
SAC (S[wiss] A[lpine] C[lub]) 2500 bivouac (bivouac) 980
grosse (great) 2410 cordée (rope team) 830
Fuss (foot) 1610 Piz (peak) 820
Bern (Berne) 1250 crampons (climbing irons) 690
Bergführer (mountain guide) 750 ascensions (ascents) 670
Piz (peak) 740 névé (névé) 670
Alpinismus (alpinisme) 670 éboulis (scree) 630
Steigeisen (climbing iron[s]) 620 Cervin (Matterhorn) 520
Biwak (bivouac) 550 sherpa (Sherpa) 460
Sherpa (sherpa) 510 bernois (Bernese) 440
types (exclusive): 185 000 types (exclusive): 105 000
types (total): 240 000 types (total): 150 000

Table 3.3: Selection of most frequent terms in Text+Berg corpus that do not occur in
Europarl.

dience. The phrase Mesdames et messieurs (Engl: Ladies and gentlemen) occurs in one out
of 150 sentences, or 7000 times in total. The phrase does not occur, however, in Text+Berg,
which contains texts from other genres, such as travel writing and book reviews, in which a
direct address of the audience is atypical.2 Other types such as souhaiterais and troisième-
ment are also rhetorical devices typical of speeches. Most of the types that we found to be
very typical of one of the corpora, however, are directly related to the subject matter, or do-
main of the respective texts. Europarl is political in nature, and its topics are budgets, legal
amendments, economic policies affecting the internal market, employees and consumers,
and crises that were current at the time of production (Kosovo and terrorism). The texts in
Text+Berg are mostly concerned with mountaineering or issues related to mountain regions
in general, such as reports on the culture and natural phenomena in various mountain re-
gions. Among the vocabulary that is specific to or typical of this mountaineering domain,
we find mountaineering equipment such as bivouac, Steigeisen (Engl: climbing irons) or
rucksacks, geological terms such as falaises (Engl: cliffs), éboulis (Engl: scree) and glacier,
and various other terms such as Bergführer (Engl: mountain guide) and cordée (Engl: rope
team).

For corpus-based machine translation, of which SMT is a subtype, domain-specific vo-
cabulary is one reason why training data is especially relevant when it comes from the same

2If it does occur, it is through phrasing that is specific to written texts, such as chers lecteurs (Engl: dear
readers).
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German French
term ratio term ratio
Hütte (cabin) 5470 arête (ridge) 20 330
Basislager (base camp) 4830 glacier (glacier) 17 000
Fels (rock) 4240 alpinistes (alpinists) 8870
unsern (our) 3140 cabane (cabin) 6930
Nordwand (North Face) 2990 Valais (Valais) 3350
Rucksack (Rucksack) 2990 gravi (climbed) 2920
Füssen (feet) 1970 rochers (rocks) 2910
senkrecht (vertical) 1250 skieur (skier) 1300
Eiger (Eiger) 1020 *meme (even) 1280
Lawinengefahr (avalanche risk) 950 falaises (cliffs) 1160

Table 3.4: Selection of terms typical of Text+Berg. Ratio: (relative frequency in Text+Berg
/ relative frequency in Europarl).

domain as the text that is to be translated. Section 4.2 presents out-of-vocabulary rates with
in-domain and out-of-domain training data, and shows that they can be reduced faster with
in-domain training data than with the same amount of out-of-domain data. However, this
alone would not make domain adaptation challenging: simply using all available parallel
training data minimizes the unknown word problem.3

Tables 3.5 and 3.6 illustrate a second important difference between different domains,
namely that even words which are shared by both domains can have different translations in
each. The lists have been compiled by searching for words whose most probable translation
in one domain-specific translation model is very improbable (or non-existing) in the other
model, and vice-versa. We made a selection to highlight domain-specific translations, but
there are other reasons why translations may diverge between two corpora. For instance,
German Frau is translated to femme (Engl: woman) in Text+Berg, but is predominantly used
as a honorific in Europarl (madame, Engl: Mrs.) Translations may also differ because of
spelling differences in the two corpora (Kenya vs. Kenia and weiss vs. weiß). Such spelling
differences are of little importance for comprehension, and could be normalized away.

Other examples show that the same word may have different meanings in different do-
mains. German Pass typically refers to a mountain pass (French: col) in Text+Berg, but to
a passport in Europarl. In other domains, it has additional meanings, such as the pass of
the ball in sports (French: passe). Words such as montée and appel are used in the more
physical, literal sense of climb and shout in Text+Berg, and in the metaphorical sense of

3The problem can be further reduced by modelling translations on a different level, using lemmatisation,
decompounding, or character-based models (Nakov and Tiedemann, 2012).
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German Text+Berg Europarl
Haushalt ménage (household) budget (budget)
Führer guide (guide) dirigeant (leader)
Ziel but (destination) objectif (objective)
Höhe altitude (altitude) niveau (level)
Pass col (mountain pass) passeport (passport)
Ebene plaine (plain) niveau (level)
Vertrag contrat (contract) traité (treaty)
steigen monter (increase/climb) augmenter (increase)
Sitten Sion moeurs (manners)
Steuer volant (wheel) taxe (tax)

Table 3.5: Selection of German words for which the most probable translation in Text+Berg
has a low probability in Europarl, and vice-versa.

French Text+Berg Europarl
temps Wetter (weather) Zeit (time)
langue Zunge (tongue) Sprache (language)
régime Diät (diet) Regime (regime)
montée Aufstieg (climb) Zunahme (increase)
appel Ruf (shout) Appell (appeal)
faces Wände ([mountain] faces) Seiten (sides)
Kenya Kenya (Kenya) Kenia (Kenya)
branches Äste (branches [of a tree]) Teile (branches [of an organization])
héroïne Heldin (heroine) Heroin (heroin)
sais weiss ([I] know) weiß ([I] know)

Table 3.6: Selection of French words for which the most probable translation in Text+Berg
has a low probability in Europarl, and vice-versa.

increase and appeal in Europarl. A stark contrast are homonyms such as Steuer, which can
mean wheel and tax, the former translation being predominant in Text+Berg, the latter in
Europarl.

These ambiguities add a new problem for SMT. For the same source word, we may learn
starkly different probability distributions from different corpora. We expect that the prob-
ability distribution that we learn from in-domain data has a higher fitness4 for the domain,
except for rare phrases, for which probability estimates are usually poor. This problem,
which we will refer to as the ambiguity problem, requires different strategies than the afore-
mentioned unknown word problem. While adding more training data is a good strategy

4We borrow this term from early evolutionary biology to emphasize that the question in domain adaptation
is not how “good” or “bad” data or a model is, but how well-adapted it is to the task at hand.
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3 Domain-specific Language

to reduce data sparseness and the unknown word problem, adding out-of-domain data can
actually make the ambiguity problem worse, i.e. result in a model that resolves fewer ambi-
guities successfully.

These conflicting effects have a number of consequences. Firstly, they make it hard to
predict the utility of out-of-domain parallel training data for a given task. Out-of-domain
data may reduce data sparseness and thus improve translation performance, but also brings
the risk of aggravating the ambiguity problem and hurting the system. Depending on the
extent of each problem, the net effect of adding more out-of-domain data may be positive or
negative. Secondly, a simple concatenation of training data gives little control over which
translation is preferred in case of ambiguity, and we want to exploit out-of-domain data to
reduce data sparseness, but prefer the in-domain probability distribution for known words.

Section 4.2 provides more empirical evidence of the unknown word problem and the
ambiguity problem. These two problems are the main motivation for the experiments in this
thesis.

42



4 Building a Domain-specific SMT system

4.1 Experimental Data and Model Configurations

Most of the experiments in the following chapters were conducted within the Swiss Na-
tional Science Foundation research project “Domain-specific Statistical Machine Transla-
tion”, which uses the Alpine domain (and thus the Text+Berg corpus) as target domain.
However, various out-of-domain data sets were used in different experiments. We give a
short description of commonly used data sets here, and will later refer to the data sets and/or
models by the names given here, rather than re-introducing them for every experiment.

4.1.1 Corpora

Table 4.1 shows a list of corpora used, along with a short description and their respective
size.1 Corpus size has been measured after tokenization and clean-up.

For experiments in the Text+Berg domain, we typically use SAC_145_dev (1424 sen-
tences) as development set for MERT, PRO and other optimizers, and SAC_test (991 sen-
tences) as evaluation set. Both are held-out from training, and the latter has been extracted
from the Smultron 3.0 treebank (Volk et al., 2010b). The news-test20** data sets, which are
used in some experiments as development and test sets, are from the WMT shared tasks.

1OpenSubtitles is based on documents from http://www.opensubtitles.org
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4.1 Experimental Data and Model Configurations

4.1.2 Tools and Models

Generally, we use openly available tools and commonly used settings to create the exper-
imental SMT systems. Specifically, we follow the instructions of the 2011 Workshop on
Statistical Machine Translation (WMT 2011)2 unless specified otherwise. We will give a
short summary of the steps here.

Data Preparation

Training data and translation sets are tokenized and lowercased. To produce cased output,
we would train and apply a recaser, but we left out this step for the experiments, reporting
case-insensitive scores instead. For translation model training, we perform length-based
filtering, discarding sentence pairs which contain empty sentences, sentences longer than
80 tokens, and pairs with a large divergence in length (by a factor of 9 or more).

Language Models

We build all language models with SRILM (Stolcke, 2002), using interpolated modified
Kneser-Ney smoothing (Chen and Goodman, 1998) and n-gram length 5. We use closed-
vocabulary models, or, where this is not possible (e.g. when using KenLM (Heafield, 2011)
for decoding), a negative log probability of -100 for unknown words.3

To avoid redundancy, we describe a few language models that are used in multiple exper-
iments:

• SAC_WMT11_interpolate_[de,fr]: linear interpolation of language models trained
on SAC_145, Europarl, News-Commentary and News. Interpolation coefficients set
through cross-entropy minimization on SAC_145_dev with SRILM.

• WMT11_interpolate_[de,en]: linear interpolation of language models trained on Eu-
roparl, News-Commentary and News. Interpolation coefficients set through cross-
entropy minimization on news-test2008 with SRILM.

Translation Models

We train 7-gram phrase-based translation models with Moses (Koehn et al., 2007), using
MGIZA++ (Gao and Vogel, 2008) for word alignment, which implements the IBM models.

2http://www.statmt.org/wmt11/baseline.html
3This is not relevant if the language model is trained on a superset of the translation model training data; this

was not the case in all experiments, however.
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4 Building a Domain-specific SMT system

Phrase pairs are extracted with the heuristic grow-diag-final-and. Additionally, we prune
phrase tables based on statistical significance tests (Johnson et al., 2007). The idea is to
collect the phrase co-occurrence statistics from the parallel corpus, and, through the Fisher
exact test, determine whether the co-occurrence frequency is to be expected by chance or
not. All phrase pairs that fall below a pre-defined threshold are discarded, the threshold
being set so that all singleton phrase pairs also fall below it.

The parameters of the global log-linear model are set through Minimum Error Rate Train-
ing (MERT) on a development set (Och, 2003).

Evaluation

As discussed in section 2.4, we report two translation measures: BLEU (Papineni et al.,
2002) and METEOR 1.3 (Denkowski and Lavie, 2011). All results are lowercased and tok-
enized, measured with five independent runs of MERT (Och and Ney, 2003) and MultEval
(Clark et al., 2011) for resampling and significance testing.

If we report differences in score to be significant, we refer to the significance tests by
Clark et al. (2011), which aim at controlling for optimizer instability. However, differences
which are significant under their criterion, i.e. which are unlikely to be caused by a random
process, may still not be meaningful. We typically evaluate approaches on multiple data
sets, and point out if the results are inconsistent.

4.2 SMT Learning Curves: How Important is In-domain Data?

On the data side, there are two simple ways to improve translation quality: get more data,
and get data that is more relevant for the translation task (e.g. in-domain rather than out-
of-domain data). In isolation, both effects are well-described. Koehn (2002) shows the
learning curve of SMT systems on Europarl data to be logarithmic, i.e. that every doubling
of the amount of training data led to a (roughly) constant increase in translation quality.
There has been more work on learning curves in SMT (e.g. Turchi et al., 2009; Kolachina
et al., 2012), and while Kolachina et al. (2012) find functions that fit the learning curve
better than a logarithmic curve, it is a reasonable estimate.

However, adding training data does not guarantee an increase in performance. Koehn
(2002, 15) has remarked that small in-domain corpora perform better when translating ma-
terial from the same domain than larger, out-of-domain corpora. He found that adding out-
of-domain data to the in-domain system even decreased system performance. Other studies
made similar findings (Banerjee et al., 2010; Ceauşu et al., 2011)
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4.2 SMT Learning Curves: How Important is In-domain Data?

There are questions pertaining to the creation of SMT systems for which there is conflict-
ing evidence. On the one hand, our knowledge about the log-linear learning curve of SMT
systems suggests that adding a mere 1000 sentences will hardly improve an SMT system
trained on 1 000 000 sentences. On the other hand, we expect different results when com-
bining a small amount of in-domain data with a large amount of out-of-domain system than
when the amounts are reversed. To shed light on the effects of in-domain and out-of-domain
training data, we present some learning curves that illustrate the respective contribution of
in-domain and out-of-domain training texts.

We have created the data points by training SMT systems with varying amounts of parallel
training data. The language model is the same for all systems, SAC_WMT11_interpolate.4

The training set consists of a simple concatenation of 2x sentences from SAC_145 and 2y

sentences from Europarl, with 10≤ x ≤ 17∨ x = 0 and 10≤ y ≤ 20∨ y = 0. We use a test
set from the Text+Berg corpus (SAC_test), so SAC_145 is considered in-domain (or IN), Eu-
roparl out-of-domain (OUT) for this experiment. For each data point, MERT is performed
on SAC_145_dev. x and y are two independent variables, but we illustrate the results as
a two-dimensional plot: BLEU scores as a function of the number of training set sentences
(2x+2y). To which extent a system is trained on in-domain data is expressed through a third
value x

x+y
, which is represented by the shade of each data point. It ranges from 0 (white),

which denotes an out-of-domain system, to 1 (black) for an in-domain system.

Figure 4.1 shows the learning curve in the translation direction DE–FR in a logarithmic
scale, with BLEU score as a function of training set size. In the appendix, figure 10.1 (p. 147)
shows the same for the translation direction FR–DE. We will focus the discussion on the
results from figure 4.1, which are shown numerically in table 4.2. We observe that systems
trained on purely in-domain data form the upper bound of the learning curve, systems trained
on purely out-of-domain data the lower bound; systems trained on a combination of both
fall in between.5 With this training and test data, adding out-of-domain data does not lead to
a decline in translation quality. However, the more in-domain data is used for training, the
flatter the learning curve for out-of-domain data becomes. Adding 220 sentences of out-of-
domain training data improves BLEU scores by 10.1 points if there is no in-domain data; by
1.8 points with 215 sentences in-domain data; and by 1 point with 217 in-domain sentences.
We can expect this downward trend to continue. That negative learning curves are possible

4Since the collection of monolingual training data is easier by far, using a constant, large language model is
a realistic scenario. Experiments with an out-of-domain language model yielded a similar learning curve,
although on a lower level of performance. See figures 10.2 (p. 148) and 10.3 (p. 148).

5This is true when considering BLEU as a function of training set size. Since the amount of in-domain data
is limited, the globally best system may well use a mix of in-domain and out-of-domain data.
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Figure 4.1: BLEU score as a function of training set size, illustrating the relative effect
of adding in-domain (IN) and out-of-domain (OUT) training data. Data point
colour denotes the relative amount of IN data. Translation direction DE–FR.

has been described in earlier studies (see Koehn, 2002), and indeed, we observe a negative
learning curve in different settings (e.g. figure 10.3, p. 148).

A pleasant surprise is the steep performance improvement possible with in-domain data.
Even the smallest number of sentences we tested (210) has a significant effect on translation
performance – for all tested amounts of out-of-domain data. Specifically, the performance
delta is 3.8 BLEU points with no out-of-domain-data, 1.1 BLEU points with 215 out-of-
domain sentences, and 0.7 with 220 out-of-domain sentences. In other words, even for a
system trained on more than a million sentence pairs, adding 1000 sentences (or 0.1%) of
data can indeed be sufficient to markedly improve translation quality.

One explanation of the unequal contribution of in-domain and out-of-domain data is data
sparseness. In section 3, we have seen that the two corpora have different vocabularies, and
we can expect that, with equal amounts of training data, the in-domain system will reach
a better lexical coverage of the test set than the out-of-domain system. We use the OOV
rate on the test set as an indicator of data sparseness. The OOV rate does not capture all
data sparseness problems, since it does not consider multi-word phrases and the frequency
of phrases.6 Still, we consider the OOV rate to be a useful indicator of data sparseness.

6For rare words, translation performance suffers from spurious alignment and probability estimation (see
Koehn and Knight, 2001).

48



4.2 SMT Learning Curves: How Important is In-domain Data?

IN OUT
20 210 211 212 213 214 215 216 217 218 219 220

20 2.8 5.4 6.3 7.0 7.6 8.3 8.8 9.9 10.3 11.8 12.8 12.9
210 6.6 7.0 7.6 8.3 8.7 9.2 9.9 10.4 11.7 12.3 13.3 13.6
211 8.0 8.7 8.9 9.5 9.7 10.5 10.7 11.5 12.4 13.0 13.6 14.4
212 9.6 10.2 10.3 10.9 11.1 11.4 12.0 12.5 12.9 13.5 14.4 14.6
213 11.5 11.7 12.0 12.2 12.3 12.5 12.9 13.3 13.7 14.0 14.9 15.2
214 13.3 13.1 13.4 13.4 13.6 14.0 14.3 14.3 14.7 15.4 15.6 16.2
215 14.7 14.9 14.9 14.9 15.0 15.2 15.3 15.3 15.7 15.9 16.3 16.5
216 16.0 16.2 15.8 16.2 16.4 16.4 16.7 16.8 16.7 17.2 17.3 17.4
217 17.4 17.5 17.5 17.5 17.6 17.7 17.7 17.5 17.9 18.3 18.4 18.4

Table 4.2: BLEU score for different combinations of training data. Translation direction
DE–FR.

Table 4.3 shows the OOV rate of each system. The table confirms that the in-domain
systems have a higher lexical coverage than the out-of-domain systems. With 217 sentences
of training data, the OOV rate is 9.8% for the in-domain system and 22.8% for the out-
of-domain system. Another way to look at it is that we require 32 times fewer sentences
(215 rather than 220) to achieve the same OOV rate with an in-domain system than with
an out-of-domain system. This is in line with the fact that the two training corpora have
starkly different vocabularies, with a vocabulary overlap of only 25–55% (see tables 3.1,
p. 37 and 3.3, p. 39).

Generally, OOV rate and BLEU score are inversely proportional. We measure a highly
negative Spearman rank correlation of -0.989 between OOV rate and BLEU score.7 This
in itself is unremarkable, since we expect that adding training data both lowers the out-
of-vocabulary rate and increases BLEU scores. However, the data also shows that, even
in this controlled setting, the steeper learning curve of in-domain systems cannot be fully
explained by their faster decrease in OOV rate. A system trained on 215 in-domain sentences
performs 5.9 BLEU points better than a system trained on the same number of out-of-domain
sentences. If we instead compare it to an out-of-domain system with a similar OOV rate,
which is a system trained on 220 sentences, IN still outperforms OUT by 1.8 BLEU points.

Figure 4.2, in which translation performance is shown as a function of the OOV rate,
illustrates the phenomenon that IN systems achieve higher BLEU scores than OUT sys-
tems with comparable OOV rates.8 This gap must be explained by other factors than the

7Of course, the correlation is specific for this test setting, and we do not imply that it will hold true in different
settings, for instance when comparing different language pairs or modelling techniques.

8In high-sparsity settings, the two types of systems converge, with the extremum being 100% OOV rate and
a BLEU score of 2.8. The floor of BLEU score is not 0 because some word sequences (names, numbers,
punctuation marks) are identical in both languages.
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Figure 4.2: BLEU score as a function of out-of-vocabulary rate (tokens). Data point colour
denotes the relative amount of in-domain data. Curves are estimated using least-
squares polynomial fitting (second degree). Translation direction DE–FR.

IN OUT
20 210 211 212 213 214 215 216 217 218 219 220

20 100.0 48.0 43.1 38.6 35.5 31.9 29.1 25.8 22.8 20.7 17.8 16.2
210 42.1 38.1 36.0 33.2 31.4 28.4 25.9 23.4 20.8 18.9 17.0 15.4
211 36.3 33.7 32.4 29.9 28.4 26.2 24.1 21.7 19.6 18.2 16.1 14.6
212 30.3 29.1 28.0 26.8 25.5 23.5 21.8 20.0 18.1 16.7 15.1 13.8
213 25.3 24.5 23.9 22.9 22.0 20.7 19.4 17.9 16.4 15.2 13.9 12.8
214 20.2 19.9 19.6 19.1 18.6 17.7 16.7 15.7 14.5 13.5 12.5 11.5
215 16.4 16.3 16.1 15.9 15.5 15.0 14.3 13.7 12.8 12.0 11.1 10.3
216 12.6 12.6 12.6 12.4 12.1 12.0 11.6 11.1 10.8 10.1 9.6 9.0
217 9.8 9.7 9.7 9.7 9.6 9.5 9.3 9.1 8.8 8.5 8.0 7.6

Table 4.3: OOV rate (tokens) for different combinations of training data. Translation direc-
tion DE–FR.
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unknown-word problem, whose extent is expressed by the OOV rate. One issue in domain
adaptation that we identified in section 3 is the ambiguity problem. Even if a word is known
by both the in-domain and the out-of-domain system, we expect that the in-domain system is
more likely to produce a translation that is appropriate for the domain (see tables 3.5 (p. 41)
and 3.6 (p. 41)).

The interaction between the unknown-word problem and the ambiguity problem explains
why learning curves for a mix of in-domain and out-of-domain data can be so unpredictable,
and even negative. Out-of-domain data helps to mitigate the unknown-word problem, which
improves translation quality. At the same time, out-of-domain data exacerbates the ambigu-
ity problem. Depending on how serious data sparseness and the ambiguity problem are at
a given point, adding out-of-domain data may either improve performance (if the benefit of
reducing data sparseness outweighs the negative effect of introducing translations that are
unfit for the domain), or decrease it.9 Adding in-domain data has no such drawback: it both
mitigates the unknown word problem and the ambiguity problem.

In summary, the most important findings of this analysis of SMT learning curves are the
following:

• In-domain data allows for relatively steep learning curves, even when adding it to a
system trained on large amounts of out-of-domain data.

• Data sparseness is an important reason why in-domain data is more valuable than out-
of-domain data. With the same training set size, in-domain data sets result in better
lexical coverage than out-of-domain ones.

• Data sparseness is not the only reason why in-domain data is more valuable than out-
of-domain data. The probability distribution learned from in-domain data is better
fitted to the domain than the one learned from out-of-domain data.

• Whether adding out-of-domain data can improve SMT performance is unpredictable,
and depends on the relative effects of the reduction in data sparseness and the increase
in ambiguity. Adding out-of-domain data to systems trained on large amounts of in-
domain data may lead to very flat training curves (figure 4.1) or even negative ones
(figure 10.3, p. 148).

One conclusion that we can draw from these findings is that in-domain data is very valu-
able, and efforts to better exploit in-domain corpora can be worthwhile even if the potential

9Haddow and Koehn (2012) report experimental evidence that support this distinction. They found that
adding out-of-domain phrase pairs that are unknown in the in-domain translation model improves SMT
performance, while re-scoring phrase pairs with additional out-of-domain data is harmful.
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amount of in-domain data looks small compared to existing out-of-domain corpora. We will
discuss such efforts in section 5. Also, the advantages and disadvantages of out-of-domain
data have implications for the question of how to best integrate out-of-domain data, which
we will discuss in section 6. Without starting this discussion now, we want to emphasize
that a simple concatenation of data sets, as performed in this chapter, is an unsatisfactory
technique. Since the effect of adding out-of-domain data is unpredictable and may even
be negative, the creator of an SMT system either has to accept this risk of performance
degradation, or test different combinations of data sets and use the best one. This is a time-
consuming process from which we learn little – if adding a data set decreases performance,
we cannot conclude that it is bad; it simply has a lower fitness for the tested target domain
than other data sets. Ideally, a domain adaptation technique should make such a trial-and-
error combination of data sets superfluous.

4.3 Summary

After introducing experimental tools and methods, we perform first experiments with the
concatenation of in-domain and out-of-domain data. We show empirical evidence for the
importance of in-domain training data, and that tiny amounts of in-domain data (compared
to the amount of out-of-domain training data) can significantly improve translation quality.
Conversely, we show that out-of-domain training data yields much smaller improvements,
and sometimes even results in quality degradation. We discuss the relationship between
OOV rate and translation quality, and show that higher vocabulary coverage is an important,
but not the only reason for the superiority of in-domain training data. The importance of
in-domain data, and the unpredictable benefits from adding out-of-domain data, partially
motivate our experimental research in the following chapters.
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The previous chapter has shown how sensitive SMT systems are to the domain of the (par-
allel) training data, and how important it is to use in-domain training data. This means that
large, freely available parallel corpora such as Europarl and the UN corpus, which cover
only specific domains, are unsatisfactory for many SMT purposes. Collecting parallel re-
sources that are tailored to the translation task at hand, and training a domain-specific system
on these resources, may be the most effective way of improving SMT performance relative
to a general-purpose system. As a consequence, it is important to have robust tools for the
preparation of new parallel corpora.

Sentence alignment, the task of identifying which sentences correspond to each other in
a text and its translation, is a relatively easy task in well-structured text collections such as
Europarl. Europarl is marked-up with structural information such as paragraph and speaker
information, and paragraph and speaker changes serve as anchors in sentence alignment.
Sentence alignments are not allowed to cross these boundaries, which means that a sen-
tence alignment algorithm only has to process small units of texts, and any errors do not
propagate across paragraph boundaries. Koehn (2005) reports that a paragraph in Europarl
typically consists of only 2–5 sentences, and that this leads to a “very high” alignment qual-
ity. Figure 5.1 shows an excerpt of Europarl, annotated with manual alignments, structural
anchors, and showing the beginning and length (in words) of each sentence. Note that most
alignments in Europarl are trivial. Manning and Schütze (1999) report that typically, ap-
proximately 90% of sentence alignments are 1-to-1, with the remaining 10% being cases in
which the translators merge, split, insert or delete sentences during translation.

For other text collections, sentence alignment is significantly harder. In the Text+Berg
corpus, there are various complicating factors for sentence alignment. Since it is a collec-
tion of journal articles, there are fewer (reliable) structural anchors available to guide the
alignment process. The only reliable anchor point are article boundaries, which are iden-
tified with the help of manually corrected tables of contents. With 300 000 sentences and
2500 articles, the average length of an article is 120 sentences. Paragraph boundaries are
not reliable enough to serve as anchor points, partially because of stylistic differences be-
tween the original authors and the translators, partially because of errors in the automatic
digitisation process.
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Genehmigung des Protokolls. . .
Das Protokoll von gestern. . .

Gibt es Einwände?
Herr Präsident, nach. . .
Ich wollte lediglich. . .
Herr Speroni, ich. . .

Wissenschaftlich betrachtet. . .
Aber aus der Sicht. . .
Deshalb wird Ihre Überlegung. . .
Das gibt mir die Möglichkeit. . .
Auf jeden Fall. . .

(Beifall). . .

Adoption of the Minutes. . .
The Minutes of yesterday’s. . .
Are there any comments?
Mr President, yesterday. . .
I just wanted to mention that. . .
Mr Speroni, I am aware. . .
Scientifically you are right.
However, according to popular belief. . .
Therefore, your comments. . .
I would like to take this opportunity. . .
In any case, personally. . .
In any event, on behalf of the Bureau. . .
(Applause). . .

Figure 5.1: Sample sentence alignment in Europarl. Numbers indicate sentence length
(number of tokens). Red lines denote structural anchors (speaker/paragraph
boundaries).

A large distance between anchors is a problem because alignment errors can propagate,
since a misalignment prevents other sentences from being correctly aligned. This increases
the likelihood that they will be misaligned as well. In the worst case, this causes a chain
reaction of misalignments up to the next anchor. There are additional error sources related
to the digitised nature of the Text+Berg corpus. Image captions, which physically appear in
different places in the two language versions, may be misrecognized as part of the running
text. This means that an algorithm should ideally be robust towards such blocks of deleted
or inserted sentences.

Additionally, the number of easy 1-to-1 sentence alignments (beads) is markedly lower in
Text+Berg than the 90% reported as being typical for other corpora (Manning and Schütze,
1999). In a manually-aligned set of 1000 sentences, spanning 7 articles, we observe only
74% 1-to-1 beads. 16% are 1-to-2 or 2-to-1 beads, 6.3% 1-to-0 or 0-to-1 beads, and the
remaining beads are m-to-n alignments of higher order. Since alignment error rates are
typically higher for non-1-to-1 beads (see Gale and Church, 1993), this has consequences
on the expected performance of sentence alignment tools.

Figure 5.2 shows an excerpt of the Text+Berg corpus with manual alignments. The exam-
ple illustrates some reasons why the number of 1-to-1 beads is unusually low. Partially, it is
due to differences in the use of punctuation, which affects automatic sentence splitting. The
German book reference Albert Eggler: Gipfel über den Wolken. Bern: Hallwag. is split into
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. . . . . .

. . .

. . .

Die Originalberichte in. . .
- « Die Alpen » 1956 , Varia. . .
- AlbertEggler :
Gipfel über den Wolken .

Bern :
Hallwag .
- « Berge der Welt », Bd.XI. . .
Über den spektakulären. . .
1952 Augustin Lombard. . .
Die Chomo-Lungma-Gruppe. . .

5. Für den Winter 1956/57 ist . . .
Näheres ist bisher noch nicht. . .
6. Über die schottischen. . .

a ) Les articles originaux dans. . .
b ) Les Alpes 1956 , Varia. . .
c ) Albert Eggler , Gipfel über den Wolken .
Hallwag , Bern .
- Berge der Welt , Bd. XI , 1956/57 .
Outre les succès alpinistiques. . .
1952 , Augustin Lombard en géologie. . .
1952/53 , L.G.C.Pugh en physiologie ;
1954 , Helmut Heuberger en géographie ;
1954/55 , Pierre Bordet. . .
1955 , Erwin Schneider. . .
1956 , Fritz Müller. . .
Petit à petit , le groupe. . .
5. Une expédition. . .

Elle se rendra à Solo. . .
C’ est tout ce que l’ on sait . . .
6. La chronique himalayenne . . .

Figure 5.2: Sample sentence alignment in Text+Berg. Numbers indicate sentence length.

four sentences, its French translation into two. Also, the French translator chooses to split
multiple comma-separated enumerations in the German original into separate sentences.

These examples illustrate that it is harder to perform sentence alignment for the Text+Berg
corpus than for well-structured text collections such as Europarl. Still, the importance of in-
domain data for SMT suggests that we should not choose training data that is easy to align,
but training data from the domain which we want to translate.

5.1 Related Work

The first sentence alignment algorithms by Brown et al. (1991) and Gale and Church
(1993) were based on a length-comparison between source and target text and work with-
out language-specific information. A second strand of sentence alignment algorithms work
with lexical information. Lexical information is integrated through correspondence rules
(Simard et al., 1993), through dictionaries (Varga et al., 2005; Ma, 2006), or using a trans-
lation model trained on the parallel text itself (Moore, 2002; Varga et al., 2005; Braune and
Fraser, 2010).
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The approaches by Moore (2002), Varga et al. (2005) and Braune and Fraser (2010) are
related in that they all perform a length-based alignment of the parallel text in a first pass,
build a translation model from it, and use this for a second alignment pass. The differences
are in the choice of the alignment model, search space pruning, and strategy to identify 1-
to-many beads. Braune and Fraser (2010) note that the Microsoft Bilingual Aligner (Moore,
2002) only returns 1-to-1 beads1, and proposes a two-step clustering approach to improve
recall for 1-to-many beads. In a first step, the dynamic programming search identifies 1-to-1
beads, and in a second step, these beads (and possible unaligned sentences) are merged if a
merge results in a model-optimal alignment.

Different degrees of textual and meta-textual structure open different possibilities for sen-
tence alignment. Tiedemann (2007) shows that movie subtitles can be aligned on the basis
of time stamps. Sentence alignment is also performed on comparable corpora for which the
monotonicity assumption, i.e. the assumption that the sentences in the two versions of the
corpus are in the same order, does not hold (Fung and Cheung, 2004; Adafre and de Rijke,
2006; Yasuda and Sumita, 2008).

5.2 MT-based Sentence Alignment

We describe an MT-based sentence alignment algorithm, introduced in (Sennrich and Volk,
2010).2 The basic idea of MT-based sentence alignment is to not align source and target
text directly, but to first perform an automatic translation of the source text into the target
language, and then aligning this translation with the target text. Each potential sentence pair
is assigned a weight by a modified version of BLEU, and a dynamic programming search is
then performed to find the best path of alignments.

MT-based sentence alignment requires an MT system for the language pair. It is thus more
demanding than length-based approaches, which require no further resources. Compared to
approaches that use external dictionaries, availability of MT systems may be better or worse.

MT-based sentence alignment can also be bootstrapped, and learn the required resources
from the to-be-aligned corpus itself. This bootstrapped approach consists of performing a
first alignment with a length-based (or any other) sentence alignment algorithm, building
an SMT system from the resulting corpus, and then using this SMT system to translate the

1Internally, it also computes 1-to-2 and 2-to-1 beads, which can be printed with a small modification to the
implementation.

2We have released an implementation of the algorithm as free software on https://github.com/
rsennrich/Bleualign
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weight computation DP search additional procedures

Figure 5.3: 20× 10 alignment matrix (T ′ × T ) illustrating different steps of alignment al-
gorithm. True alignment is shown in green for weight computation step. Beads
added or updated in a step are shown in yellow; those from previous steps in
gray.

corpus for a second, MT-based alignment (Sennrich and Volk, 2011). This is conceptually
similar to the hybrid approach by Moore (2002) and its variants.

5.3 Bleualign: Algorithm

Given two texts S = s1, s2...sn and T = t1, t2...tm, each being a sequence of sentences, and an
automatic translation of S in the target language T ′ = t ′1, t ′2...t ′n, the task is to find sentence
alignments between S and T . The algorithm achieves this by first computing an alignment
between T ′ and T , and then replacing each t ′i with s′i as a final step. The motivation is that
it is easier to automatically decide whether any pair (t ′i ,t j) is a potential bead than it is for
(s′i ,t j). T ′ and T form an n×m matrix, and we will illustrate the algorithm with an example
(figure 5.3). The true alignment is highlighted in the leftmost matrix. Note the 1-to-3 bead
(t ′17, t7,8,9), and the unaligned sentences t ′7,...,16, which makes this an example of a bitext for
which length-based algorithms perform poorly.

The sentence alignment algorithm consists of three steps, illustrated in figure 5.3:

1. A weight is computed for every sentence pair in the matrix.

2. A dynamic programming search finds the best path of 1-to-1 beads in the matrix.

3. Gaps in the alignment matrix are filled using two procedures: a higher-order align-
ment search and a length-based alignment.
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5.3.1 Weighting Sentence Pairs

In a first step, a weight is assigned to every sentence pair in the alignment matrix, using a
similarity score. In principle, any similarity score can be used, and it can be adjusted to the
language pair.3

Bleualign uses 2-gram BLEU as similarity measure (Papineni et al., 2002). BLEU has
been criticised as a measure of translation quality (see section 2.4), and is not considered
reliable on a sentence level (Callison-Burch et al., 2006), but the decision whether two
sentences correspond to each other or not is markedly easier than comparing the quality of
two systems.

The choice of 2-gram BLEU over the more conventional 4-gram BLEU is motivated by
the fact that the final score uses the geometric mean of the different n-gram orders, resulting
in a score of 0 for sentence pairs without matching 4-gram. Thus, 2-gram BLEU remains
useful for sentences with no 4-gram matches.4 Also, the algorithm measures BLEU in both
directions, once with t ′i as hypothesis and t j as reference, once vice versa, to obtain a sym-
metrical score, since the original BLEU score is an asymmetrical precision score.

The complexity of this step is O(n × m), with n being the number of sentences in the
source text, m the number of sentences in the target text. The search space is not pruned
because the algorithm is conceived to work even if the alignment does not fall along the
main diagonal. The computation of BLEU is relatively inexpensive, especially for the large
portion of sentence pairs for which their sets of bigrams are disjoint, and thus have a BLEU

score of 0.5 Note that n and m are not the size of the whole corpus, but of the text between
two anchor points, since each such text can be aligned independently.

5.3.2 Dynamic Programming Search

As a next step, the algorithm finds a path of 1-to-1 beads that maximizes the sum of weights
along the path, while retaining a monotonic order of the alignments. The search is restricted
to 1-to-1 beads for computational complexity reasons; 1-to-many or many-to-1 beads are
extracted in a later step.

The search can be conceptualised as a shortest-path search through a weighted acyclic
directed graph, with a complexity of O(|V |+|E|), |V | being the number of vertices, |E| the
number of edges. We define all cells in the alignment matrix as vertices, with each cell being

3Yildiz and Tantuğ (2012) report that a lexicon-based sentence alignment for English–Turkish performs better
when stemming is applied, and the same may be true for MT-based alignment for agglutinative languages.

4An alternative solution would be to smooth the number of n-gram matches (Lin and Och, 2004).
5Also, note that we need to perform costly operations such as normalization and n-gram extraction only once

per sentence.
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connected to its neighbours through (directed) edges.6 The algorithm has a complexity of
O(n× m), and is a close variant of the longest common subsequence algorithm, with the
only difference being that each cell represents a sentence pair instead of a character pair,
and that the weight of each cell is real-valued rather than binary.

5.3.3 Additional Alignment Procedures

The dynamic programming search has two main shortcomings. Firstly, it only finds 1-to-1
beads. Secondly, sentence pairs that have a BLEU score of 0 are never extracted, which
impairs recall. Thus, two further procedures are applied to find more alignments.

In a first heuristic, any 1-to-1 beads that precede or follow unaligned sentences (either
in T ′ or T ) are concatenated with those unaligned sentences. This results in 1-to-n and/or
n-to-1 candidate beads, with n ranging from 2 to a configurable maximum. A 1-to-n or n-
to-1 candidate bead is preferred over the original 1-to-1 bead if it obtains a higher weight.7

In our example in figure 5.3, the sentences t9, and t ′9...t ′16 are unaligned after the dynamic
programming search, among others. The procedure thus forms a number of new candidate
beads from the existing bead (t ′17, t8), such as (t ′16,17, t8) and (t ′17, t8,9). Since (t ′17, t8,9)
scores higher than both the original bead and all other candidates formed from the original
bead, it is added to the best path of beads.

In a final step, unaligned sentences are aligned with the length-based Gale and Church
algorithm, using the beads from the previous step as anchor points. Length-based alignment
is performed for each gap, i.e. each block of sentences between two anchor points, unless
its size is both asymmetrical by a factor larger than two and larger than three sentences.
This adds the beads (t ′1, t1) and (t ′5, t5) to the matrix in figure 5.3. Note that if the dynamic
programming search has a low precision, for instance because no translation is provided,
this procedure will also perform poorly, since it relies on the beads of the dynamic program-
ming search as anchors. Even if the anchor points are reliable, we expect this length-based
alignment to have a lower precision than the other procedures. Nevertheless, we consider it
important to not only extract sentence pairs that are already well-translated, i.e. for which
t ′i and t j are similar and obtain high BLEU scores. If the automatic translation of a sentence
is poor because of unknown words, this means that its human translation is particularly
valuable for training.

6Note that this algorithm is slightly more efficient than the one we describe in Sennrich and Volk (2010),
which required pruning to keep complexity to O(n×m).

7For BLEU, the algorithm requires an increase in the number of n-gram matches, to make sure that the BLEU
score not only improves because of a change in brevity penalty.
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system
strict lax

P R F1 P R F1

Gale and Church 0.67 0.68 0.68 0.79 0.80 0.80
MBA 0.89 0.67 0.76 0.96 0.72 0.83
Gargantua 0.79 0.85 0.82 0.88 0.93 0.90
Bleualign 0.87 0.84 0.85 0.99 0.95 0.97

Table 5.1: Sentence alignment quality on manually-aligned test set.

5.4 Evaluation of Sentence Alignment

For an evaluation of sentence alignment algorithms, we use the same test procedure and
manually aligned test set as in (Sennrich and Volk, 2010), but with a larger release of the
Text+Berg corpus.

A hand-aligned set of 1000 sentences, or 7 articles, from the Text+Berg corpus, serve as
gold standard. The evaluation measures precision, recall and F1 with two truth conditions.
Under the strict condition, an alignment hypothesis is considered true if it exactly matches
the gold alignment. Under the lax condition, a partial match on both language sides is
sufficient.

The evaluation covers four systems: an implementation of (Gale and Church, 1993), the
Microsoft Bilingual Aligner (MBA) (Moore, 2002), Gargantua (Braune and Fraser, 2010),
and Bleualign (Sennrich and Volk, 2010). For Bleualign, we use the approach described in
(Sennrich and Volk, 2011), namely a bootstrapped approach that requires no existing MT
system, but uses an SMT system trained on the corpus itself, based on an alignment with
(Gale and Church, 1993).

Table 5.1 shows alignment quality measured on the manually-aligned test set. More vari-
ants, for instance Bleualign with different translation systems, were evaluated in (Sennrich
and Volk, 2010). Gale and Church serves as a baseline with an F1 of 0.68 (strict) and 0.80
(lax). MBA beats the length-based algorithm in terms of precision, but offers slightly lower
recall values. The F1 score is 0.76 (strict) and 0.83 (lax). Gargantua obtains better recall
values than MBA, at the cost of precision. In terms of F1, it beats MBA by 0.06 (strict)
and 0.07 (lax) points. Bleualign performs best, with an F1 of 0.85 (strict) and 0.97 (lax).
Compared to the results in (Sennrich and Volk, 2010), where Bleualign was applied with
out-of-domain translation systems, there is an improvement in F1 of 0.04 (strict) through
the bootstrapped approach described in (Sennrich and Volk, 2011).

Table 5.2 reports the size of the phrase table that is learned from the different corpora,
both before and after pruning according to statistical significance tests (Johnson et al., 2007).
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5.4 Evaluation of Sentence Alignment

system
phrase table size

unfiltered filtered
Gale and Church 20 000 000 365 000
MBA 8 140 000 344 000
Gargantua 15 400 000 543 000
Bleualign 14 400 000 592 000

Table 5.2: Phrase table size (number of phrase pairs) with different sentence alignment al-
gorithms, before and after significance filtering (Johnson et al., 2007).

system
DE–FR FR–DE

BLEU METEOR BLEU METEOR
Gale and Church 17.1 35.8 12.8 32.6
MBA 17.0 35.8 13.2 32.7
Gargantua 17.8 36.8 13.4 33.2
Bleualign 17.8 36.9 13.4 33.2

Table 5.3: SMT performance. Best systems (no other system being significantly better)
marked in bold.

The two sizes are an indication of how many good sentence pairs are found. Without signif-
icance filtering, the Gale and Church system has the largest phrase table by a wide margin.
However, the high number of phrase pairs is actually a sign of randomness. When filtering
out phrase pairs that do not meet the required significance threshold8, it becomes markedly
smaller than the filtered tables based on Gargantua and Bleualign. The phrase table sizes
indicate that the system based on Bleualign has the highest number of non-random phrase
pairs, whereas the Gale and Church system has the highest number of random phrase pairs.

Table 5.3 shows SMT performance with different sentence alignment algorithms being
used to align the parallel training corpus. Gargantua and Bleualign are both winners in
that they significantly outperform Gale and Church and the Microsoft Bilingual Aligner,
by a margin of 0.2–1.1 BLEU/METEOR points. The difference between Bleualign and
Gargantua is not statistically significant.

As to the choice of a sentence alignment tool, both Bleualign and Gargantua show compa-
rable performance, and outperform MBA and Gale and Church’s algorithm.9 Gargantua has
the advantage of having no external dependency, while Bleualign either requires an existing
MT system or a toolkit to train an SMT system from the to-be-aligned corpus. However, the

8defined as a p-value lower than the statistical significance of 1-1-1 phrase pairs, i.e. phrase pairs for which
the frequency of the source phrase, the target phrase, and the phrase pair are all 1.

9In an evaluation on two different data sets, Bleualign performed best (Abdul-Rauf et al., 2012).
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possibility to use any MT system turns into an advantage for Bleualign if the bitext that one
wants to align is relatively small. In this case, too little data may be available for reliably
estimating the IBM-1 model that Braune and Fraser (2010) use for the second alignment
pass in Gargantua.

5.5 On the Relation Between Sentence Alignment Quality and SMT

Performance

We cannot directly cross-reference tables 5.1 and 5.3. The results in table 5.1 are based
on 7 articles, and the difference in alignment quality on the full SAC_145 corpus with ap-
proximately 2500 articles may be more extreme. With a different test set, consisting of
a single article of 500 sentences, we observed MBA and Gale and Church’s algorithm to
completely fail (Sennrich and Volk, 2011). However, there are other means to investigate
the relationship between sentence alignment quality and SMT performance.

Considering the alignment metrics precision and recall, we will first discuss how relevant
precision is for SMT performance. Since we have no data on sentence alignment precision
on the whole SAC_145 data set, this will be done with artificially induced noise. The basis
for this experiment is the corpus aligned with Bleualign. Randomly aligned sentence pairs
from the monolingual parts of SAC_145 are added until the size of the original corpus is
87.5%, 75%, 50%, 25% or 12.5% of the full corpus.10 Since the number of correctly aligned
sentence pairs is not changed (although it is lower than 100% to an unknown degree), this
corresponds to corpora with differing precision, but identical recall. This experiment al-
lows us to estimate how robust SMT systems are against misaligned sentence pairs, and
conversely, how important sentence alignment precision is.

Table 5.4 shows SMT performance for these systems with artificial misalignments. With
12.5% and 25% misalignments, performance is significantly worse, with a drop of 0.3 BLEU

points, and 0.3–0.6 METEOR points relative to the baseline. With 50% noise, performance
drops by 1.1 BLEU and 1.8 METEOR points. With 87.5% noise, the system is 5.6 BLEU

and 8.6 METEOR points worse than the original system.

The main reason why misaligned sentence pairs hurt SMT is that in randomly aligned
sentence pairs, word alignment is similarly random. This hampers word alignment with the
IBM models, even for the correctly aligned sentence pairs. Wrong word alignments cause
two problems for the phrase table. Firstly, additional, random phrase pairs are added to the

10Sentences occurring in the parallel corpus have been removed, so that only new sentences are added to the
parallel corpus.
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alignment unfiltered phrase table filtered phrase table
precision BLEU METEOR BLEU METEOR
1 17.8 37.0 17.8 36.9
0.875 17.5 36.6 17.7 36.8
0.75 17.5 36.3 17.8 36.7
0.5 16.7 35.2 17.3 36.5
0.25 14.3 31.7 16.1 34.8
0.125 12.2 28.4 14.5 32.8

Table 5.4: SMT performance DE–FR with artificially induced misalignments. The mis-
alignments are added to the original corpus (aligned with Bleualign), so the num-
ber of correctly aligned sentence pairs is constant.

phrase table. Secondly, the translation probability estimates are based on noisier data, and
thus become more uniform. Significance tests can partially neutralize the first type of noise,
i.e. random phrase pairs, and the results in table 5.4 confirm that performance degrades more
slowly when the phrase table is filtered with a significance test, the difference between the
filtered and the unfiltered system being 2.3 BLEU and 4.4 METEOR points for the most
extreme setting with 87.5% misalignments.

One conclusion from the results is that, if we apply significance filtering, SMT systems
are relatively robust towards misaligned sentence pairs. While a low sentence alignment
precision harms SMT performance, we only see those effects at values of below 75% align-
ment precision. If sentence aligners perform above this level, there is little potential in trying
to filter out noisy sentence pairs. In (Sennrich and Volk, 2010), we report on attempts to im-
prove sentence alignment precision by performing MT-based sentence alignment in both
translation directions, and then intersecting the results. While this procedure did improve
sentence alignment precision, it lowered recall, and did not improve SMT performance.

A causal link between the recall of sentence alignment algorithms and SMT performance
is easy to establish. By definition, algorithms with higher recall extract more good sentence
pairs from a parallel corpus, which reduces data sparseness and leads to an improvement in
SMT performance as seen in section 4.2. We can predict score gains for different training
set sizes based on the learning curves in table 4.2 (p. 49), and cross-reference those with
the actual performance observed in table 5.3. For a comparison of MBA and Bleualign,
we assume that we can fully attribute the difference in SMT performance to differences in
recall, since the difference in precision is small. The training corpus obtained with Bleualign
is 60% larger than the one obtained with MBA, so we assume that this number reflects the
relative improvement in recall by Bleualign.
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The logarithmic learning curves for SAC_test with systems trained on SAC_145 suggest
that for German–French, performance improves by 1.5 BLEU points per doubling of the
amount of parallel training data.11 From an increase in recall (training set size) by 60%, we
would expect a gain in BLEU score by log2(1.6)·1.5≈ 1. For French–German, performance
increases by about 1.3 per doubling, so the expected score difference would be log2(1.6) ·
1.3 ≈ 0.9. The actually observed differences in table 5.3 are 0.8 BLEU points, which is
slightly below, but close to these expectations.

This causal link between sentence alignment recall and SMT performance may be useful
to estimate the potential effect of choosing a different sentence aligner, and explains why it
will not improve performance for all corpora. If the corpus is relatively easy to align, and a
length-based algorithm achieves a recall of above 90%, only a small improvement in recall
(and thus SMT quality) is possible. Conversely, an increase in recall by 60% can result in a
significant performance improvement.12

5.6 Summary

We discuss why sentence alignment is harder for a relatively unstructured and noisy cor-
pus such as Text+Berg, compared to well-structured text collections such as Europarl. We
propose a novel sentence alignment algorithm that is based on the machine translation of
the source text. The main alignment is performed between the automatic translation of the
source text and the target text, based on surface similarity of potential sentence pairs. The
best path of alignments, found in a dynamic programming search, is then complemented
through multiple additional alignment procedures. We find that Bleualign, an implementa-
tion of this algorithm, outperforms other sentence alignment tools on a hand-aligned test set.
By applying different sentence alignment tools on an SMT training corpus, we also observe
significant improvements in translation quality from the better-performing alignment tools.

We conclude that our novel sentence alignment algorithm successfully reduces the data
sparseness problem in our target domain. To further reduce data sparseness, out-of-domain
data can be used, and the next chapter is dedicated to the combination of in-domain and
out-of-domain parallel data.

11At least in the range that we are concerned with. We cannot extrapolate these numbers to very low amounts
of data.

12The logarithmic nature of the learning curve suggests that this will hold true regardless of the absolute
amount of training data. Indeed, the benefit of better sentence alignment has not decreased in this thesis,
although the evaluation is based on twice the amount of training data compared to (Sennrich and Volk,
2010).
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Problem

In section 4.2, we operated with the most basic method of combining parallel training data,
its concatenation. This section is devoted to alternative methods, which all have in common
that in-domain data is given preference in some ways in order to mitigate the ambiguity
problem. We both give an overview of existing approaches, and propose new methods.1

The settings in which one may want to perform domain adaptation vary. A setting with
one in-domain and one out-of-domain corpus, as used in section 4.2 and other domain adap-
tation research, is an idealization. Typically, we have a larger number of parallel corpora
available, and merging them into one in-domain and one out-of-domain corpus is not nec-
essarily easy or useful. It is also possible that a system needs to support multiple target
domains (Banerjee et al., 2010), or that we have one multi-domain training corpus with
which we want to perform unsupervised adaptation (Yamamoto and Sumita, 2007). We will
operate under the assumption that the target domain is known for any given task, but we en-
vision a system that can be quickly adapted to new domains, and which can switch between
decoding for multiple domains online. We describe an architecture that supports both online
adaptation and multiple target domains in section 6.6.

We further assume that multiple parallel corpora are available for training, but that we
cannot make any further assumption about their relative fitness.2 A development set of
about 1000 sentences will serve as the only information about the target domain. Ideally, a
domain adaptation method should perform well even if we cannot make a binary distinction
into in-domain and out-of-domain corpora, and should perform no worse than the baseline, a
concatenation of all data, if several (or all) corpora are comparably fit, meaning that none is
preferable for the target domain. A method that fulfills these requirements may not perform
better in terms of BLEU under ideal circumstances, but reduces both the effort and risk of
building a domain-specific SMT system.

1This chapter builds on our work in (Sennrich, 2012b,a; Sennrich et al., 2013).
2As discussed in chapter 3, we want to emphasize that the question in domain adaptation is not how “good”

or “bad” data or a model is, but how well-adapted it is to the task at hand. In other words, the same model
has a different fitness for different tasks, and adapting a model to one domain may reduce its fitness for
others.
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With risk, we mean the fact that performance gains or losses can be unpredictable. We
have seen that adding out-of-domain training data can both improve or decrease SMT per-
formance, depending on the relative effects of the unknown word problem and the ambiguity
problem (see figures 4.1 (p. 48) and 10.3 (p. 148)). Building a domain-specific system could
thus entail the tedious process of ascertaining that none of the training corpora that has been
selected harms performance, at worst through trial-and-error. Thus, the risk of performance
degradation requires an additional effort on the part of the creator of the SMT system. The
same argument can be made for any adaptation technique.

We will begin with a discussion of different translation model combination techniques,
and then proceed to an empirical evaluation. Our main contributions are techniques for per-
plexity optimization with instance weighting (section 6.2.3), an approach which combines
training data clustering and domain adaptation (section 6.5), and a framework for decoding-
time domain adaptation (section 6.6).

6.1 Discussion of Domain Adaptation Techniques

6.1.1 Log-linear Interpolation

A log-linear combination of translation models is a good fit into the general log-linear ar-
chitecture of SMT systems. A major advantage is that the model weights can be optimized
directly through MERT (or any other discriminative optimizer for log-linear SMT). Each
translation model typically consists of multiple features, and a log-linear combination adds
all of them to the global log-linear model (equation 5, p. 22).

One problem is that, without smoothing, observations with probability 0 in one model
will also have an interpolated probability of 0.3 This means that the interpolated translation
model is the intersection of the component models, which runs counter to our goal of min-
imizing the unknown word problem. In the evaluation, we will apply uniform smoothing,
i.e. a constant probability of 0.001 (for all features except for the phrase penalty, which is
2.718), for unknown phrase pairs.

A second method to integrate additional translation models into the log-linear model is
using them as alternative decoding paths (Birch et al., 2007), an idea which Koehn and
Schroeder (2007) first used for domain adaptation. The basic difference is that this method
does not use all translation models to score a phrase pair, but considers phrase pairs from
different models as alternative hypotheses. Each translation model comes with its own set
of weights (5 in the standard Moses model), which can be discriminatively optimized. If a

3Defining log(0) as − inf.
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phrase pair occurs in multiple phrase tables, this results in multiple translation options being
generated, each using only the features from one model, rather than features from both.

Theoretically, mixing several translation models log-linearly is guaranteed to lead to equal
or better performance compared to using only one of the models. In the worst case, the
additional models have a detrimental effect, but we can always set the model weights so
that they are fully ignored. In practice, each translation model adds 5 more dimensions to
the weight space, and with many models, discriminative optimization will either take far
longer, search a smaller region of the weight space, or both. Thus, scaling this method to
a high number of models is problematic with MERT, although PRO or MIRA promise to
scale more gracefully.

A suboptimal choice of weights is not the only weakness of alternative paths, however.
Let us assume that all models have the same weights. Note that, if a phrase pair occurs in
several models, combining models through alternative paths means that the decoder selects
the one with the highest probability, whereas with linear interpolation, the probability of
the phrase pair would be the average of all models. Selecting the highest-scoring phrase
pair is the less robust decision, and prone to data noise and data sparseness. If one model
overestimates the probability of a phrase pair, e.g. because the estimation is based on a low
number of observations, this phrase pair is likely to be selected, which may negatively affect
the translation.

As a side note, we want to emphasize that different combination algorithms need not be
mutually exclusive. Regardless of the domain adaptation technique that we apply, we use a
log-linear SMT model as the global model. Even for translation model adaptation, hybrid
approaches can be successful. In (Sennrich, 2011a), we combined the architecture with
alternative paths with a second method of rescoring an out-of-domain model.4

6.1.2 Linear Interpolation

A well-established approach in language modelling is the linear interpolation of several
models, i.e. computing the weighted average of all probabilities. It is defined as follows:

p(x |y;λ) =
n
∑

i=1

λi pi(x |y) (1)

with λi being the interpolation weight of each model i, and with (
∑n

i=1λi) = 1. Note that
this weight vector λ is independent from the weight vector of the global log-linear model.

4More specifically, a model trained on translation hypotheses of other MT systems. See chapter 7.
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For SMT, linear interpolation of translation models has been used in numerous systems.
The approaches diverge in how they set the interpolation weights. Some authors use uniform
weights (Cohn and Lapata, 2007), others empirically test different interpolation coefficients
(Finch and Sumita, 2008; Yasuda et al., 2008; Nakov and Ng, 2009; Axelrod et al., 2011),
others apply monolingual metrics to set the weights for translation model interpolation (Fos-
ter and Kuhn, 2007; Koehn et al., 2010).

There are reasons against all these approaches. Uniform weights are easy to implement,
but give little control. Empirically, it has been shown that they often do not perform opti-
mally (Finch and Sumita, 2008; Yasuda et al., 2008). An optimization of BLEU scores on a
development set is promising, but slow and impractical, especially if the translation model is
rebuilt between optimization runs. There is no easy way to integrate linear interpolation into
log-linear SMT frameworks and perform discriminative optimization, since linear interpo-
lation does not behave linearly in the log-space in which log-linear models are optimized.5

Monolingual optimization objectives such as language model perplexity have the advantage
of being well-known and readily available, but their relation to the ambiguity problem is
indirect at best. Foster et al. (2010) optimize the interpolation weights so as to minimize the
translation model perplexity on a development set of phrase pairs, which has the attractive
property of being directly related to the ambiguity problem. A lower perplexity means that
more probability mass is given to the correct phrase pairs (according to a reference set),
which also means that the model will be more likely to predict these phrase pairs during
decoding.

Linear interpolation is seemingly well-defined in equation 1. Still, there are a few imple-
mentation details worth pointing out. If we directly interpolate each feature in the translation
model, and define the feature values of non-occurring phrase pairs as 0, this disregards the
meaning of each feature. If we estimate p(x |y) via MLE (see equation 3), and p(y) = 0,
then p(x |y) is strictly speaking undefined. A naive algorithm treats unknown phrase pairs
as having a probability of 0, which results in a deficient probability distribution. Alterna-
tively, we propose and implement the following algorithm. For each value pair (x , y) for
which we compute p(x |y), we replace λi with 0 for all models i with p(y) = 0, and then
re-normalize the weight vector λ to 1. We do this for p(t|s) and lex(t|s), but not for p(s|t)
and lex(s|t), our reasoning being the consequences for perplexity minimization (see sec-
tion 6.2.3). Namely, we do not want to penalize a small in-domain model for having a high
out-of-vocabulary rate on the source side, but we do want to penalize models that know the
source phrase, but not its correct translation.

5Recently Haddow (2013) has extended PRO to also optimize a linear mixture of translation models.
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A second modification pertains to the lexical weights lex(s|t) and lex(t|s), which form
no true probability distribution, but are derived from the individual word translation prob-
abilities of a phrase pair (see Koehn et al., 2003). The lexical weights are calculated as
follows, using a set of word alignments a between s and t:6

lex(s|t, a) =
n
∏

i=1

1

|{ j|(i, j) ∈ a}|

∑

∀(i, j)∈a

w(si|t j) (2)

A special NULL token is added to t and aligned to each unaligned word in s. w(si|t j) is
calculated through MLE, as in equation 3, but based on the word (pair) frequencies.

We propose to not interpolate the lexical weights lex(s|t) and lex(t|s) directly, but the
word translation probabilities w which are the basis of the lexical weight computation. The
reason for this is that word pairs are less sparse than phrase pairs, so that we can even
compute lexical weights for phrase pairs which are unknown in a model.7 We will evalu-
ate these proposed modifications of linear interpolation, along with a naive variant, which
defines p(x |y) = 0 if p(y) = 0, and directly interpolates the lexical weights.

6.1.3 Instance Weighting

Weighting of different corpora can also be implemented through a modified Maximum Like-
lihood Estimation. The traditional equation for MLE is:

p(x |y) =
c(x , y)
c(y)

=
c(x , y)
∑

x ′ c(x
′, y)

(3)

where c denotes the count of an observation, and p the model probability. If we generalise
the formula to compute a probability from n corpora, and assign a weight λi to each, we
get:8

p(x |y;λ) =

∑n
i=1λici(x , y)
∑n

i=1

∑

x ′ λici(x ′, y)
(4)

We also use this weighted variant of MLE for the word translation probabilities w(si|t j) in
equation 2 to introduce instance weighting for lexical weights.

6The equation shows lex(s|t); lex(t|s) is computed analogously.
7For instance if the word pairs (the,der) and (man,Mann) are known, but the phrase pair (the man, der Mann)

is not.
8Unlike equation 1, equation 4 does not require that (

∑n
i=1λi) = 1.

69



6 Translation Model Combination: Tackling the Ambiguity Problem

The main difference to linear interpolation is that this equation takes into account how
well-evidenced a phrase pair is. This includes the distinction between lack of evidence and
negative evidence, which is missing in a naive implementation of linear interpolation.9

Translation models trained with weighted training instances have been discussed before,
and have been shown to outperform uniformly weighted models in some settings. However,
researchers who demonstrated this fact did so with arbitrary weights (e.g. Koehn, 2002),
by empirically testing different weights (e.g. Nakov and Ng, 2009), or by using language
model perplexity (Shah et al., 2012). Matsoukas et al. (2009) optimize instance weights
discriminatively, but since their weights do not fit into the log-linear framework, they do
so by optimizing translation error rate (TER) on n-best lists of hypotheses. We propose an
optimization of the weights in equation 4 by minimizing translation model perplexity, which
allows for a quick and automatic optimization of instance weights.

6.1.4 Data Selection

Data selection for translation models has been presented in (Yasuda et al., 2008; Axelrod
et al., 2011). Both approaches have in common that they use an in-domain translation model,
combined with sentence pairs from out-of-domain corpora that are similar to the in-domain
text. Yasuda et al. (2008) use language model perplexity, while Axelrod et al. (2011) use the
cross-entropy difference between an in-domain and a general model as proposed by (Moore
and Lewis, 2010).

We argue that these perplexity-based data selection methods do not adequately consider
the unknown word problem. Even if discarding parallel training data reduces perplexity,
which would indicate that ambiguities are better resolved in the smaller model, discarding
data will also increase data sparseness, and can thus lead to worse performance than with
all available training data.

Alternatively, one can mine out-of-domain resources for unseen words, as e.g. Daumé III
and Jagarlamudi (2011) and Banerjee et al. (2012) suggest. Such approaches specifically
aim to reduce the unknown word problem, but they do not address the ambiguity problem.
Banerjee et al. (2012) show an improvement over a purely in-domain system, but do not
compare their system to one that uses all available training data.

9Smoothing or significance filtering can downgrade or remove phrase tables with little evidence, so the
problem may not be as pressing in practice.
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6.1.5 Priority Merge

Nakov (2008) perform a priority merge of phrase tables, creating a phrase table that consists
of all phrase pairs of the original one, plus all phrase pairs from an extra phrase table that do
not occur in the original one. The phrase table is extended by additional features to indicate
each phrase pair’s origin. This adaptation method is also known as “phrase-table fill-up”
(Bisazza et al., 2011).

Haddow and Koehn (2012) evaluate the same merging procedure, without adding any
features, and show that it outperforms a concatenation of training data. The motivation be-
hind a priority merge is consistent with the unknown word problem and ambiguity problem:
new phrase pairs are introduced to reduce the unknown word problem, but for known phrase
pairs, the out-of-domain model is disregarded, so that it does not exacerbate the ambiguity
problem. The algorithm can be regarded as a special case of linear interpolation, with the
original model receiving a weight near 1, the extra model a weight near 0.10

While a priority merge can yield the desired result, it has several limitations. Considering
that it can be conceived as an extreme form of linear interpolation, there are situations for
which we expect less extreme weights to be optimal. For instance, if multiple models have a
comparable fitness, we expect that considering evidence from all of them is better than just
selecting one probability estimate.

It is unclear how to automatically prioritize models in a setting with a higher number of
models, or when the target domain is not known beforehand, but specified through a devel-
opment set. One could engineer ways to automatically prioritize the models, for instance
using language model perplexity for ranking. In our evaluation, we do not perform such
experiments, but only report on the results for the binary setting with one in-domain, one
out-of-domain model.

6.1.6 Origin Features

A common method is the extension of the translation model through additional features that
indicate the origin of the phrase pair. There are multiple ways to implement this idea, and
different features have been proposed (e.g. Nakov, 2008; Niehues and Waibel, 2010; Daumé
III and Jagarlamudi, 2011).

An implementation that includes phrase pairs from multiple corpora and only differen-
tiates them through this origin feature is conceptually very similar to the alternative paths
idea presented in the log-linear interpolation section, with the difference that phrase pairs

10How well linear interpolation simulates this algorithm depends on an implementation detail discussed in
section 6.1.2, namely how to distribute the probability mass if a phrase pair does not occur in all models.
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from different models share the log-linear weights. The main disadvantage is the same as
for alternative weights decoding: the phrase pairs from different models compete during de-
coding, and a max (or min) function determines the most likely (or least costly) hypothesis
as winner, but the evidence from different corpora is not consolidated, and the method is
sensible to outliers. Of course, this may not be true for all implementations, and there are
systems that combine multiple methods. We will evaluate an implementation of a priority
merge that includes origin features, but we will not claim any generalisable insight into the
use of origin features because of the many ways to integrate them.

6.2 Perplexity

We will now introduce some measures from information theory and discuss how they can
be applied to translation models. This serves two purposes. Firstly, they can serve as an
indirect, but quickly optimizable, objective function for setting optimal model weights of
various combination methods such as linear interpolation or instance weighting. Secondly,
they can serve as an analytic tool to investigate the extent of the ambiguity problem for a
given translation model and a reference set of translations.

6.2.1 Theoretical Background

In information theory, entropy is a measure of “information, choice and uncertainty” (Shan-
non, 1948). How well we can predict the outcome of an event depends on the number of
possible outcomes and on how probable each one is. The entropy is highest if the outcome is
fully random, with a uniform probability 1

n
for each of n outcomes, and zero if one outcome

is certain and all others impossible. The notion that texts are not fully random lies at the
heart of language modelling. On the basis of an entropy analysis, Shannon (1951) has shown
that we can better predict symbols (letters or words) if we consider the preceding symbols,
which is the basis for n-gram models. In applications such as speech recognition and MT,
we use this predictive power of language models to deal with noisy channels, e.g. to predict
which translation of an ambiguous source phrase is most probable. A “perfect” language
model would be able to predict all symbols with certainty, eliminating any ambiguity from
the noisy signal.11

11This, of course, would only be possible if a language were fully redundant, and thus quite boring.
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The classical definition of the entropy H is:

H =−
∑

x

p(x) log2 p(x) (5)

Cross-entropy does not measure the uncertainty inherent in a text, but compares the model
probability distribution q to a “true” one p, which is estimated through a reference set with
N events.

H(p, q) =−
∑

x

p(x) log2 q(x) (6)

H(p, q)≈−
N
∑

i=1

1

N
log2 q(x i) (7)

A derived measure is perplexity, defined as 2H(p,q). For optimization, the difference between
cross entropy and perplexity is purely cosmetic.

A low perplexity means that the model gives a high probability to the events in the ref-
erence set, which entails that it is more likely to predict these events in a generative setting
than a model with high perplexity. Thus, a low perplexity is a desirable property for lan-
guage models, and lower perplexity has been shown to correlate with better performance
in various applications such as speech recognition (Chen et al., 1998; Chen and Goodman,
1998) and MT (Brants et al., 2007). The degree of correlation depends on the exact nature of
the models being compared. Chen and Goodman (1998) find that “this correlation [between
perplexity and performance] is especially strong when considering only n-gram models that
differ in the smoothing technique used”. There are limitations to the usefulness of perplex-
ity, for instance when comparing models with different vocabularies. Brants et al. (2007)
note that “perplexities tend to be higher with larger vocabularies”, which means that if we
compare models trained on different data, the one with the higher perplexity (and larger
vocabulary) may actually be the better-performing one. This may also account for the weak
correlation between perplexity and translation performance observed by (Eck et al., 2004).

6.2.2 Translation Model Perplexity

On a purely theoretical basis, monolingual models tell us nothing about how ambiguous
the translations in a parallel corpus are, and how close the translations are to the ones we
wish for. Still, language model perplexity has successfully been used to optimize translation
model weights (Foster and Kuhn, 2007; Koehn et al., 2010), and for translation model data
selection (Yasuda et al., 2008). This may work in practice because a corpus that is from
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6 Translation Model Combination: Tackling the Ambiguity Problem

the same domain as the reference set is typically both more similar monolingually and more
similar in terms of how ambiguous words are translated. Nevertheless, we aim to directly
capture the perplexity of the translation model.

For the feature p(t|s), we calculate the cross-entropy as follows:

H =−
∑

s,t

1

N
log2 p(t|s) (8)

with N being the number of phrase pairs (s, t) in an in-domain reference set. The definitions
for the other translation model features are analogous. The algorithm ignores phrase pairs
in the test set that are missing from the translation model, and strictly speaking would be
assigned a probability of 0.12

Translation model perplexity is an integral part of expectation–maximization word align-
ment (Brown et al., 1993), and has been used to analyse the performance of SMT systems
(Al-Onaizan et al., 1999). It has also been used to optimize a linear interpolation of transla-
tion models (Foster et al., 2010).

The main obstacle to computing translation model perplexity is that it requires an align-
ment between the source and the target text on the word/phrase level13 One possibility would
be a manual alignment, which exists for SAC_test as part of the Smultron treebank (Volk
et al., 2010b). However, we will focus on using an automatic alignment in order to demon-
strate that the method remains practical in settings without manual alignment. We automat-
ically align development sets with the same procedure that we use for training translation
models (i.e. IBM word alignment and heuristic phrase pair extraction), and use the result-
ing phrase pairs as reference set. This reference set is undoubtedly noisy, but the noise is
reduced by the fact that phrase pairs that do not occur in any of the translation models are
ignored.

Operating with translation model perplexity has several advantages over monolingual
measures if we want to optimize translation models. Firstly, there is a clear connection
between translation model perplexity and the resolution of translation ambiguities. A lower
perplexity indicates that more probability mass is assigned to correct translations, and less
to incorrect ones.14 Conversely, a higher perplexity indicates that the ambiguity problem is

12For this reason, the measure is unsuitable to compare translation models with different vocabularies. During
optimization, the vocabulary is kept constant.

13In contrast, language model perplexity requires all n-grams in a reference text, which are trivial to extract.
14Assuming that the feature being optimized is a true probability distribution. Otherwise, a model might

assign a pseudo-probability of 1 to all observations, which would look good in a perplexity computation,
but have little discriminative value. In hindsight, it is always easy, but not always believable, to say “I
could have seen that coming”.

74



6.2 Perplexity

more severe, and that the model gives lower probabilities to the correct phrase pairs. Thus,
minimizing perplexity maximizes the probability of translations that are correct according
to the reference set, and thus increases the probability that they will be produced during
decoding.

Secondly, there is not just one translation model perplexity, but one per feature.15 When
optimizing model weights in domain adaptation, different features may have different op-
tima, which we cannot find through monolingual measures.

6.2.3 Perplexity Minimization

Discriminative optimization, although having a desirable objective, i.e. directly optimiz-
ing BLEU or another evaluation metric, is problematic for linear interpolation and instance
weighting because of the non-linear behaviour of linear interpolation coefficients or instance
weights in the logarithmic space in which the log-linear model operates.

We choose to optimize translation model perplexity to weight the component models of
instance weighting and linear interpolation. While perplexity minimization has attractive
theoretical properties, such as being a convex search problem, a major pre-condition is that
lower perplexity correlates with better application performance.

Schwenk and Koehn (2008) discuss perplexity minimization for the mixture of language
models, which has become common practice in MT (e.g. in the WMT 2008 shared task:
(Déchelotte et al., 2008; Schwenk et al., 2008; Blackwood et al., 2008)). Schwenk and
Koehn (2008) also compare perplexity to empirical BLEU scores, and find that the em-
pirically best interpolation coefficient is not necessarily the one with minimal perplexity
(although the difference between the two is small). Similarly, Haddow (2013) finds that
discriminatively optimizing interpolation weights outperforms a perplexity optimization in
one of the two evaluated data sets.

While perplexity does not guarantee optimal performance, it has the advantage of being
cheap to compute and optimize, even for a high number of component models. Based on
equation 7, we formulate our optimization problem as follows:

λ̂= arg min
λ

−
∑

x ,y

1

N
log2 p(x |y;λ) (9)

15The lexical weights are not true probability distributions, but are derived from word translation probabilities.
Thus, we also optimize perplexity for lexical weights.
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6 Translation Model Combination: Tackling the Ambiguity Problem

We can fill in equations 1 or 4 for p(x |y;λ), and (s, t) or (t, s) for (x , y). The optimization
itself is convex and can be done with off-the-shelf software. We use the L-BFGS algorithm
with numerically approximated gradients (Byrd et al., 1995).

6.3 Evaluation of Domain Adaptation Techniques

In this section, we perform a systematic comparison of the domain adaptation methods
that we discussed so far. We perform all experiments on two data sets, but vary some
experimental conditions in order to evaluate performance under heterogeneous conditions.

6.3.1 Data and Methods

The general training and evaluation procedure is described in section 4.1. Log-linear combi-
nation of models and combination through alternative paths are optimized discriminatively,
and this capability is built-in in Moses. To make sure that decoding is performed on the
union of phrase pairs, we gave a back-off probability of 0.001 to all phrase pairs which do
not exist in a model, for all features except the (constant) phrase penalty.

For all methods with perplexity minimization, we use our own implementation tmcom-
bine.16 For data selection, we use XenC (Rousseau, 2012), which implements cross-entropy
difference data selection as described by Moore and Lewis (2010). We use the bilingual
application of the approach as in (Axelrod et al., 2011). The amount of selected data is
determined by picking the dataset that minimizes cross-entropy. For the priority merge, we
use the implementation provided to Moses by Bisazza et al. (2011).

As first data set, we use SAC_145 as in-domain corpus, Europarl, Acquis and OpenSub-
titles as out-of-domain corpora. SAC_test serves as test set, SAC_145_dev as development
set for both perplexity minimization and MERT. We use the same lexical reordering model
(trained on SAC_145) and language model (SAC_WMT11_interpolate_fr) for all experi-
ments. All phrase tables are filtered through statistical significance testing before model
combination (Johnson et al., 2007).

As the second data set, we use the Haitian Creole – English data from the WMT 2011 fea-
tured translation task. It consists of emergency SMS sent in the wake of the 2010 Haiti earth-
quake. Originally, Microsoft Research and CMU operated under severe time constraints to
build a translation system for this language pair. This limits the ability to empirically verify
how much each data set contributes to translation quality, and increases the importance of

16The source code is available in the Moses repository http://github.com/moses-smt/
mosesdecoder.
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6.3 Evaluation of Domain Adaptation Techniques

Data set units words (en)
SMS (in-domain) 16 500 380 000
Medical 1600 10 000
Newswire 13 500 330 000
Glossary 35 700 90 000
Wikipedia 8500 110 000
Wikipedia NE 10 500 34 000
Bible 30 000 920 000
Haitisurf dict 3700 4000
Krengle dict 1600 2600
Krengle 650 4200
Total train 120 000 1 900 000
Dev 900 22 000
Test 1274 25 000

Table 6.1: Parallel data sets for Haiti Creole – English translation task.

Data set sentences words
SMS (in-domain) 16k 380k
News 113 000k 2 650 000k

Table 6.2: Monolingual English data sets for Haiti Creole – English translation task.

automated and quick domain adaptation methods. Because of the smaller data sets, we did
not perform phrase table filtering for this data set, and use a reordering model trained on
all available data. The parallel data sets are listed in table 6.1, and the monolingual ones in
table 6.2. The language model is adapted to the development set through linear interpolation
with perplexity minimization.

To evaluate performance in more settings, we perform two manipulations of the data sets.
Firstly, we additionally include results for which only 10% of parallel in-domain data is
used. Note that both data sets have a relatively high ratio of in-domain to out-of-domain
parallel training data (1:20 for DE–EN and 1:5 for HT–EN). Previous research has been per-
formed with ratios of 1:100 (Foster et al., 2010) or 1:400 (Axelrod et al., 2011). Considering
the ambiguity problem, we expect domain adaptation to be more important if the ratio of IN
to OUT is low, because in these settings, the probability distribution of the translation model
will be dominated by OUT. Also, low ratios of IN to OUT are a realistic setting in practice,
and will remain so, given that the amount of freely available (out-of-domain) parallel data
is steadily increasing. We refer to these two settings as 100% of IN and 10% of IN. Lexical
reordering model and language model are the same as in the original experiments.
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6 Translation Model Combination: Tackling the Ambiguity Problem

Secondly, we perform domain adaptation with four randomized training sets, obtained
through concatenating and reshuffling the original data sets. This reflects a setting in which
all data sets have a similar fitness for the target domain. There are approaches that can per-
form unsupervised domain adaptation on a single, heterogeneous data set (e.g. Hildebrand
et al., 2005; Yamamoto and Sumita, 2007; Sennrich, 2012a), but the methods in this evalua-
tion all operate on the granularity of pre-existing data sets or models, or, in the case of data
selection, require a binary split into in-domain and out-of-domain data. We expect a simple
concatenation of the data sets to be optimal in this setting, and expect that some methods
perform significantly worse. For instance, alternative path decoding and priority merging do
not combine the evidence of multiple models to obtain better probability estimates, which
means that they rely on sparser data. The data set sizes of these random models are not
uniform, but they are the same as for the original data sets. Reordering model and language
model are the same as for the original experiment.

6.3.2 Results

The results are spread over various tables; for the discussion, we will proceed method by
method, taking all results into account. Results for DE–FR are shown in tables 6.3 and 6.4,
the former with a binary split of IN and OUT data, the latter with 4 component models.
Table 6.5 shows results after reshuffling sentence pairs: this randomized setting shows how
the domain adaptation methods perform when none of the component models is clearly in-
domain. Tables 6.6 and 6.7 show results for the HT–EN data set, the former again with a
binary split into IN and OUT data, the latter with 10 component models.

As far as the baselines are concerned, the IN systems consistently outperform the OUT
systems, and the concatenation of all data outperforms the IN system in all experiments.
Of course, this order is not a general rule. If we were to further decrease the amount of
IN data used, we would reach a point where the OUT systems perform better, as shown in
section 4.2. Also, the concatenation of all data is not guaranteed to outperform a purely
in-domain system. Examples of decreasing performance are shown in figure 10.3 (p. 148),
and in (Sennrich, 2012b).

A linear interpolation of the component models with uniform weights performs better
than the concatenation of all data in most experiments, or just as well in the case of ran-
domized component models. Only in the HT–EN experiment with 10 components does a
concatenation of data outperform a linear interpolation with uniform weights. Again, this
is an artifact of the data sets. When concatenating data, the impact of IN data on the model
distribution depends on the relative amount of IN and OUT data, and is relatively low if
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System
100% of IN 10% of IN

BLEU METEOR BLEU METEOR
IN 17.9 37.0 15.7 33.5
OUT 14.8 32.3 14.8 32.3
unweighted/uniform weights
instance weighting (concatenation) 18.3 37.3 17.1 35.4
linear interpolation (naive) 18.8 37.8 17.6 36.0
priority merge 18.7 37.8 17.3 35.9
discriminative weighting
log-linear interpolation 18.4 37.6 17.0 35.6
alternative paths 18.6 37.8 17.4 36.0
perplexity minimization
instance weighting 18.7 37.9 17.6 36.2
linear interpolation (naive) 18.8 37.9 17.6 36.1
linear interpolation (modified) 18.9 38.0 17.6 36.2

Table 6.3: Domain adaptation results DE–FR (SAC_test) with binary split into IN and OUT.

System
100% of IN 10% of IN

BLEU METEOR BLEU METEOR
unweighted/uniform weights
instance weighting (concatenation) 18.3 37.3 17.1 35.4
linear interpolation (naive) 18.6 37.6 17.3 35.8
discriminative weighting
log-linear interpolation 17.5 36.4 16.2 34.5
alternative paths 18.3 37.4 16.3 35.1
perplexity minimization
instance weighting 18.8 37.8 17.4 36.0
linear interpolation (naive) 18.5 37.7 17.3 35.9
linear interpolation (modified) 18.7 37.9 17.3 36.0

Table 6.4: Domain adaptation results DE–FR (SAC_test) with 4 component models.
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System BLEU METEOR
unweighted/uniform weights
instance weighting (concatenation) 18.4 37.3
linear interpolation (naive) 18.4 37.4
priority merge 18.2 37.2
discriminative weighting
log-linear interpolation 18.2 37.1
alternative paths 18.0 36.9
perplexity minimization
instance weighting 18.4 37.3
linear interpolation (naive) 18.5 37.3
linear interpolation (modified) 18.4 37.4

Table 6.5: Domain adaptation results DE–FR (SAC_test) with 4 randomized component
models.

the IN data set is small. Thus, the impact of IN data in a linear interpolation with uniform
weights may be higher (or lower) than in a concatenation.

The priority merge was only evaluated for the binary setting, giving priority to IN over
OUT, and in the randomized setting, giving priority to the models with the lowest perplexity
on the development set.17 The priority merge is among the best methods for HT–EN, and
also outperforms the baseline for DE–FR, albeit with slightly lower performance than the
best adaptation methods. In the randomized setting, however, it performs 0.2 BLEU points
worse than the baseline, the concatenation of all data (18.2 BLEU vs. 18.4 BLEU). This il-
lustrates a weakness of the priority merge, namely that it uses the evidence of one translation
model at most for each source phrase, which means its probability estimates are based on
less data, and thus more susceptible to data sparseness, than if we consider evidence from
all models. The same problem is discussed in chapter 7.

The two methods with discriminative weighting through MERT, a log-linear interpo-
lation and alternative paths decoding, give mixed results. While they do outperform the
baseline for DE–FR with a binary split into IN and OUT, performance is worse with 4 com-
ponent models, both with the original data sets and the randomized data sets. Also, none of
the discriminatively weighted systems is better than the baseline for HT–EN. Performance
drops as the number of component models increases.

Table 6.8 shows results with discriminative weighting with PRO, with the results with
MERT as comparison. The results show that some of the performance loss, particularly for
HT-EN with 10 component models, can indeed be attributed to search errors with MERT.

17The model with the lowest perplexity happens to be the one that is trained on the least amount of data.
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System
100% of IN 10% of IN

BLEU METEOR BLEU METEOR
IN 33.4 31.7 29.7 28.6
OUT 28.9 30.2 28.9 30.2
unweighted/uniform weights
instance weighting (concatenation) 33.6 32.4 31.3 31.3
linear interpolation (naive) 33.7 32.6 32.0 31.4
priority merge 33.8 32.4 31.8 31.2
discriminative weighting
log-linear interpolation 29.6 31.6 29.6 30.6
alternative paths 33.2 32.4 29.8 30.7
perplexity minimization
instance weighting 33.8 32.4 31.5 31.3
linear interpolation (naive) 33.7 32.4 31.9 31.3
linear interpolation (modified) 33.7 32.4 31.7 31.2

Table 6.6: Domain adaptation results HT–EN with binary split into IN and OUT. Domain:
emergency SMS.

System
100% of IN 10% of IN

BLEU METEOR BLEU METEOR
unweighted/uniform weights
instance weighting (concatenation) 33.6 32.4 31.3 31.3
linear interpolation (naive) 33.4 32.3 31.6 31.3
discriminative weighting
log-linear interpolation 27.9 30.2 18.4 27.5
alternative paths 24.3 29.1 29.8 30.9
perplexity minimization
instance weighting 33.5 32.3 31.8 31.5
linear interpolation (naive) 33.8 32.4 31.9 31.3
linear interpolation (modified) 33.8 32.5 32.1 31.5

Table 6.7: Domain adaptation results HT–EN with 10 component models. Domain: emer-
gency SMS.
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System
DE–FR DE–FR (random) HT–EN

BLEU METEOR BLEU METEOR BLEU METEOR
MERT
concatenation 18.3 37.3 18.4 37.3 33.6 32.4
log-linear interpolation 17.5 36.4 18.2 37.1 27.9 30.2
alternative paths 18.3 37.4 18.0 36.9 24.3 29.1
PRO
concatenation 18.1 37.0 18.2 37.0 33.0 31.7
log-linear interpolation 18.1 37.2 18.1 36.9 31.2 30.5
alternative paths 18.4 37.3 17.7 36.7 32.9 31.7

Table 6.8: Domain adaptation for discriminative weighting with MERT and PRO, and con-
catenation as baseline. DE–FR with 4 component models; HT–EN with 10 com-
ponent models.

Performance of PRO degrades more slowly as the number of features increases, as shown
in (Hopkins and May, 2011). While performance for alternative paths drops by 9.3 BLEU

points with MERT, there is no significant decrease in BLEU with PRO. There are still ex-
periments in which discriminative weighting results in a loss of performance, e.g. alterna-
tive paths with randomized models, and log-linear interpolation for HT–EN. Only one of
the systems outperforms the concatenation baseline, namely alternative paths for DE–FR.
Thus, while PRO mitigates some of the performance losses that we have observed, we still
do not see the performance improvements that we would hope for, and observed with other
adaptation techniques.

The methods with perplexity minimization perform well in all evaluations: none of
the other systems significantly outperformed the best perplexity minimization system in
any of the experiments. For DE–FR with 2 component models, the improvement over the
baseline is between 0.4 and 0.6 BLEU points. In the randomized setting, and for HT–EN
with 100% of IN, the systems with optimized weights do not outperform the baseline, but
neither perform worse. Of course, we do not expect any of the evaluated domain adaptation
methods to outperform the concatenation baseline in the randomized setting, since none
of the models has a higher fitness for the target domain, and any bias towards one model
would be unwarranted. Still, the fact that perplexity minimization does not perform worse
than the concatenation baseline, while other methods such as a priority merge or alternative
path decoding do perform worse, is an important result. It supports the use of perplexity
minimization for domain adaptation in scenarios in which we do not know which model has
the highest fitness for the target domain, or how large the difference in fitness is. In this case,
the point of minimal perplexity for instance weighting is close to uniform weights, which
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system selected

DE–FR
(100% of IN) 6%
(10% of IN) 20%
(randomized models) 100%

HT–EN
(100% of IN) 4%
(10% of IN) 4%

Table 6.9: Data selection: amount of data selected.

means that all evidence is taken into account for the probability estimates. The reason that
other methods, such a priority merge or alternative path decoding, perform worse than the
concatenation baseline is that they are technically unable to join the evidence of multiple
models to obtain new probability estimates for a given phrase pair.

Looking at the different combination methods that we optimized through perplexity min-
imization, results are inconclusive as to whether instance weighting or linear interpolation
performs better. Also, we found no consistent differences between the naive version of linear
interpolation and the modified one, the latter using the normalization and re-computation of
lexical weights as described in section 6.1.2. The theoretical advantage of instance weight-
ing over linear interpolation, namely that the former takes into account how well-evidenced
a phrase pair is in a model, seems to play only a small role in these experiments; chap-
ter 7 discusses a setting in which the amount of evidence in the translation models is more
important.

For data selection, we first consider how much data from OUT is selected in each system.
We select the amount of data that minimizes perplexity on the target side of the development
set. For HT–EN, the amount of selected OUT data is relatively small (4%); for DE–FR, it
is 6% with the full in-domain corpus, and 20% when performing data selection with only
10% of IN. When randomizing the four corpora, the point of lowest perplexity uses 100%
of training data, which is the expected behaviour if there is no in-domain subset. We argue
that using only a subset of training data is inherently more risky for translation modelling
than for language modelling18, since by discarding parallel data, we exacerbate the unknown
word problem.19

We evaluate two ways of integrating the selected OUT data into the translation system
which have been discussed in (Axelrod et al., 2011): a concatenation with IN, and a (naive)
linear interpolation with IN, using perplexity minimization to optimize weights. Addition-
18The unknown word problem is a much smaller problem for language modelling, since words that are un-

known to the translation model cannot be translated, while language modelling only affects the score.
19There are alternative data selection algorithms that explicitly select sentences which contain words that do

not occur in IN (Banerjee et al., 2012), and should thus be more robust towards this problem.
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System
100% of IN 10% of IN

BLEU METEOR BLEU METEOR
IN 17.9 37.0 15.7 33.5
OUT 14.8 32.3 14.8 32.3
concatenation (IN+OUT) 18.3 37.3 17.1 35.4
concatenation (IN+selected) 18.7 37.5 17.2 35.5
linear interpolation (IN+selected) 18.6 37.6 17.3 35.7
linear interpolation (IN+selected+deselected) 18.7 37.9 17.7 36.3
linear interpolation (IN+10 clusters) 18.9 38.1 17.7 36.3

Table 6.10: Data selection: translation results DE–FR.

System
100% of IN 10% of IN

BLEU METEOR BLEU METEOR
IN 33.4 31.7 29.7 28.6
OUT 28.9 30.2 28.9 30.2
concatenation (IN+OUT) 33.6 32.4 31.3 31.3
concatenation (IN+selected) 33.6 31.9 30.1 29.4
linear interpolation (IN+selected) 33.4 31.8 30.2 29.3
linear interpolation (IN+selected+deselected) 33.7 32.4 31.7 31.3
linear interpolation (IN+10 clusters) 33.8 32.4 31.7 31.2

Table 6.11: Data selection: translation results HT–EN.
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ally, we propose to re-integrate the data discarded by data selection into the system. The idea
is that this gives us the benefit of mitigating the unknown word problem, but that we can set
weights low enough that this data has no major effect on the probability distribution. We
perform two experiments that utilize cross-entropy difference to split the OUT corpus into a
number of subcorpora, which are then combined through linear interpolation with perplexity
minimization. The first experiment uses a translation model trained on IN, one trained on
the selected portion of OUT, and one trained on the remainder of OUT as its three compo-
nent models (IN+selected+deselected). For the second experiment, we sort OUT according
to the cross-entropy difference and split it into 10 parts of equal size. We then perform a
linear interpolation of these 10 component models, plus the IN model (IN+10 clusters).

In tables 6.10 and 6.11, we show the results of the data selection experiments. No results
for the randomized setting are shown, since they are identical to not performing data selec-
tion at all. In our experiments, data selection is competitive compared to the concatenation
baseline that uses all OUT data. Only in the case with an extremely small amount of IN data,
namely HT–EN with 10% of available IN data, is there a large drop compared to using all
OUT data. However, data selection remains below the other domain adaptation methods in
terms of performance. Consistently, a linear interpolation with all data outperforms a linear
interpolation which only uses IN and the selected data from OUT.

Segmenting OUT into ten components according to cross-entropy difference did not yield
any significant and/or consistent performance improvements over the binary setting with IN
and OUT. One explanation is that in all our interpolation experiments, most of the weight
mass is concentrated on the IN model, and even the decile from OUT that is most similar
to IN receives a low weight. Thus, segmenting OUT first has little effect on the final model
distribution and system performance. While it was unsuccessful in our experiments, we
consider that cross-entropy difference still has potential applications for translation model
training – apart from its uses for data selection for language modelling, which we do not
question. Firstly, the unknown word problem is more prevalent in sparse conditions; data
selection is thus more suitable for well-resourced settings in which discarding data does
not increase data sparseness noticeably, but reduces the resource requirements of translation
modelling. Secondly, the fact that even the top decile of OUT is very dissimilar to IN, and
assigned a low weight in model combination, need not be generally true. In other settings,
cross-entropy difference may be a fruitful way to find relevant data in OUT.

We finish the evaluation of domain adaptation techniques with two examples that illus-
trate the effect of preferring IN over OUT, shown in table 6.12. In the first example, the
IN system has two main problems: an unknown word (Vallot-Hütte), and schön not being
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System sentence
Source: Schön brav steigen wir zu Fuss zur Vallot-Hütte.
Reference: Bien sages, nous descendons à pied jusqu’au refuge Vallot.

Very well-behaved, we descend on foot to the Vallot cabin.
IN: Il fait beau, nous montons gentiment à pied à la Vallot-Hütte.
OUT: Bien sage de grimper à pied pour nous Vallot-Hütte.
concatenation: Bien sage, nous montons à pied à Vallot-Hütte.
instance weighting: Bien sage, nous montons à pied la Vallot-Hütte.

Source: 20. Juni: unser dritter Angriff auf das Gross Grünhorn (4044 m).
Reference: Le 20 juin eut lieu notre troisième tentative au Gross Grünhorn (4044 m).

June 20th: our third climbing attempt at the Gross Grünhorn (4044 m).
IN: 20 juin: notre troisième tentative vers le Gross Grünhorn (4044 m).
OUT: 20 juin: notre troisième atteinte au Gross Grünhorn (4044 m).
concatenation: 20 juin: notre troisième attaque contre le Gross Grünhorn (4044 m).
instance weighting: 20 juin: notre troisième tentative sur le Gross Grünhorn (4044 m).

Table 6.12: Mixture modelling: example translations

translated as an intensifier of brav.20 The OUT system offers a better translation of schön
brav, but is disfluent otherwise. In the combined system, the translation of schön brav from
OUT is combined with the IN translation of steigen to produce a better, but still not perfect
translation. In the second example, the IN system already produces an acceptable transla-
tion. The OUT system, however, introduces a wrong translation of German Angriff into
atteinte, a translation predominant in Europarl, and used in contexts such as une atteinte
aux droits de l’homme (English: an attack on human rights). The concatenated system pro-
duces attaque, which is a more basic translation of Angriff, and occurs in both IN and OUT.
Finally, upweighting the IN corpus through instance weighting restores tentative, which is
the predominant French expression for climbing attempt, as most probable translation.

In conclusion, we found that all domain adaptation methods outperform a simple concate-
nation of all data in at least one setting, on the DE–FR data set with a binary split into IN
and OUT data. However, one of the motivations for the experiments was the idea of an SMT
architecture that consists of multiple models, which supports the adaptation to a new domain
online, given a small development set. For such an architecture, we deem it desirable that
a domain adaptation method works without a binary distinction of IN and OUT data, and
does not regress below the performance of the baseline model, a concatenation of all data,
even when none of the models is particularly fitted to the target domain. Linear interpola-
tion and instance weighting with perplexity minimization fulfilled these requirements in our

20A third problem, namely that steigen is underspecified and that in this case refers to a descent rather than a
climb, is beyond the ability of even human translators to resolve without situational knowledge.
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Figure 6.1: SMT performance DE–FR with weighted combination of translation models.
λOUT = 1−λIN. 1 MERT run per data point.

experiments, while other adaptation methods, namely alternative path decoding, a log-linear
interpolation, and a priority merge, did not.

6.4 The Impact of Weights

In the evaluation, we found that the models weighted through perplexity minimization out-
performed the unweighted baselines by 0.4 BLEU for instance weighting and the DE–FR
data set, but for linear interpolation (table 6.3), both the unweighted and the weighted
systems performed equally well. How important it is to weight translation models non-
uniformly depends on the data set, and on whether other model components are adapted to
the domain. In (Sennrich, 2012b), we report results with out-of-domain language models,
where the effect of perplexity minimization is twice as large in terms of BLEU gain, and
for HT–EN, we observe larger gains over the concatenation baseline in the setting that uses
only 10% of in-domain parallel data.

To illuminate the behaviour of perplexity minimization, and the effect of model weights
for both instance weighting and linear interpolation, we present the results of some addi-
tional experiments. In a first set of experiments, the models are the same as in the DE–FR
experiment of the previous section, i.e. SAC_145 as IN, and a concatenation of Europarl,
Acquis and OpenSubtitles as OUT.
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6 Translation Model Combination: Tackling the Ambiguity Problem

We tested two combination methods, instance weighting and linear interpolation, with
different weights.21 The resulting graphs are shown in figure 6.1. At λIN = 0, we show per-
formance when only using OUT, and at λIN = 1, performance when only using IN. All other
data points represent systems that contain the same phrase pairs, namely the union of the two
translation models IN and OUT. For our data set, using the union of phrase pairs rather than
a pure OUT model brings the biggest performance boost, even if the IN model is given a
weight of 0.001, the most extreme weight that we evaluated. The boost is bigger for instance
weighting and the normalized (’modified’) version of linear interpolation22 (2.8–3 BLEU)
than for the unnormalized (’naive’) version linear interpolation (2 BLEU). We attribute this
to the fact that choosing a probability of 0 (or a low uniform backoff probability), which we
do in the naive linear interpolation, is a poor estimate for phrase pairs that do not occur in
OUT, whereas instance weighting and normalized linear interpolation distinguish between
negative evidence and lack of evidence. We see a similar, but smaller boost on the other end
of the graph, when going from a pure IN model to the union of phrase pairs.

The potential improvement over uniform weights (λIN = 0.5) is very small for linear
interpolation (0.1–0.3 BLEU), and slightly larger for instance weighting (0.5 BLEU). This
puts in perspective the results of the perplexity minimization experiments in table 6.3. On
this data set, uniform weights happen to be near-optimal for linear interpolation, and in fact,
the weights resulting from perplexity minimization are close to uniform: for the feature
p(t|s), λIN is 0.65 for naive linear interpolation, and 0.54 for modified linear interpolation.23

For the instance weighting approach, perplexity minimization finds the optimal λIN to be
0.87.

There are several conclusions that we can draw from the graphs in figure 6.1. First, note
that different weights are optimal for instance weighting and linear interpolation. While
we see the best performance for linear interpolation with λIN between 0.4 and 0.8, higher
weights for IN are optimal for instance weighting, achieving the best performance with λIN

between 0.7 and 0.999. Optimizing translation model perplexity allowed us to find different
optima for these two mixture operations, in contrast to a more indirect measure such as
language model perplexity. In past research, language model perplexity has been used both
to set linear interpolation weights (Foster and Kuhn, 2007) and instance weights (Shah et al.,
2012).

21We used the same weight vector λ for all 4 translation model features.
22See section 6.1.2.
23Figure 6.1 is slightly simplified because it only uses one independent variable λIN, whereas in the previ-

ous section, we calculate a separate weight vector λ for each translation model feature during perplexity
optimization.
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A second conclusion is that the weights obtained through perplexity minimization are
adequate, and that there is little room for improvement through other optimization methods,
at least on this data set. Instead, we hypothesize that there is room for improvement through
more fine-grained optimization methods. Foster et al. (2010) operate on the level of phrase
pairs, and data selection methods such as (Yasuda et al., 2008) operate on a sentence level.
Both rely on the in-domain training set being known beforehand. We will pursue a different
research direction and investigate increasing the granularity of domain adaptation methods
through unsupervised means in section 6.5.

For a second analysis of the impact of giving high weights to IN data, we go back to
the SMT learning curves that we introduced and described in more detail in section 4.2.
Figure 6.2 shows an SMT learning curve that, for every combination of IN and OUT data,
not only shows BLEU scores achieved through a concatenation of the data (black), but also
BLEU scores with instance weighting and weights obtained through perplexity minimization
(red). The graph shows the improvement from perplexity optimization for various settings.

Trivially, the uniform and optimized learning curves coincide at the upper bound, which
is formed from pure IN models, and the lower bound, trained on OUT models, since there
is nothing to be weighted there. If IN data forms the majority, as in the upper-left corner
of the graph, we observe no gain from weighting IN data even higher. At this point, the
amount of OUT data is too small to disturb the model probabilities and cause ambiguities.
In the bottom-right corner of the graph, where we find models with 1 million sentences of
OUT and 1000-2000 sentences of IN data, perplexity minimization has a similarly small
effect. This is slightly counter to our expectations that perplexity minimization would be
more important if the ratio of IN to OUT is low. However, if we consider that the IN data set
is relatively sparse, with a small vocabulary and relatively poor probability estimates, it is
understandable that increasing its weight has a limited effect on the model. For these small
data sizes, the positive effect of IN data, which is surprisingly large, seems to be mostly due
to the improved translation of phrases for which there is little to no evidence in OUT. The
biggest and most consistent improvements over the baseline are to be found in the top right
corner of the graph, with the weighted systems performing about 0.5 BLEU better than the
uniformly weighted ones. Of course, this corner, indicating systems that use the most data
and perform best in terms of BLEU, is also the most relevant.

The graph again makes the point that perplexity minimization, or upweighting IN data in
general, does not improve performance for all conceivable data sets. However, it also shows
that the problem that is tackled by instance weighting, namely the ambiguity problem, is
not one of data sparseness; the graph thus supports speculation that domain adaptation will
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Figure 6.2: SMT learning curve with uniform corpus weights, and with instance weighting
with perplexity minimization. Translation direction DE–FR.
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remain relevant, or become even more so, as the amount of available training data for SMT
increases.

6.5 Domain Adaptation with Unsupervised Clustering of Training Data

So far, most domain adaptation methods that we evaluated operated on a corpus level. We
assigned corpus-level weights with perplexity minimization or discriminative weighting,
and defined a corpus-level precedence for the priority merge. Data selection (Moore and
Lewis, 2010) is the only method that we evaluated that operates on a sentence level, but
it only does so for out-of-domain data, and treats the in-domain corpus as an atomic unit.
There are other approaches that adapt translation models with a finer granularity, e.g. (Foster
et al., 2010), who train a classifier to assign a weight to each phrase pair in OUT. However,
since the classifier relies on a-priori knowledge about IN and OUT at training time, it is
not straightforward to consolidate such an approach with our goal of performing domain
adaptation with little a-priori knowledge, and ideally for multiple target domains in a single
system.

In this section, we investigate if we can obtain more fine-grained weighting of the training
data by first performing unsupervised clustering. This has two main motivations: on the one
hand, we want to be able to perform domain adaptation even if in-domain and out-of-domain
data are not separated into two training corpora, but if the training corpus is a heterogeneous
mix of in-domain and out-of-domain data. An example of such a heterogeneous resource
would be a web crawl corpus. On the other hand, even if we do have a clear separation of
in-domain and out-of-domain data, the boundaries between the two are fluent, and there may
be subdomains within the out-of-domain corpus with a higher fitness for the target domain,
which we thus want to weight accordingly.

Our basic approach is divided into two steps. First, we perform unsupervised clustering on
the parallel training data to obtain a given number of clusters. Then, we perform perplexity
minimization to compute a model from these clusters that is adapted to the development
set. The method is most closely related to experiments by Yamamoto and Sumita (2007),
who also perform unsupervised clustering of training data. However, they use unsupervised
domain prediction at decoding time to translate each test set sentence by a cluster-specific
model. We will assume a scenario in which the target domain remains stable, and will
compute a single adapted model to translate the whole test set.
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6 Translation Model Combination: Tackling the Ambiguity Problem

6.5.1 Clustering with Exponential Smoothing

We follow the clustering algorithm described in (Yamamoto and Sumita, 2007). It is a
variant of k-means-clustering, which uses language models as centroids, trained on all sen-
tences in a cluster, and the language model entropy as the distance between each sentence
and cluster.

The algorithm is initialized with randomly generated clusters, and can be expanded to
clustering sentence pairs by taking the sum of the distance on both language sides. In terms
of n-gram length, we follow Yamamoto and Sumita (2007) and use unigram models.

One drawback of sentence-level clustering is that cluster assignment is made on the basis
of little information, i.e. the sentence itself. If we assume that the domain of a text does
not rapidly change between sentences, it is sensible to consider neighbouring sentences for
cluster assignment.

We achieve this by using an exponentially decaying score for cluster assignment. In the
baseline without exponential decay (equation 10), we assign the sentence pair i to the cluster
c that minimizes the distance (LM entropy).

ĉi = arg min
c

d(i, c) (10)

In equation 11, the distance of sentence pair i to cluster c is the weighted average of the dis-
tance of each sentence j to c, with the weight exponentially decaying as the textual distance
between i and j increases, and with the decay factor λ determining how fast the weight
decays.

ĉi = argmin
c

n
∑

j=1

d( j, c) ·λ|i− j| (11)

Note that the equation is two-sided, meaning that both previous and subsequent sentences
are considered for the assignment.

Algorithmically, two-sided exponential smoothing only slows down cluster assignment
by a constant factor; we do not need to sum over all sentences for each assignment, but can
store the weighted distance of all previous sentences in a single variable. Algorithm 1 shows
the smoothed assignment step for n sentences and k clusters.

Note that the decay factor λ determines the extent of smoothing, i.e. how strongly context
is taken into account for the assignment of each sentence. A decay factor of 0 corresponds to
the unsmoothed sentence-level score (with 00 = 1). With a decay factor of 1, the algorithm
returns the same distance for all sentence pairs. We use a decay factor of 0.5 throughout
the experiments. This is a relatively fast decay: one third of the score is determined by the
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Algorithm 1 Cluster assignment with decay
Ensure: 0≤ deca y ≤ 1

1: let d(x , y) be a distance function for a sentence x and a centroid y
2: let d_min[n],d_cur r[n],ĉ[n] be arrays
3: set all elements of d_min to∞
4: for c = 0 to k do
5: cache← 0
6: set all elements of d_cur r to 0
7: for i = 0 to n do
8: cache← deca y ∗ cache
9: cache← cache+ d(i, c)

10: d_cur r[i]← cache
11: end for
12: cache← 0
13: for i = n to 0 do
14: cache← deca y ∗ cache
15: d_cur r[i]← d_cur r[i] + cache
16: if d_cur r[i]< d_min[i] then
17: d_min[i]← d_cur r[i]
18: ĉ[i]← c
19: end if
20: cache← cache+ d(i, c)
21: end for
22: end for
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sentence itself; two thirds by the sentence and its two neighbouring sentences. What decay
factor is optimal may depend on the properties of the text, i.e. how quickly documents and/or
domains change, so we will not evaluate different decay factors in this thesis.

We could extend the algorithm to reset the cache to 0 whenever we cross a known doc-
ument boundary, and thus implement document-level scoring (with a decay factor of 1),
or a hybrid (with a decay factor between 0 and 1). We did not do this since we want to
demonstrate that the approach does not require document boundaries in the training text.
Another point to note is that we slightly modify the LM entropy method by normalizing
entropy by sentence length, which ensures that longer sentences have no inflated effect on
their neighbours’ cluster assignment.24

6.5.2 Model Combination

Having divided the parallel and monolingual corpus into k clusters, we contrast two differ-
ent model combination methods. The first is a reimplementation of (Yamamoto and Sumita,
2007), i.e. a domain-prediction module and cluster-specific models. To combat data sparse-
ness, they interpolate each cluster-specific model with a general model, using a constant
interpolation coefficient. Potential problems with their approach, discussed and evaluated
in more detail in (Sennrich, 2012a), are the lack of model optimization, and the inability
to select multiple clusters as being relevant for translation. As an alternative model combi-
nation method, we propose and evaluate linear interpolation with perplexity minimization,
both for the translation model and the language model.

6.5.3 Evaluation

We use the same DE–FR parallel data set as in the evaluation in section 6.3, namely
SAC_145 as in-domain corpus, Europarl, Acquis and OpenSubtitles as out-of-domain cor-
pora. The only difference is that we held out 20 000 additional sentences of in-domain data
during training, and used two different development sets, 1000 sentences each, for perplex-
ity minimization and MERT. We concatenate all parallel data together before clustering to
simulate a heterogeneous training set.

For language modelling, we use the parallel data sets for DE and FR (for domain predic-
tion), and for decoding, additionally News and the monolingual French part of SAC_145.
We used the following language model settings:

24We made the implementation of this clustering algorithm available as free software on https://
github.com/rsennrich/bitext_clusterer.
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system BLEU METEOR
general 18.5 37.3
adapted TM 18.8 37.8
adapted LM 18.8 37.8
adapted TM & LM 18.6 37.9

Table 6.13: Baseline SMT results DE–FR. Concatenation of all data and using domain adap-
tation with original four data sets.

clustering model combination
adapted TM adapted TM & LM

BLEU METEOR BLEU METEOR
k = 10
sentence-level Yamamoto/Sumita 18.7 37.6 18.9 37.9
sentence-level perplexity 18.8 38.0 18.9 38.2
smoothed perplexity 19.1 38.3 19.2 38.3
k = 100
sentence-level Yamamoto/Sumita 18.8 37.7 18.6 37.6
sentence-level perplexity 19.0 38.0 19.0 38.3
smoothed perplexity 19.1 38.1 19.1 38.2

Table 6.14: SMT results DE–FR based on clustered training data.

• for clustering, unigram language models.

• for domain prediction, used only for our implementation of (Yamamoto and Sumita,
2007), 3-gram language models with Good-Turing smoothing.

• for translation, 5-gram language models with interpolated Kneser-Ney smoothing.

We clustered additional target language data with the method described in (Yamamoto and
Sumita, 2007), i.e. assigning each sentence to the closest cluster, except if a general LM is
closest, in which case the sentence is discarded.

Since the training and tuning data is slightly different from the experiments in section 6.3,
table 6.13 shows new baseline results for perplexity minimization with the four original data
sets. The general system (without domain adaptation) performs worst, with a BLEU score
of 18.5 and a METEOR score of 37.3. Both translation model (TM) and language model
(LM) adaptation significantly increase scores by 0.3 BLEU and 0.5 METEOR points. The
system that combines TM and LM adaptation is not significantly different from the systems
with only one model adapted in terms of BLEU, but performs best in terms of METEOR
(0.6 points better than the general model).

Table 6.14 shows SMT performance when domain adaptation is not performed on the
original four data sets, but on 10 or 100 unsupervised clusters. The best system, with expo-
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nential smoothing for clustering (k = 10) and perplexity minimization for both the transla-
tion and the language model, achieves 19.2 BLEU and 38.3 METEOR, 0.6 BLEU and 0.4
METEOR better than adaptation with the original 4 data sets. This is a success on two levels.
Not only do the results demonstrate that we can perform domain adaptation without a prior
division of the training data into different domains, the best system also outperforms domain
adaptation results on the original four data sets. This indicates that the ability to set more
fine-grained weights can indeed improve performance. We also demonstrated an increase in
performance compared to the domain prediction method that was proposed by Yamamoto
and Sumita (2007). When adapting to a known target domain, and with access to develop-
ment data from this domain, perplexity optimization has advantages over a sentence-level
domain prediction. Namely, it is not limited to selecting a single cluster per sentence, but
can assign high weights to multiple clusters. Increasing the number of clusters to 100 did
not improve performance any further; however, neither did we observe performance regres-
sions due to overfitting or data sparseness. Technically, we have demonstrated perplexity
minimization to be feasible for a large number of component models.

There is a small performance difference between clustering with exponential smoothing
and clustering on a sentence level (without smoothing). Sennrich (2012a) also performs a
perplexity-based evaluation of the resulting clusters, which shows that the resulting clus-
ters tend to be more homogeneous if exponential smoothing is applied. By homogeneous
we mean that sentences from the same original data set, i.e. sentences which occur close
together, are more likely to be clustered together with smoothing. An additional positive
effect of exponential smoothing is that it decreased the average number of iterations of the
clustering algorithm by a factor of 2–4 in our experiments.

The approach by Yamamoto and Sumita (2007) has the advantage that it can, in principle,
support multiple target domains, since it builds one system per cluster, whereas we build a
single model adapted to the target domain. We will now discuss how it is is also possible
for mixture models with perplexity optimization to support multiple target domains.

6.6 A Multi-Domain Translation Model Architecture

In the beginning of this chapter, we described the goal of having an SMT system that is
quickly adaptable to a new domain online, i.e. while the system is running, and that sup-
ports multiple domains. Some of our experiments were tailored to test the risks of such an
architecture, for instance suboptimal performance when none of the component models is
clearly better fitted to the target domain than the others. In this section, we will describe an
architecture that supports both online adaptation to new domains, and multi-domain trans-
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lation. The basic idea is to delay instance weighting to the decoding phase, storing all
sufficient statistics for the calculation in a vector of component models. This allows us to
change the target domain at runtime by simply changing the vector of instance weights.25

Most similar to our architecture is the ensemble decoding framework described by Raz-
mara et al. (2012), which combines several translation models in the decoding step, using
one of several mixture operations such as linear interpolation or a weighted maximum. Our
work is similar to theirs in that the combination is done at runtime, but we also delay the
computation of translation model probabilities, and thus have access to richer sufficient
statistics. In principle, our architecture can support all mixture operations that Razmara
et al. (2012) describe, plus additional ones such as forms of instance weighting, which are
not possible after the translation probabilities have been computed.

Ortiz-Martínez et al. (2010) also delay the computation of translation model features,
namely for the purpose of interactive machine translation with online training. The main
difference is that we store sufficient statistics not for a single model, but a vector of models,
which allows us to weight the contribution of each component model to the feature calcula-
tion. The similarity suggests that our framework could also be used for interactive learning,
with the ability to learn a model incrementally from user feedback, and weight it differently
than the static models, which opens new research opportunities.

Our translation model is embedded in a log-linear model as is common for SMT, and is
treated as a single translation model in this log-linear combination. We implemented this
architecture for phrase-based models, and will use this terminology to describe it, but in
principle, it can be extended to hierarchical or syntactic models.

The architecture has two goals: move the calculation of translation model features to the
decoding phase, and allow for multiple knowledge sources (e.g. bitexts or user-provided
data) to contribute to their calculation. Our main motivation is domain adaptation in a
multi-domain environment, but the delay of the feature computation has other potential
applications, e.g. in interactive MT.

We are concerned with calculating four features during decoding, henceforth just referred
to as the translation model features: p(s|t), lex(s|t), p(t|s) and lex(t|s). s and t denote the
source and target phrase. We follow the definitions in (Koehn et al., 2003).

Traditionally, the phrase translation probabilities p(s|t) and p(t|s) are estimated through
unsmoothed MLE.

p(x |y) =
c(x , y)
c(y)

=
c(x , y)
∑

x ′ c(x
′, y)

(12)

25We have made this architecture available as part of the Moses SMT toolkit (http://www.statmt.
org/moses/).
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where c denotes the count of an observation, and p the model probability.

The lexical weights lex(s|t) and lex(t|s) are calculated as follows, using a set of word
alignments a between s and t:26

lex(s|t, a) =
n
∏

i=1

1

|{ j|(i, j) ∈ a}|

∑

∀(i, j)∈a

w(si|t j) (13)

A special NULL token is added to t and aligned to each unaligned word in s. w(si|t j) is
calculated through MLE, as in equation 12, but based on the word (pair) frequencies.

To combine statistics from a vector of n component corpora, we use a weighted version
of equation 12, which adds a weight vector λ of length n:27

p(x |y;λ) =

∑n
i=1λici(x , y)
∑n

i=1

∑

x ′ λici(x ′, y)
(14)

The word translation probabilities w(t i|s j) are defined analogously, and used in equation 13
for a weighted version.

In order to compute the translation model features online, a number of sufficient statistics
need to be accessible at decoding time. For p(s|t) and p(t|s), we require the statistics c(s),
c(t) and c(s, t). For accessing them during decoding, we simply store them in the decoder’s
data structure, rather than storing pre-computed translation model features. This allows us
to use existing, compact data formats for storing and accessing them.

The statistics are accessed when the decoder collects all translation options for a phrase s
in the source sentence. We then access all translation options for each component table,
obtaining a vector of statistics c(s) for the source phrase, and c(t) and c(s, t) for each
potential target phrase. For phrase pairs which are not found, c(s, t) and c(t) are initially
set to 0.

Note that c(t) is potentially incorrect at this point, since a phrase pair (s, t) not being
found does not entail that c(t) is 0. After all tables have been accessed, and we thus know
the full set of possible translation options (s, t), we perform a second round of lookups for
all c(t) in the vector which are still set to 0. We introduce a second table for accessing c(t)
efficiently, again storing it in the decoder’s data structure. We can easily create such a table
by inverting the source and target phrases, deduplicating it for compactness (we only need
one entry per target phrase), and storing c(t) as the only feature.

26The equation shows lex(s|t); lex(t|s) is computed analogously.
27The equation is identical in the offline version described in section 6.1.3, but repeated here for readability.
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For lex(s|t), we require an alignment a, plus c(t j) and c(si, t j) for all pairs (i, j) in a.
lex(t|s) can be based on the same alignment a (with the exception of NULL alignments,
which can be added online), but uses statistics c(s j) and c(t i, s j). For estimating the lexical
probabilities, we load the frequencies into a vector of four hash tables. To give an example,
for lex(Gletscher|des glaciers) with the alignment {(0,1)} (meaning Gletscher is aligned
to glaciers, and des is unaligned), we require the following statistics:

• c(Gletscher, glaciers)

• c(glaciers)

For the inverse direction, i.e. lex(des glaciers|Gletscher), we need:

• c(des, NULL)

• c(NULL)

• c(glaciers, Gletscher)

• c(Gletscher)

On the basis of these statistics, we can apply (the weighted version of) equation 13 to recal-
culate lexical weights.

Both space and time complexity of the lookup are linear to the number of component
tables. We deem it still practical because the collection of translation options is typically
only a small fraction of total decoding time, whereas search makes up the largest part. For
storing and accessing the sufficient statistics (except for the word (pair) frequencies), we
use an on-disk data structure provided by Moses, which reduces the memory requirements.
Still, the number of components may need to be reduced, for instance through clustering of
training data, as described in section 6.5.

With a small modification, our framework could be changed to use a single table that
stores a vector of n statistics instead of a vector of n tables. While this would be more
compact in terms of memory, and keep the number of table lookups independent of the
number of components, we chose a vector of n tables for its flexibility. With a vector of
tables, tables can be quickly added to or removed from the system (conceivable even at
runtime), and they can be polymorph. One application where this is desirable is interactive
machine translation, where one could work with a mix of compact, static tables, and tables
designed to be incrementally trainable.
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In the unweighted variant, the resulting features are equivalent to training on the concate-
nation of all training data, except for differences in word alignment, pruning28 and rounding.
The architecture is thus a drop-in replacement for a baseline system that is trained on con-
catenated training data, with non-uniform weights only being applied for texts for which
better weights have been established. This is done either using domain labels or unsuper-
vised methods as described in (Sennrich et al., 2013).

As a weighted combination method, we implemented instance weighting as described in
equation 14. In our implementation, the weight vector is set globally, but can be overridden
on a per-sentence basis. We also implemented perplexity minimization online, so that a
running server instance can be adapted to a new domain without the need to reload or rewrite
the whole phrase table. The framework can also be extended to support other combination
methods, and we implemented a linear interpolation of models.

A possible application for this online combination of models has been shown in (Sennrich
et al., 2013), where it is used for multi-domain decoding. We also use the architecture in
chapter 7, where we perform multi-engine MT.

6.7 Summary

In this chapter, we have discussed and evaluated ways to integrate out-of-domain data while
giving preference to in-domain data for the purpose of translation modelling. Addition-
ally to a discussion of existing approaches, we have also proposed novel methods such as
perplexity minimization for instance weighting, and a normalized version of linear inter-
polation. The evaluation settings were chosen not only to show how the different domain
adaptation methods can be successful, but also that they may perform worse than baseline
systems under some circumstances, e.g. when we combine several models with comparable
fitness. We have highlighted problems with approaches such as a priority merge or alterna-
tive decoding paths, and have shown that perplexity minimization performs robustly, scales
well to a high number of models, and requires no knowledge about the domains involved.29

We have also investigated how to perform domain adaptation starting from a single, hetero-
geneous parallel corpus. We proposed a model adaptation method that uses a combination
of unsupervised clustering and perplexity minimization, and demonstrated that we can use

28We prune the tables to the most frequent 50 phrase pairs per source phrase before combining them, since
calculating the features for all phrase pairs of very common source phrases causes a significant slow-down.
We found that this had no significant effects on BLEU.

29The only requirement is that the development set is from the target domain. In (Sennrich et al., 2013), we
show that we can use unsupervised methods if the target domain is heterogeneous or unknown.
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6.7 Summary

it to adapt SMT systems to a target domain even in the absence of a prior division into in-
domain and out-of-domain data. Finally, we describe a novel translation model architecture
that allows for domain adaptation to be done at decoding time, where multiple domains are
supported by the same SMT system.
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Machine Translation

In chapter 6, we discussed the integration of out-of-domain parallel data as a way to mitigate
the unknown word problem, and how to ensure that in-domain data is preferred for well-
evidenced phrases.1 There are alternative strategies that we can use to reduce the effects of
data sparseness in our system. To give just a few examples, Fung and Yee (1998) and Daumé
III and Jagarlamudi (2011) mine for translations in unstructured texts, and Okuma et al.
(2007) integrate a dictionary into their SMT system. In this chapter, we investigate other
MT systems as knowledge sources. In contrast to raw dictionaries, rule-based MT systems
have the advantage that they (ideally) perform the morphological processing necessary to
deal with German morphology, both its compositionality and the richness of its inflections.
We also expect that popular online SMT systems are trained on large amounts of data and
thus suffer less from data sparseness than a typical system trained only on the respective
in-domain data, but that they are not domain-specific for most purposes. Thus, we face the
same dilemma as with out-of-domain training data: other MT systems can help us reduce
data sparseness, but produce translations that are less fitted to the target domain than an
in-domain system. Following this analogy, we investigate how to treat other MT systems as
a type of out-of-domain resource, and how to integrate them into our system using similar
techniques as in chapter 6.

7.1 Related Work

System combination or multi-engine MT has been an active research field in recent years,
with several shared tasks at MT workshops (Callison-Burch et al., 2009, 2010, 2011). There
are multiple approaches to multi-engine MT. Several state-of-the-art systems operate purely
on the target side, aligning the different hypotheses with each other to build a confusion
network, and then decoding it with various target-side features, such as a language model
and constant penalties for each hypothesis-generating system (Heafield and Lavie, 2010;
Barrault, 2010).

1This section is based on work that we published in (Sennrich, 2011a,b).
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Decoder

Source text

LM

Output
Primary TM (IN)

Secondary TM

Monolingual data

Parallel data

Translation
hypotheses

Development set

Alignment
& Scoring

Figure 7.1: Multi-engine MT architecture. Standard components in black; extensions in red.

Such black-box approaches have the advantage of working with any MT system and re-
quiring little parallel data (only a development set to optimize feature weights), but are blind
to potentially useful information. Specifically, they do not know the source text, and how
well-evidenced each source word or phrase is in the different models. Therefore, they can-
not learn to generally prefer the in-domain system, but selectively use translations from an
out-of-domain MT system for words that the in-domain system does not know, or for which
evidence in the in-domain system is sparse.

An alternative approach is to use the individual systems’ translation hypotheses, together
with the original source text, as small parallel corpora, and use SMT technology to learn
translation models from these corpora. These new models are then used for the final trans-
lation. The architecture by Chen et al. (2007) falls under this category. We will use this
general architecture, and focus on the question of how to combine the different knowledge
sources, i.e. the translation models that have been learned, for the final decoding step.

7.2 A Multi-Engine MT Architecture

Our architecture is based on a Moses SMT system, illustrated in figure 7.1. The main com-
ponents (primary translation model, language model, and parameter tuning through MERT
on a development set) are trained on existing corpora, and should ideally be adapted to the
domain of the source text.

The translation hypotheses of other MT systems are integrated through a secondary trans-
lation model, i.e. by first aligning the translation hypotheses with the source text, calculating
a new translation model, and combining it with the primary model.
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7.3 Translation Model Combination

The challenge in the alignment step lies in the fact that the corpus of translation hypothe-
ses is typically small, and that word alignment needs to be fast. In a glass-box approach,
we could use decoder information to obtain the alignment, but we will treat all external
MT systems as a black box. A common solution is to use an existing model – possibly in
a server-client architecture – to align the translation hypotheses (Chen et al., 2009; Hardt
and Elming, 2010). We use MGIZA++ (Gao and Vogel, 2008), which is an extension of
GIZA++ (Och and Ney, 2003), for this purpose, with a model trained on the primary corpus,
performing two more iterations of IBM model 4 alignment on the translation hypotheses.

For the combination of the two translation models, different approaches have been pro-
posed. Hardt and Elming (2010) use alternative decoding paths, while Chen et al. (2007,
2009) concatenate phrase table entries, with additional features as system markers. We
propose alternative methods that aim at improving over these approaches in two respects.
Firstly, when training the secondary translation model on few translation hypotheses, data
sparseness is a major issue. The reliability of MLE is low when the number of observations
is small, and we want to suppress spurious translation probabilities. Secondly, we want
to discriminate between source words or phrases that are well-evidenced in the in-domain
system, and for which the secondary translation model need not be used, and source words
with little or no evidence in the in-domain system, for which the combined system shall use
the hypotheses of the external MT systems.

7.3 Translation Model Combination

We take two combination methods from chapter 6 to represent existing approaches: a pri-
ority merge, which is similar to a concatenation of phrase table entries (Chen et al., 2007,
2009), and alternative paths decoding, as used by Hardt and Elming (2010). As new alter-
native, we propose a form of instance weighting. We will here motivate this theoretically,
and proceed with an evaluation in the next section.

When estimating translation probabilities from a hypothesis corpus, data sparseness is
potentially a much larger problem. This is especially true if we only want to translate a
single sentence, and the hypothesis corpus is composed of only a few sentence pairs (one per
hypothesis-generating MT system). If source words are only encountered a few times, we
are unlikely to obtain useful probability estimates from MLE. Hence, combination methods
which use the hypothesis model as a component, such as alternative path decoding or a
priority merge, are sensitive to data sparseness. Taking into account the word and phrase
(pair) frequencies from the in-domain corpus (IN), as we do in instance weighting, mitigates
this problem, since evidence from IN can prevent spurious probability estimates.

105



7 Integrating Other Knowledge Sources: Multi-Engine Machine Translation

A second motivation for instance weighting is that it implements the proposed strategy
of selectively relying more on the externally provided hypotheses where evidence in IN is
low. A simple example will show that the impact of the translation hypotheses on translation
probabilities depends on the phrase frequency in IN. For rare or unknown phrases, observing
a phrase pair in the translation hypotheses may effect a large shift in translation probabilities:
0
2
= 0 vs. 0+1

2+1
= 0.33. For phrases that are frequent in IN, the influence of the translation

hypotheses is marginal, assuming uniform weights: 0
200
= 0 vs. 0+1

200+1
= 0.005.

Sennrich (2011a) proposed to perform instance weighting only for the phrase pairs in the
hypothesis corpus, and then using the resulting model as an alternative decoding path to the
IN model. The main motivation for this more complicated architecture was that rescoring
the full IN model would be impractical at decoding time. With the online combination archi-
tecture discussed in section 6.6 (p. 96), however, we can efficiently work with a single model
whose features are computed at decoding time. Still, we include this 2-step combination in
our evaluation to compare its performance.

7.4 Evaluation of Multi-Engine MT

We perform experiments on the Alpine domain, with SAC_145 as parallel corpus for trans-
lation model training, and an adapted language model (SAC_WMT11_interpolate_fr).2 We
use SAC_145_dev as development set, SAC_test as test set, and two external MT systems,
the rule-based Personal Translator 143, and Google Translate4. The translation direction is
DE–FR. Note that we perform statistical significance pruning of the translation model for
the in-domain model, but not for the hypothesis models. The latter are too small for effective
significance testing, especially for rare source words and phrases. Pruning the hypothesis
models would thus go against our explicit goal of using them to fill in lexical gaps in the
in-domain model.

Table 7.1 shows the translation results. The first set of baselines are the individual sys-
tems, and the system combination tools MANY (Barrault, 2010) and MEMT (Heafield and
Lavie, 2010), which both operate purely on the target side. On the test domain, both Per-
sonal Translator 14 (13.1 BLEU) and Google Translate (12.8 BLEU) are markedly worse
than the system trained on in-domain data (17.9 BLEU).5 The system combination systems

2The setting is comparable to that in (Sennrich, 2011a), except that we use more in-domain training and
development data in this evaluation.

3http://www.linguatec.net/products/tr/pt
4http://translate.google.com, translations obtained in November 2010.
5We are aware that automatic evaluation scores may favour SMT systems over rule-based ones.
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7.4 Evaluation of Multi-Engine MT

System weighting (step 1 / 2) BLEU METEOR
IN 17.9 37.0
Personal Translator 14 13.1 34.0
Google Translate 12.8 32.0
MANY 19.2 38.7
MEMT 18.3 37.1
priority merge IN-google-pt14 19.4 38.7
priority merge (max length 3) IN-google-pt14 19.6 38.8
alternative paths MERT 19.7 38.9
instance weighting uniform 19.8 39.3
instance weighting perplexity 19.0 38.0
instance weighting / alternative paths uniform / MERT 20.0 39.5
instance weighting / alternative paths perplexity / MERT 19.8 39.3

Table 7.1: Multi-engine MT: SMT performance DE–FR.

MANY and MEMT both significantly outperform the best individual system, with 19.2 and
18.3 BLEU, respectively.

Next, we evaluate the combination of IN and the translation hypothesis models through a
priority merge or alternative path decoding. Both methods outperform all baselines, with
19.4 BLEU for priority merge, and 19.7 BLEU for alternative path decoding. We highlighted
the risk of data sparseness when training models on a small translation hypothesis corpus,
and we do observe these effects in the priority merge. Long phrase pairs are typically sparser
than short ones, and we decided to set a maximum length of 3 for source phrases in the
translation hypothesis models. This yields an additional 0.2 BLEU improvement (from 19.4
to 19.6).

Lastly, we discuss performance of instance weighting. With uniform instance weights,
i.e. simulating a concatenation of training data, we achieve an improvement of 1.9 BLEU

over the baseline (17.9 BLEU to 19.8 BLEU), and small improvements of 0.1–0.4 BLEU

over the other combination methods (not all of them being statistically significant). Keeping
the primary table and the secondary table separate, the latter containing the re-scored phrase
pairs extracted from the hypotheses, and using both as alternative decoding paths, yields an
additional 0.2 BLEU gain (19.8 BLEU to 20.0 BLEU). The advantage is that this architecture
gives us an additional means to prefer the primary model over the secondary one, and weight
the translation model features in the secondary model differently. For instance, if a source
phrase only occurs in the secondary model, the probability estimates will still be unreliable.
By giving a higher weight to the smoothed lexical weights, which should suffer less from
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Figure 7.2: BLEU score as a function of translation hypothesis corpus size (DE–FR).

data sparseness, and by modifying the constant phrase penalty in the secondary model, the
system can still learn to disprefer these phrase pairs.

The evaluation in table 7.1 has been performed with the translation hypotheses corpus en-
compassing the full development and test set. If we translate a smaller number of sentences,
and train models on these smaller translation hypotheses, the risk of spurious probability
estimates increases. We show this trend in figure 7.2, where we vary the number of sen-
tences translated at once. For every block of n sentences, we build a translation hypothesis
corpus for these n sentences, with n varying from 1 to 991 (the full size of the test set).
Word alignment has been kept constant for these experiments to rule it out as a confounding
factor. We see that performance with instance weighting remains stable as the size of the
translation hypothesis corpus decreases; the other combination methods experience perfor-
mance degradation. The biggest degradation is observed for alternative paths decoding, with
BLEU decreasing from 19.7 to 17.8. This is presumably because the maximum operation
in alternative paths decoding is inherently susceptible to statistical outliers, which can be
caused by data sparseness. The systems with priority merge also suffer from performance
degradation, although to a lower degree, with a decrease of 0.2 BLEU. This supports our
hypothesis that instance weighting is a good choice for multi-engine MT, since it not only
performs better, but is also more robust to data sparseness than the other approaches.

Table 7.2 shows an example translation from our test set – we chose the same sentence
as in our discussion of mixture modelling (table 6.12, p. 86). The baseline has two main
problems: an unknown word (Vallot-Hütte), and schön not being translated as an intensifier
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System sentence
Source: Schön brav steigen wir zu Fuss zur Vallot-Hütte.
Reference: Bien sages, nous descendons à pied jusqu’au refuge Vallot.

Very well-behaved, we descend on foot to the Vallot cabin.
IN: Il fait beau, nous montons gentiment à pied à la Vallot-Hütte .
PT 14: Nous augmentons bien sagement à Fuss à la hutte Vallot.
Google Translate: Nice bon on arrive à pied à la cabane Vallot.
Instance weighting: Bien sagement, nous montons à pied à la cabane Vallot.

Table 7.2: Multi-engine MT: example translations.

of brav. Personal Translator 14 offers a good translation of schön brav to bien sagement, but
does not translate Fuss, since the rule-based system was not configured to handle the Swiss
spelling variation of German Fuß. Additionally, it offers an unfit translation of steigen
to augmentons (Engl. augment). Google Translate translates Vallot-Hütte well to cabane
Vallot, but offers a poor translation of schön brav to Nice bon. Finally, the multi-engine
system combines the domain-specific translation of steigen with the translations from the
translation hypotheses for schön brav and Vallot-Hütte, resulting in the best translation.

We also perform experiments with perplexity minimization to set the instance weights
between the primary model and the two hypothesis corpora. This yields worse results; per-
formance is 0.8 BLEU below the approach with uniform weights for pure instance weight-
ing (19.8 BLEU to 19.0 BLEU), and 0.2 BLEU worse for the system that combines instance
weighting and alternative path decoding (20.0 BLEU to 19.8 BLEU). The reason is that per-
plexity minimization gives a higher weight to the hypothesis corpora than to the in-domain
corpus, which goes against our intuition and the empirical results which say that the in-
domain system is preferable. Note that the performance drop is smaller if we use alternative
path decoding, since it compensates for the poorer probability estimates in the secondary
model by preferring the primary model more strongly.

7.4.1 On the Use of Perplexity for Machine-Translated Text

We here illustrate the main reason for the failure of perplexity minimization in this setting.
Since automatic translations tend to be more literal and monotonic in terms of word order
than human ones, we learn less noisy probability distributions from machine-translated text.
This has a sizeable effect for the translation of common source words and phrases such as
conjunctions, pronouns and punctuation marks. Consider the example segment in figure 7.3,
showing the automatic word alignment.
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nachdem ich zweimal zu meiner Familie zurückgekehrt war

après être déjà redescendu deux fois pour rejoindre nos familles

après que j’ étais revenu deux fois chez ma famille

human translation

automatic translation

Figure 7.3: Automatic word alignment with human and automatic translation

The non-literal human translation of the sentence causes alignment errors. For instance,
there is no correspondence for ich in the human translation, and it is misaligned to re-
descendu.6 In the model learned from the automatic translation (PT 14 for this analysis),
the translation is more literal, and ich is aligned to j’. Looking at the translation probabil-
ities, the model learned from the translation hypotheses learns that p(je|ich) = 0.57, and
p(j’|ich) = 0.23, while the probabilities are only 0.43 and 0.14 in the model trained on
the original parallel text, with some of the probability mass going to phrase pairs such as
p(redescendu|ich) = 0.005.7 Giving more probability mass to good, frequent translations,
and less to noisy phrase pairs, favours the model in perplexity minimization, since minimiz-
ing perplexity is equivalent to maximizing the probability of the development set.

As a result of this phenomenon, models learned from machine-translated text may offer
a lower perplexity than even in-domain models. This unduly favours them in a perplexity
minimization, resulting in a loss in translation performance compared to the unweighted ex-
periment. While non-uniform instance weights may still be able to outperform the systems
with uniform instance weighting, this may require discriminative optimization methods. On
a more positive note, there is no strong need for non-uniform instance weights in multi-
engine MT. As long as the hypothesis corpora are kept small, there is little risk that they
disturb the probability estimates of phrase pairs that are well-evidenced in the in-domain
model. Instance weighting with uniform weights already satisfies our goal of keeping the
impact of the hypothesis models small, so that the hypothesis models only have a significant
effect on phrase pairs with little to no evidence in the in-domain model.

6There are other alignment errors in the examples, for instance the alignment between être and Familie, and
between étais and zurückgekehrt.

7For better comparability, we trained two models with the same source text and same alignment method,
once with the human translation, once with the translation by Personal Translator 14.
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System models BLEU METEOR
baseline IN 17.9 37.0
instance weighting IN + PT14 + Google 19.8 39.3
instance weighting IN + OUT + PT14 + Google 20.1 39.3
instance weighting / alt. paths IN + PT14 + Google 20.0 39.5
instance weighting / alt. paths IN + OUT + PT14 + Google 20.0 39.3

Table 7.3: Multi-engine MT with OUT data: SMT performance DE–FR.

7.4.2 Combining Out-of-domain Data and Translation Hypotheses

Having shown that both out-of-domain data and external translation hypotheses can help to
mitigate the unknown word problem, we here experiment with combining the two sources
of knowledge. We use the translation mixture model from chapter 6 that combines IN with 3
out-of-domain corpora (OUT) through instance weighting with perplexity minimization, the
corpora being Europarl, OpenSubtitles, and JRC-Acquis (see table 4.1, page 44). This sys-
tem results in a BLEU score of 18.8, compared to the in-domain baseline of 17.9 (table 6.4,
p. 79).

We test two methods of integrating the external translation hypotheses. Firstly, we use
instance weighting to add the two hypothesis models to the mixture model. We simply
extend the weight vector to include them with weight 1, which corresponds to our uniform
weights experiments in table 7.1.8

For a second system, we use alternative path decoding, as in the experiments in table 7.1,
but with the mixture model as primary model instead of IN. The secondary model is the same
as in the experiment without OUT data, namely a model obtained from uniform instance
weighting of IN and the two hypothesis models, restricted to the phrase pairs that occur
in the hypothesis corpora. The motivation for not using OUT in the secondary model is
that we want to take into account the evidence from the in-domain model when scoring the
hypothesis models, but not necessarily evidence from out-of-domain models.

The results are shown in table 7.3. There are no consistent gains from including out-of-
domain parallel corpora, compared to only using IN and the translation hypothesis corpora.
Our interpretation as to why the improvement from the two experiments – 0.9 BLEU from
adding OUT, 2.1 BLEU from external translation hypotheses – is not additive is the follow-
ing. Both our inclusion of out-of-domain parallel data and external translation hypotheses
had the same motivation, namely to fill in any lexical gaps in the IN model, thus mitigating

8The instance weights are normalized so that IN has a weight of 1. The model vector is thus the following:
(IN, Europarl, OpenSubtitles, JRC-Acquis, Google, Personal Translator), and the corresponding weight
vector for p(t|s) is: (1, 0.17, 0.16, 0.03, 1, 1).
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the unknown word problem. This is also illustrated in the example translations in tables 6.12
(p. 86) and 7.2 (p. 109). Both show the translation of the same sentence, and how both OUT
data (table 6.12) or external MT systems (table 7.2) fill the same lexical gaps.

In our experiments, the external MT hypotheses fulfill this role better than OUT data;
while adding the OUT parallel corpora reduces the OOV rate (in tokens) in the test set from
8.2% to 5.8%, the external MT hypotheses achieve a reduction to 1.3%. The combination of
the two resources, yields a modest additional reduction, down to 0.9%. On the basis of OOV
rate alone, it is conceivable that adding OUT data is almost redundant. The only caveat is
that the OOV rate does not tell us anything about the quality of the phrase pairs. After all,
the hypothesis models are trained on the actual source text that we want to translate, so it
is no surprise that they cover almost all of the vocabulary, with the possible exception of
unaligned words. Thus, in principle, it may still be worthwhile to combine OUT data and
external MT hypotheses, especially if the former yield better translations than the latter.

In conclusion, a combination of in-domain and out-of-domain models and external MT
hypotheses did not result in better performance than a combination of an in-domain model
and external hypotheses alone, at least in our experimental setting. One advantage of includ-
ing all available component models is that the system creator or user is not required to select
the in-domain model himself, but can automatically weight the contribution of the models.
This also means that this multi-engine MT architecture is compatible with a multi-domain
setting as described in (Sennrich et al., 2013), where the weight vector is dynamically set to
support multiple domains.

7.5 Summary

Translation hypotheses by other MT systems, for instance general-domain SMT or rule-
based systems, can be used as an additional source of knowledge to tackle the unknown
word problem. We demonstrate that the inclusion of MT hypotheses can be performed
through the same architecture that we present in section 6.6, and perform an evaluation
that shows significant improvements of up to 2 BLEU points over the pure IN system. The
external translation hypotheses fulfill the same role as out-of-domain parallel data, namely
that of reducing the number of unknown words; adding both out-of-domain parallel data
and external MT hypotheses to the IN system did not yield better results than just adding
the latter.

We have discussed data sparseness issues related to the inclusion of translation hypotheses
through a separate translation model. Specifically, performance degrades as the size of the
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translation hypothesis corpus becomes smaller. We have shown that a combination through
instance weighting is both performant and robust to data sparseness.

The discussion of integrating external MT systems has been an example of the wider
topic of integrating heterogeneous knowledge sources into an SMT system. We envision
that the same architecture can be used to integrate information from dictionaries or other
static resources into an SMT system, and that it can also serve to quickly integrate user
feedback, for instance in the form of post-edited translations of previous sentences in a text
(Hardt and Elming, 2010).

113



7 Integrating Other Knowledge Sources: Multi-Engine Machine Translation

114



8 Multiword Expressions and Flexibility Features

When we discussed the ambiguity problem so far, we solely focused on how it is affected by
the training and test domains, and how we can apply domain adaptation methods to alleviate
it.1 We did not discuss the fact that existing SMT models are able to resolve some ambigui-
ties through contextual information. Specifically, phrase-based SMT systems use contextual
information both by its use of larger phrases as translation units, rather than making an in-
dependence assumption between word translations, and through n-gram language models.
If words occur in new contexts, however, the disambiguation capability of SMT systems is
limited.

Some translations that are specific to a domain or text type are highly idiomatic. The En-
glish word floor, for instance, typically means Boden (referring to the ground) or Stockwerk
(level of a building) in German. In formal debate settings, however, floor is often translated
as Wort (English: word) – this is the predominant translation in Europarl. This is restricted
to a few expressions, such as give/have/request/take/yield the floor. Some variation is possi-
ble, e.g. by inflecting the verb or adding a direct object (example 1), but other variants such
as examples 2 and 3, while valid utterances, do not qualify as instances of this idiom, and
would indicate a non-idiomatic meaning of floor.

1. I gave him the floor

2. I gave him a floor

3. We take the third floor

The problem is that, by learning that Wort is a frequent translation of floor, this translation
is likely to be overgeneralised to examples 2 and 3, especially if those contexts have not been
seen during training. We introduce a measure of a phrase pair’s flexibility, which we think
is a better indicator of how generalisable a phrase pair is than its frequency. The approach
is applicable, but not limited to domain-specific systems.

1This chapter is based on (Sennrich, 2013).
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8.1 Introduction

A defining property of multiword expressions (MWEs) is that they are idiosyncratic (Sag
et al., 2002). For Statistical Machine Translation (SMT), MWEs whose meaning is non-
compositional, i.e. which cannot be translated word by word, cause two major problems.
The obvious problem is that MWEs may be translated incorrectly if we translate them word
by word. A second problem, which has received less attention in SMT research, is that
translations that we learn from the components of a MWE can rarely be generalised to other
contexts. If a word frequently occurs in a MWE with an idiosyncratic translation, learning
this idiosyncratic translation on the word level pollutes the translation model.

Consider for instance the English phrase of course, which is translated into French as bien
sûr. SMT systems, which typically perform unsupervised word alignment to learn transla-
tion correspondences, not only learn the translation pair (of course, bien sûr), but also (of,
bien) and (course, sûr). Especially if the fixed expression of course is more frequent during
training than other translations of course, the translation pair (course, sûr) is misapplied
to occurrences of course in new contexts. This problem affects various linguistic phenom-
ena that fall under the umbrella term MWE: complex prepositions, idioms, compounds and
named entities, among others.

We describe an algorithm to measure a phrase pair’s flexibility, i.e. whether it occurs in
many contexts or is restricted to fixed expressions. Note that the aim is not to penalize
MWEs themselves, which may be flexible in terms of their contexts, but only phrases that
are part of a larger MWE. The algorithm is related to Kneser-Ney smoothing, but different
from previous work on translation model smoothing such as (Foster et al., 2006). In con-
trast to other related work on MWEs in SMT, our approach is unsupervised and language-
independent.

8.2 Related Work

The fact that word-based translation techniques are inadequate to deal with MWEs, which
are by definition non-compositional, has been recognized early (Smadja, 1993), and has
led to approaches that extract MWEs in order to improve bilingual resources (Smadja
et al., 1996), a technique that continues to be a research topic to this day (e.g. Carpuat
and Diab, 2010). Using contextual information to disambiguate translations is an equally
well-researched topic (Carpuat and Wu, 2007; Chiang et al., 2009). One can even argue that
the success of phrase-based SMT (Koehn et al., 2003) compared to word-based approaches
is in large part due to the existence of MWEs in natural language.
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8.3 Learning Translations in SMT

Our work is not concerned with improving the translation of MWEs themselves, but with
preventing an overgeneralisation of translations learned from MWEs. In other words, our
aim is not to improve the translation of words in known contexts, but picking a better trans-
lation if a word occurs in a new context. It shares the aim with the work by Lambert and
Banchs (2006), who convert MWEs into single tokens in a preprocessing step, thus prevent-
ing MWE sub-segments from being extracted. In order to identify MWEs in the source text,
they exploit asymmetries in word alignment, lemmatisation and PoS-tagging. They found
that the positive effect of suppressing wrong phrase pairs in some instances was counter-
balanced by increased data sparseness, especially because some word sequences were erro-
neously identified as MWEs. Pal et al. (2011) follow the same idea for the language pair
English–Bengali, with different MWE extraction techniques.

The approach we propose is technically related to Kneser-Ney smoothing (Kneser and
Ney, 1995). In translation modelling, the main aim of smoothing is to counteract unreliable
probability estimations by falling back to less sparse data. For translation model smoothing,
Foster et al. (2006) give an overview over different techniques, and propose an adaptation
of Kneser-Ney smoothing to translation models.

pb(s|t) =
N1+(s,•)
N1+(•,•)

(1)

Equation 1 uses Kneser-Ney counts to reward phrase pairs whose source phrase co-occurs
with many different target phrases. We follow (Kneser and Ney, 1995) in using N1+ to
denote the number of types, and • as a wildcard. N1+(s,•) thus stands for the number of
different target phrases that a source phrase s co-occurs with, and N1+(•,•) for the total
number of phrase pairs in the model.

In (Foster et al., 2006), equation 1 is interpolated with the original probability distribution.
The smoothed distribution is useful to penalize phrase pairs whose source phrase is rare, and
which we expect to be unreliable due to data sparseness. However, it is not related, either in
the motivation or in the effect, to the problem that we aim to solve.

8.3 Learning Translations in SMT

To illustrate why wrong translations are learned from MWEs, let us consider the common
SMT training process. In phrase-based SMT and hierarchical phrase-based SMT, trans-
lations are extracted from a word-aligned corpus. This extraction is performed through
heuristics that extract phrase pairs which are consistent with word alignment, specifically,
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so that no word in the source phrase is aligned to a word outside the target phrase, and vice
versa. For MWEs, this means that phrase pair extraction for the whole MWE, and its sub-
phrases and words, are co-dependent. A MWE is only extracted if its components do not
violate word alignment, and when the latter is the case, this also entails that these compo-
nents will form phrase pairs of their own. In other words, the phrase table is learned with a
compositionality assumption, and the model has no means to learn that a phrase pair can be
correct while its components should not be used independently.

While state-of-the-art SMT systems have this technical weakness, they are easy to extend
thanks to their log-linear framework. In the final translation model, each extracted phrase
pair (s, t) has multiple scores, which are combined with each other and other features such
as the language model probability in a log-linear model. Most common are phrase transla-
tion probabilities estimated through (smoothed) relative frequencies p(s|t) and p(t|s), and
a smoothed probability distribution based on word translation probabilities (Koehn et al.,
2003). We extend this log-linear model through new features that measure a phrase pair’s
flexibility.

8.4 Flexibility Features

We will build on the motivation that Chen and Goodman (1998) give for Kneser-Ney
smoothing, different from the one in (Kneser and Ney, 1995), and reproduced here in a
slightly abridged version:

[...] consider building a bigram model on data where there exists a word that is
very common, say FRANCISCO, that occurs only after a single word, say SAN.
Since c(FRANCISCO) is high, the unigram probability p(FRANCISCO) will be
high [...] However, intuitively this probability should not be high since in the
training data the word Francisco follows only a single history. That is, perhaps
the word FRANCISCO should receive a low unigram probability because the
only time the word occurs is when the last word is SAN, in which case the
bigram probability models its probability well. (Chen and Goodman, 1998, 15)

We can apply the same intuition to translation modelling. Phrase pairs which only occur in
specific contexts are more likely to be idiomatic than phrase pairs that have been observed
in many contexts. In the San Francisco example, we do not need to assign high probability
to the unigrams because the sequence is modelled well by the bigram model. Similarly, the
phrase table contains phrases of various sizes. Going back to our introductory example, we
can assign a low probability to the translation pair (course, sûr) with impunity because the
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correct translation of the MWE is expressed in the model through the larger phrase pair (of
course, bien sûr).

How do we formalize this intuition? The Kneser-Ney distribution is not based on relative
frequencies, but the relative number of types. However, in the previous section, we have
seen that Kneser-Ney smoothing for phrase tables as introduced by Foster et al. (2006) is
not based on the context of a phrase, but the number of target phrases a source phrase occurs
with.

We introduce new probability distributions that are not based on relative frequency esti-
mates, but on the number of different contexts in which a phrase pair occurs. Intuitively,
we use them to predict how likely a phrase pair is to occur in a new context. We will call a
phrase pair flexible if it occurs in many contexts, as opposed to inflexible phrase pairs that
we only observe in few contexts. Note that under this definition, even fixed expressions may
be considered flexible if they themselves occur in many contexts. It is not the translation of
MWEs that we aim to penalize, but the translation of their individual segments.

In order to measure a phrase pair’s flexibility, we introduce equation 2. Given a source
phrase s and a target phrase t, with s being a sequence of words from si to s j, we consider
triplets of the form (sx , s, t) for the flexibility measure. Different positions can be considered
for sx . We introduce two new probability distributions; the first, with x = i − 1, is based on
the number of contexts to the left of s, and will be referred to as pflex_left. The second, pflex_right,
is based on the number of right contexts, with x = j+ 1.2

pflex_{left,right}(t|s) =
N1+(•, s, t)
∑

t ′ N1+(•, s, t ′)

=
N1+(•, s, t)
N1+(•, s,•)

(2)

N1+ denotes the number of types, and • are wildcards. N1+(•, s, t) is thus the number of
different triplets (sx , s, t) observed during training. pflex_left(s|t) and pflex_right(s|t) are calculated
analogously, i.e. by considering the number of contexts to the left and right of the target
phrase. We can theoretically increase the window that we consider to be the context of a
phrase, but as we increase the window size, the number of different types increases, and the
new probability estimates tend towards the baseline relative frequency estimate.

Table 8.1 shows the effect of this calculation for selected phrase pairs.3 The first example
illustrates how the English complex preposition in line with is affected. In German, it is

2We add a special token for si−1 if the phrase begins at the start of a sentence, and do the same for s j+1 at the
end.

3The examples are from the models described in section 8.6.1.
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s t pRF(t|s) pflex_left(t|s) pflex_right(t|s)
line Einklang 0.159 0.003 0.005
line Linie 0.146 0.072 0.061
in line with im Einklang mit 0.169 0.073 0.059
course sûr 0.444 0.001 0.066
course cours 0.079 0.023 0.010

Table 8.1: Translation model probabilities for selected phrase pairs with different probabil-
ity estimation methods: relative frequency (pRF); flexibility distribution (pflex_left

and pflex_right).

typically translated to im Einklang mit. However, if line occurs in other contexts, a typical
translation would be Linie or Reihe, but almost never Einklang. The latter translation is
restricted to in line with. We see that our model risks to translate line as Einklang because the
relative-frequency estimate for (Einklang|line) is higher than that of (Linie|line). However,
since the phrase pair (line, Einklang) occurs in very few contexts, both on the source and
target side, its flexibility estimates are much lower than the estimate obtained from relative
frequencies. (Linie|line) and (im Einklang mit|in line with) both occur in various contexts,
and their flexibility estimates remain relatively high. The latter is an important point of
our technique: the translation of MWEs as a single unit, which is a desirable property of
phrase-based models, is not penalized.

The second set of phrase pairs is based on our introductory example (of course, bien sûr),
and demonstrate why we measure flexibility to the right and to the left independently. The
phrase pair p(course|sûr) is only inflexible to the left of course, but should still be penalized.

If a phrase pair is frequent, but only occurs in few contexts, this indicates that it is part
of a larger MWE, and can safely be dispreferred. The cases in which an inflexible phrase
pair is in fact a good translation should usually be handled by larger translation units, i.e.
the MWE as a whole. However, there are exceptions to this rule. An exception are phrase
pairs that typically occur at the beginning or end of a sentence. These may be inflexible
according to our model, even if they are not part of a larger translation unit.

The flexibility measure has the same aim as the joining of MWEs that Lambert and
Banchs (2006) describe, namely to prevent overgeneralisation of phrase pairs learned from
MWEs to new contexts. It has the advantage of being language-independent and requiring
no additional resources. Furthermore, it does not need to make a hard classification into
MWEs and others, and thus does not suffer from an increase in data sparseness.
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8.4.1 Variants for Hierarchical Phrase-based Models

We can extend the notion of a phrase pair’s flexibility to hierarchical phrase-based models
(Chiang, 2005). However, we argue that a naive transfer of the approach to hierarchical
phrase-based systems is incomplete. Because subphrases are allowed in hierarchical rules,
there are additional ways in which a rule can be inflexible. Consider these three rules that
might be learned from occurrences of the phrase pair (of course, bien sûr).

1. X → 〈 course , sûr 〉

2. X → 〈 X1 course , X1 sûr 〉

3. X → 〈 and X1 course , et X1 sûr 〉

Each of these examples is a poor generalisation, and should ideally be penalized in the
model. In all cases, we only expect the translation of course into sûr if course is preceded
by of. In phrase-based models, this can be expressed through the relative number of left
contexts observed with the source phrase, or pflex_left(t|s). This works for the hierarchical rule
1, but not for 2 and 3.4 The reason is that of is not to the left of the rules extracted from the
corpus, but part of the subphrase X1. This leads to the question how we can formulate an
alternative notion of context, so that the inflexibility of rules 2 and 3 can be learned.

We denote FLEX_H1 the approach with pflex_left and pflex_right that has been described in the
previous section, and present multiple alternatives:

FLEX_H2

The first variant, called FLEX_H2 henceforth, redefines which word is considered the left
and right context in a hierarchical rule. If a hierarchical rule starts with a subphrase, the
rightmost word of this subphrase is considered the rule’s left context (instead of the word to
the left of the subphrase). In other words, this variant does not use x = i − 1 for pflex_left, but
x = i − 1+ n, with n being the length of the subphrase that the rule starts with, or n = 0

if the rule does not start with a subphrase. If it ends with a subphrase, the leftmost word
of this subphrase is considered for pflex_right, or x = j + 1− n, with n being the length of the
subphrase that the rule ends with, or n = 0 if the rule ends with a terminal symbol. This
new definition aims to capture the inflexibility of rule 2.

4In our training corpus from section 8.6.1, pflex_left(t|s) is 2
2688

for rule 1, 480
3506

for rule 2, and 232
722

for rule 3.
In other words, pflex_left(t|s) successfully assigns a low probability to the inflexible rule 1, but too high a
probability to rules 2 and 3.
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FLEX_H3

A second possibility is to not only consider the words to the left and right of a rule to
be its context, but also its subphrase(s). We start with FLEX_H2, and add a new feature
pflex_sub(t|s) that is based on the number of different types of subphrases a hierarchical rule
occurs with. This new feature is implemented through equation 2 by redefining sx . Instead
of the word to the left or the right of a rule, let sx be defined as the full subphrase, or, if a
rule contains multiple subphrases, the concatenation of all subphrases.5 If a rule does not
have a subphrase, we let pflex_sub(t|s) be 1, so that this feature is without cost for rules without
subphrases. We also add pflex_sub(s|t), which is defined analogously.

8.5 Filtering Hierarchical Rule Tables

We point out again that the flexibility features do not try to combat data sparseness, in con-
trast to the variant of Kneser Ney smoothing described by (Foster et al., 2006). In prelim-
inary experiments, we found that some of the differences between the baseline system and
the experimental ones were due to spurious phrase or rule pairs whose probability estimates
were unduly high.

Thus, we use significance test filtering (Johnson et al., 2007) for phrase tables, which,
as the authors note, has a similar effect as smoothing, since both pruning and smoothing
penalizes infrequent phrase pairs. We extend their approach to hierarchical rule tables.
Since (Johnson et al., 2007) do not base the significance test on alignment counts, but co-
occurrence counts in the parallel corpus, we decided on an approximative method to count
the number of occurrences of hierarchical rules, which can be implemented with a suffix
array. Three frequencies are required to perform a statistical significance test for a phrase
pair or rule: cs, the frequency of the source phrase/rule, ct , the target phrase/rule frequency,
and cst , the co-occurrence frequency of the source and target phrase/rule.

For hierarchical rules without subphrases, or rules which consist of a single, uninterrupted
terminal sequence with subphrases at the beginning and/or end of the rule, we can use the
same procedure as for phrase-based systems, namely extracting a set of sentences in which
the source terminal sequence occurs, doing the same for the target sequence, and intersecting
the two sets to obtain cst .

For hierarchical rules which consist of multiple terminal sequences, interrupted by sub-
phrases, we approximate the occurrences of the rule by extracting the set of occurrences for

5We insert a delimiter between two subphrases to distinguish between X1 = ’a b’, X2 = ’c’ and X1 = ’a’, X2 =
’b c’.
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system DE–EN EN–DE FR–EN EN–FR
BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR

newstest2011
baseline 21.0 28.6 15.6 36.2 28.6 33.8 30.3 51.2
FLEX 21.2 28.7 15.8 36.4 28.8 33.8 30.3 51.1

cross-domain
baseline 29.1 28.9 27.0 42.0 25.5 32.2 22.2 44.1
FLEX 29.4 29.1 27.1 42.2 26.4 32.6 22.6 44.5

Table 8.2: SMT results on newstest2011 and cross-domain test sets. Phrase-based models.

each terminal sequence, and using the intersection of these sets as occurrences of the full
rule.

For a rule X → 〈 a b X1 c , x X1 y z 〉, cs is thus the number of source sentences in which
a b and c occur, ct the number of target sentences in which x and y z occur, and cst the
number of sentence pairs in which a b and c occur in the source sentence, x and ys z in the
target sentence.

8.6 Evaluation of Flexibility Scores

8.6.1 Data and Methods

We perform the evaluation on the language pairs French–English and German–English,
with training data mostly from the shared task of the 2011 Workshop on Machine Trans-
lation (Callison-Burch et al., 2011). For both language pairs, we use Europarl and News-
Commentary as parallel data sets.6 Language models are trained on the respective target
language sides of Europarl, News-Commentary, and the monolingual News data set, inter-
polated for minimal perplexity on news-test2008. For FR–EN, we additionally use the 109

corpus and the United Nations corpus as parallel data sets (UN-Giga in table 4.1). As ad-
ditional DE–EN data, we use JRC-Acquis and OpenSubtitles. The total amount of parallel
training data is about 900 million words for FR–EN, and 110 million words for DE–EN.

We evaluate each system with two test sets. The first test set is newstest2011 from WMT
2011, with the system optimized on news-test2008; as second test set, we use patent ab-
stracts for FR–EN7, and help desk tickets provided to us by the software company Finnova
for DE–EN. The reason for this is that we expect idiomaticity to be more of a problem if
training and test set are dissimilar, since MWEs may be domain-specific (Smadja et al.,
1996). We will refer to the second test set as cross-domain setting.

6For the size of the data sets, see table 4.1, p. 44.
7extracted from the COPPA corpus (Pouliquen and Mazenc, 2011); IPC section A: human necessities.
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system sentence
source Le jeu comprend des cartes objectifs et de l’argent pour le jeu.
reference The game apparatus includes target cards, and game money.
baseline The game includes maps objectives and money for the stake.
+FLEX The game includes maps objectives and money for the game.
source [...] les cylindres tournant librement et servant d’organe de support [...]
reference [...] the freely rotating rollers, which act as support members [...]
baseline [...] freely rotating cylinders and media body [...]
+FLEX [...] freely rotating cylinders and support body [...]
source Improvements relating to board games
reference Améliorations apportées à des jeux de société
baseline Des améliorations relatives aux jeux du conseil
+FLEX Des améliorations concernant les jeux de société

Table 8.3: Example translations from patents corpus. Phrase-based models.

8.6.2 Phrase-based Results

Table 8.2 shows our experimental results with phrase-based systems on newstest2011, and
the two cross-domain test sets. The only change of our FLEX system over the baseline is
the addition of four flexibility features to the log-linear model, namely pflex_left and pflex_right in
both translation directions.

On newstest2011, we observe an improvement of 0.2 BLEU in three of the four transla-
tion directions. On the help desk and patent test sets, the flexibility features lead to larger
improvements of up to 0.9 BLEU (FR–EN), with 0.3–0.4 points of improvement observed
for DE–EN and EN–FR, and no significant improvement for the language pair EN–DE.

There are a number of possible explanations as to why we observe a gain in performance
with some test sets, but not with others. Defining the context as the immediate neighbours
of a phrase pair does have limitations. In the case of DE–EN, for instance, we note that
the relatively free word order in German makes it harder to recognize if a word is part of
a MWE with our approach. An example are German verb particles, which typically do not
occur immediately after the verb, but at the end of the matrix clause. Without preorder-
ing, we cannot reliably distinguish between schlägt (engl: beats) and schlägt ... vor (engl:
proposes).

Apart from the translation direction, the extent to which (parts of) MWEs are misused
during translation depends on the training and test domain, since MWEs may be domain-
specific (Smadja et al., 1996). If training and test domain are similar, using an idiomatic
translation learned from the domain is more likely to be right than if the test set is from a
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different domain. Conversely, we expect cross-domain translation to benefit more strongly
from the flexibility features, and consider this the main reason why we observe a larger per-
formance boost with cross-domain test sets. Given that we observe the largest performance
gains in cross-domain translation, we argue that the flexibility features may be especially
helpful for general purpose SMT systems, and/or systems that use training data from vari-
ous different domains.

A further possible explanation for the varying results is that the extent of the problem
depends on how literally and in which direction the training text was originally translated.
Newmark (1991) remarks that one feature of “translationese” is that idioms are sometimes
translated literally, and Lembersky et al. (2012) find that that the original language of the
training data affects SMT performance.

Furthermore, adding flexibility features has side effects which may be both positive and
negative. Specifically, the systems with flexibility features tend to give a higher weight to
the phrase penalty in the log-linear model, meaning that the systems use fewer, but larger
translation units during decoding. Such a preference of large translation units makes sense
if we want to correctly translate MWEs despite the flexibility features: note our motivat-
ing examples in table 8.1, and that the flexibility features penalize (Einklang|line), but not
(im Einklang mit|in line with).

Table 8.3 shows a few examples where the baseline system misapplies an inflexible phrase
pair. In these examples, the translations are so wrong that it might be hard to intuitively
understand why they were even learned in the model. Hence, we list the relevant phrase
pairs, all frequent in the training set, that introduce these word translations into our model:

• en jeu – at stake

• format de support – media format

• board of directors – conseil de direction

In all examples, the flexibility features successfully penalize the (misused) idiomatic
translation. However, the third example nicely illustrates that the experimental system does
not prevent the translation of multiword expressions when they are encountered as a whole.
The experimental system penalizes the inflexible translation pair (conseil|board), but not
(jeux de société|board games), which is chosen instead. The examples also illustrate our
point about MWEs being domain-specific: board of directors only occurs once in a patent
corpus of 9 million sentences, but 12 500 times in the 109 corpus (21 million sentences).
format de support occurs 16 times in the patent corpus, and 3000 times in the 109 corpus.
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system DE–EN EN–DE FR–EN EN–FR
BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR

newstest2011
unfiltered 21.1 29.1 15.5 36.4 29.0 34.0 30.2 51.0
filtered 21.5 29.1 15.6 36.2 29.2 34.1 30.4 51.0
FLEX_H1 21.5 29.1 15.8 36.5 29.6 34.2 30.5 51.1
FLEX_H2 21.5 29.1 15.9 36.5 29.5 34.2 30.6 51.2
FLEX_H3 21.5 29.1 15.8 36.5 29.7 34.3 30.5 51.1

cross-domain
filtered 29.2 29.1 26.3 41.6 24.2 31.9 22.8 44.7
FLEX_H1 29.3 29.2 27.1 42.5 24.9 32.1 22.7 44.7
FLEX_H2 29.3 29.2 27.1 42.4 25.0 32.2 22.8 44.7
FLEX_H3 29.3 29.2 27.2 42.5 24.7 32.0 22.8 44.8

Table 8.4: SMT results on newstest2011 and cross-domain test sets. Hierarchical models.
Highlighted systems are significantly better than (filtered) baseline.

8.6.3 Hierarchical Results

Table 8.4 shows translation results for hierarchical systems. Regarding statistical signif-
icance filtering, we see an increase in BLEU by up to 0.4 points for the filtered models,
along with a reduction in rule table size. METEOR remains constant, or, for EN–DE, drops
slightly by 0.2 points. A closer look at the METEOR statistics gives us an explanation
for this discrepancy between BLEU and METEOR. Unigram precision benefits from sig-
nificance filtering, while unigram recall, which is only considered by METEOR, is slightly
decreased. We conduct all future experiments with filtered tables.

Just as with the phrase-based systems, the impact of the flexibility scores varies between
the different translation directions and test sets. The biggest effect is observed for the trans-
lation directions EN–DE, with 0.2-0.3 BLEU points gained on newstest2011, and 0.8–0.9
BLEU points on the cross-domain test set, and FR–EN, with 0.3-0.5 BLEU points gained
on newstest2011, and 0.5-0.8 BLEU points on the cross-domain test set. For DE–EN and
EN–FR, the differences are small or non-existent.

All variants of hierarchical flexibility scores perform similarly well, with no consistent
winner variant. For DE–EN and EN–FR, adding flexibility scores yields no significant
improvement.

A comparison between phrase-based and hierarchical systems gives a mixed picture. For
the language pair FR–EN, the hierarchical system is better on newstest2011, whereas the
phrase-based one performs better on the patent test set. An analysis of the METEOR statis-
tics suggests that the main difference between the phrase-based and the hierarchical models
is in METEOR’s fragmentation penalty, which means that reordering phenomena are at the
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root of these differences. Adding flexibility features is effective for both types of models, as
it primarily affects the precision and recall scores. This indicates that the flexibility features
improve the accuracy of the translation.

8.7 Summary

We describe a simple, yet effective way to measure the flexibility of phrase pairs, and show
that these flexibility measures improve translation quality. By penalizing inflexible phrase
pairs, i.e. phrase pairs that only occur in the context of larger multiword expressions, we
measured gains in translation quality of up to 0.9 BLEU and METEOR points. The flexibility
of phrase pairs is learned from the parallel training text, and expressed through new features
in the log-linear SMT model. This makes the approach simple to implement and language-
independent.

We apply the approach to both phrase-based and hierarchical phrase-based SMT models,
and discuss variants for hierarchical models. We also demonstrate that rule table filtering
based on statistical significance tests is possible and fruitful.

The flexibility scores that we propose still have their limitations. Specifically, there are
MWEs which have a higher flexibility on the surface level, but which we still would like to
mark as inflexible. An example are German verb particles, which do not necessarily occur
immediately after the verb, but at the end of the matrix clause, and whose translation is often
non-compositional. Coupling flexibility scores with reordering might help to overcome
these limitations.

An alternative application for the flexibility scores could be linguistic exploration, i.e.
extracting multiword expressions in a parallel corpus, similar in spirit to (Caseli et al., 2009),
who use automatic word alignment in a parallel corpus to identify multiword expressions.
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9 Conclusion and Outlook

This thesis presented original work in domain adaptation for translation models in Statistical
Machine Translation. We introduced a novel architecture for translation model combination,
which applies instance weights at decoding time to a vector of component models, each
model storing the sufficient statistics (i.e. the word and phrase (pair) frequencies) necessary
for the computation of translation probabilities.

We have shown that this architecture is effective at improving performance in various set-
tings. In contrast to related work in domain adaptation, multiple domains can be supported
in a single system, and a running system can be quickly adapted to new domains, mean-
ing that domain adaptation can be performed at little cost. We have also shown that the
architecture is flexible in that it allows one to integrate different types of knowledge sources
into SMT systems. While we demonstrated the inclusion of out-of-domain parallel data for
training, we observed even bigger gains by using the architecture to integrate the knowledge
of external MT systems, which act as a source of general-domain data, into the model.

We also discussed the risk of domain adaptation, and found that our architecture con-
tinues to perform well as we scale up the number of component models, or if we apply it
in a setting with several equally fit component models. Some related approaches that we
evaluated failed to scale well to a high number of component models, or even fell below
the performance of an unadapted system in those suboptimal settings. We also performed
domain adaptation in an unlabelled setting, and demonstrated that we can even perform do-
main adaptation with a single, heterogeneous parallel training corpus, using unsupervised
clustering of training data.

The most effective strategy to improve SMT performance on a low-resource domain is
to obtain more in-domain training data. We discussed learning curves with in-domain and
out-of-domain data, and introduced a novel algorithm for sentence alignment which can
help to extract more useful training data from a parallel text than other algorithms. With
a collection of digitised journal articles, our algorithm improved recall by more than 50%
compared to other sentence alignment algorithms.

We also discussed (domain-specific) multiword expressions as a source of ambiguity,
and why the compositionality assumption of state-of-the-art models results in idiomatic
translations being misapplied outside of the respective idioms. We introduced new features
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to the log-linear translation model which measure how flexible a phrase pair is, i.e. the
number of contexts it has been observed in during training. We have shown that these
features can reduce the overgeneralisation of idiomatic phrase pairs to new contexts.

We released the main results of our work as free software1. While we believe that our
techniques are ready for deployment in research and industry, this thesis also opens new re-
search possibilities, both in terms of research building on our work, and research addressing
open questions.

• While we have shown that perplexity minimization is a quick and reasonable opti-
mization method for instance weighting, using one of the usual MT metrics such as
BLEU as objective function would be an attractive goal. The main obstacle is that such
an optimization is computationally more expensive, and early attempts to optimize in-
stance weights on BLEU suffered from having to create a new translation model for
each set of weights (Shah et al., 2010). The translation model architecture that we
presented, which is able to change instance weights at runtime without having to re-
train the translation model, could facilitate the implementation of new optimization
methods.

• We expect diverse new translation model features to become established as a result of
the new discriminative optimizers such as PRO and MIRA, which promise to better
scale to a high number of features. While instance weighting and perplexity mini-
mization is an effective method to adapt translation model probabilities, many fea-
tures will require different adaptation techniques. Our flexibility features fall under
this category, since they estimate phrase pairs to be improbable if they only occur in
few contexts, even if they are frequent. Perplexity may thus not be a suitable objective
function for these features.

• This thesis mainly operated with phrase-based translation models. While the transfer
of the techniques to other model types is possible in principle, the techniques may
need to be adapted to the characteristics of the model. As an example, we refer to our
adaptation of flexibility features to hierarchical models in section 8.4.1 (p. 121).

• We envision that our translation model architecture can be used for other purposes
than the ones demonstrated in this thesis, for instance to quickly integrate – and ap-
propriately weight – user feedback in interactive Machine Translation (Ortiz-Martínez

1as contributions to Moses (https://github.com/moses-smt/mosesdecoder) or as sepa-
rate projects on https://github.com/rsennrich.
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et al., 2010). This could lead to personalized SMT systems that share one or multiple
background models, but are adapted to the user through a (small) user-specific trans-
lation model and user-specific model weights. Another application and area of further
research is multi-domain machine translation. We already performed pilot studies in
a multi-domain setting (Sennrich et al., 2013), demonstrating that a system is pos-
sible that requires no domain labels or user selection of the target domain, but uses
unsupervised clustering to adapt to multiple target domains.
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Figure 10.1: BLEU score as a function of training set size, illustrating the relative effect
of adding in-domain (IN) and out-of-domain (OUT) training data. Data point
colour denotes the relative amount of IN data. Translation direction FR–DE.
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Figure 10.2: BLEU score as a function of training set size, illustrating the relative effect
of adding in-domain (IN ) and out-of-domain (OU T ) training data. Out-of-
domain language model. Data point colour denotes the relative amount of IN
data. Translation direction DE–FR.
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Figure 10.3: BLEU score as a function of training set size, illustrating the relative effect
of adding in-domain (IN ) and out-of-domain (OU T ) training data. Out-of-
domain language model. Data point colour denotes the relative amount of IN
data. Translation direction FR–DE.
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