
Masterarbeit

zur Erlangung des akademischen Grades

Master of Arts

der Philosophischen Fakultät der Universität Zürich

Named Entity Recognition in Digitized
Historical Texts

Verfasserin: Yvonne Gwerder

Matrikel-Nr: 10-737-831

Referent: Prof. Dr. Martin Volk

Betreuerin: M.Sc. Natalia Korchagina

Institut für Computerlinguistik

Abgabedatum: 29.06.2017

Abstract

The thesis at hand presents an approach at automatically recognizing Named Enti-

ties in legal documents written in late medieval and early modern variants of German

and French. It describes the transformation of the digitized texts into a structured

XML format, while exemplifying how resources for tokenization and OCR-processing

can be adapted and applied to this end. Named Entities are extracted by exploiting

indices of place and person names, and subsequently detected in the texts via ap-

proximate string matching techniques. The resulting pre-annotated texts are then

tagged with a ready-made Named Entity Recognition tool intended for the mod-

ern language. Ultimately, by training and testing own Machine Learning models,

the thesis aims at illustrating the main possibilities and limitations characteristic of

historical data.

Zusammenfassung

Die vorliegende Masterarbeit befasst sich mit dem automatischen Erkennen von

Eigennamen in deutschen und französischen Rechtsquellentexten, welche im Spät-

mittelalter und in der frühen Neuzeit entstanden sind. Die Arbeit beschreibt die

Umwandlung der digitalisierten Texte in ein strukturiertes XML-Format, wobei

die Verwendung sowie Anpassung von Tokenisierungs- und OCR-Software erläutert

wird. Die Eigennamen werden zunächst aus den entsprechenden Orts- und Per-

sonenregistern extrahiert und danach mit Hilfe von unscharfen Suchmethoden im

Text lokalisiert. Die daraus resultierenden vor-annotierten Texte werden zusätzlich

mit einem Standard-Tool für Eigennamenerkennung getaggt. Abschliessend sollen

durch das Trainieren eigener statistischer Modelle die spezifischen Besonderheiten

und Probleme von historischen Texten veranschaulicht werden.

Acknowledgement

I would like to express my gratitude to all people who assisted me with my thesis.

I am very grateful for having had Natalia Korchagina as my supervisor, and

I would like to thank her for being a very competent and patient mentor. Starting

from the point when this thesis was merely an idea for a seminar project up to

completion, her advice and expertise has always been of much help.

Many thanks go to Martin Volk, not only for assisting me in organizational

matters, but also for providing me with precious ideas as well as motivation. In

addition, he enabled and supported the collaboration with the Swiss Law Sources

Foundation. In this regard, I would also like to thank and credit Pascale Sutter

who offered me the unique opportunity to work with data from the Collection of

Swiss Law Sources.

Special thanks are dedicated to my fellow student Susie Xi Rao, as she inspired

me to continue our group project, and ceaselessly helped me throughout the whole

semester with all kinds of matters.

Finally, I want to express my gratitude to my supportive friends and family mem-

bers whose encouragement has been very much appreciated.

ii

Contents

Abstract i

Acknowledgement ii

Contents iii

List of Figures vi

List of Tables vii

List of Acronyms viii

1 Introduction 1

1.1 Motivation . 1

1.2 Research Questions . 3

1.3 Thesis Structure . 4

2 Theoretical Background 5

2.1 NLP for historical texts . 5

2.1.1 General challenges . 5

2.1.2 Dealing with spelling variation 7

2.1.2.1 Normalization . 7

2.1.2.2 String similarity measures 8

2.2 Named Entity Recognition . 11

2.3 NER in historical texts . 14

2.3.1 Rule-based approaches . 14

2.3.2 Data-driven approaches . 16

3 Text Pre-processing and Corpus Creation 19

3.1 Data . 19

3.1.1 The Collection of Swiss Law Sources 19

3.1.2 The SSRQ digitization project 21

3.1.3 Selection of volumes . 23

3.2 Pre-processing . 25

iii

Contents

3.2.1 XHTML parsing . 25

3.2.2 Restoring pagination . 26

3.2.2.1 Problem . 26

3.2.2.2 OCR approach . 27

3.2.2.3 Evaluation . 28

3.2.3 Cleanup . 30

3.2.4 Sentence boundary detection 32

3.2.5 Tokenization . 33

3.2.6 Remaining issues . 35

4 Name Extraction and Recognition 36

4.1 Indices of place and person names . 36

4.1.1 Pre-processing . 38

4.2 NE database compilation . 39

4.2.1 Extracting and generating name variants 39

4.2.2 Extraction of other information 43

4.2.3 Post-processing and output . 44

4.2.4 Remaining issues . 45

4.3 Recognition and annotation of entities 46

4.3.1 Procedure . 47

4.3.2 Direct and approximate search 48

4.3.3 Stand-off annotation . 50

4.3.4 Evaluation . 51

4.3.4.1 Precision . 51

4.3.4.2 Recall . 53

5 Machine Learning Approach 57

5.1 Applying modern language NER systems 57

5.1.1 Stanford NER . 58

5.1.1.1 Classifiers . 58

5.1.1.2 Building an IO-tagged corpus 60

5.1.1.3 Comparison and evaluation 61

5.2 CRF classifier training with Wapiti 65

5.2.1 Data and features . 65

5.2.2 Evaluation . 67

5.2.2.1 Silver-standard comparison 67

5.2.2.2 Gold-standard comparison 68

6 Conclusion 71

6.1 Summary . 71

iv

Contents

6.2 Outlook . 73

References 74

Curriculum Vitae 81

A Python Scripts 82

B Wapiti Feature Templates 84

B.1 Template 1 . 84

B.2 Template 2 . 84

B.3 Template 3 . 86

C Modules and Tools 87

v

List of Figures

1 Spelling variation in historical documents 6

2 Representation of nested NEs . 11

3 OCR errors in Parliamentary records 14

4 SSRQ manuscript and transcription 20

5 SSRQ print and XHTML . 22

6 OCR comparison table . 28

7 XHTML line and footnote markers 31

8 Usage of square brackets . 33

9 XML corpus excerpt . 35

10 Index of place and person names . 37

11 Problematic index entry . 45

12 Stand-off annotation file . 50

13 Error sources for False Negatives . 55

14 Project pipeline . 73

vi

List of Tables

1 Levenshtein distance . 9

2 NE types . 12

3 Selected SSRQ volumes . 24

3 Error rates in the OCR-processed pages 29

4 Tokens and types of the selected volumes 34

5 Spelling variants with parentheses . 40

6 Abbreviations and written out names 42

7 NE and class distribution . 42

8 Precision of approximate search . 51

9 Examples of correct and wrong matches 52

10 Query and entry recall . 54

11 Number of Stanford NER and rule-based tags 62

12 Distribution of class tags . 62

13 Precision of Stanford NER . 63

14 Tab-separated corpus format . 66

15 Classifier evaluation against silver-standard 68

16 Classifier evaluation against gold-standard 69

vii

List of Acronyms

BIO Beginning Inside Outside

CER Character Error Rate

CRF Conditional Random Fields

CSS Cascading Style Sheet

CSV Comma Separated Values

HTML Hypertext Markup Language

IE Information Extraction

LCS Longest Common Substring

ML Machine Learning

NE Named Entity

NER Named Entity Recognition

NLP Natural Language Processing

NLTK Natural Language Tool Kit

OCR Optical Character Recognition

OLR Optical Layout Recognition

PDF Portable Document Format

PER Position-independent Word Error Rate

PNG Portable Network Graphics

POS Part-Of-Speech

QA Question Answering

SSRQ Sammlung Schweizerischer Rechtsquellen

TEI Text Encoding Initiative

UTF-8 Unicode Transformation Format (8-bit)

UZH University of Zurich

WER Word Error Rate

XHTML eXtensible Hypertext Markup Language

XML eXtensible Markup Language

viii

1 Introduction

1.1 Motivation

Named Entity Recognition (also referred to as NER) is a subtask of Natural Lan-

guage Processing (NLP) and plays a fundamental role in the field of Information

Extraction (IE). With the rise of big data and social media, as well as the result-

ing need for efficient extraction mechanisms for proper names, NER has certainly

gained interest during the past decade. A Named Entitiy (NE) is usually defined as

a linguistic expression referring to an individual object in the real world, such as a

person, organization, product, or location (Carstensen et al., 2010, 596). Depending

on the application of the NER system, other NE categories may come into play,

including expressions of time (e.g. specific dates) or measurement (e.g. weight,

currency). Most of the current NER systems are based on data-driven method-

ologies, using supervised or semi-supervised Machine Learning (ML) techniques on

large amounts of human annotated data (cf. Benikova et al. (2014), Nothman et al.

(2013)). Thus, state-of-the-art NER systems are expected to achieve best results

when applied on well-resourced languages and genres (such as English newspaper

texts). However, numerous historical languages (but also regional language varieties)

are less-resourced, so that only limited annotated material for them is available.

Manually annotating these texts may be challenging if not impossible, since the

variety at hand could be mostly unknown or outdated. In addition, historical texts

usually do not have a normalized orthography. This fact poses special challenges for

conventional NLP, as many of its aspects ”critically rely on the assumption that the

text to be processed is written in a single language with a standardized orthogra-

phy” (Piotrowski, 2012, 3). In summary, NLP presently lacks ”a conceptual model

of spelling variation, genre differences, and language change”, while these aspects

are characteristic of historical documents (Piotrowski, 2012, 9). As a result, most of

the currently prevalent NLP applications – including Part-of-Speech (POS) tagging,

syntactical parsing and morphological analysis – do not perform well on this type

of text. The number of available tools designed for specific historical data is sparse,

and only few of them focus on NER.

1

Chapter 1. Introduction

Usually, Named Entities in historical corpora are of high interest for cultural,

social and political research within a specific historical period, which makes NER

a valuable process in the Digital Humanities. Once certain NEs in a text have

been identified, it is possible to investigate different aspects of them, such as an

organization’s or individual’s area of influence, their co-occurrence and interaction

with other individuals, or which currencies they used within a given period of time,

etc. It is also possible to research entities from a linguistic point of view and establish

the different ways of spelling the same proper name. From a diachronic perspective,

it could be of interest to explore how and where, for instance, place names have

changed (or even disappeared). Sometimes the aim is to create a gazetteer listing

all names of persons and places occurring within a document, so that a reader can

easily look them up. Here, NER can be applied to automate the process and avoid

– or at least reduce – time-consuming manual work. These are only a few examples

of how research in the humanities may profit from NER, and a lot of possibilities

are still to be discovered.

The thesis at hand has been motivated by the challenges for current NLP in

relation to historical texts on the one hand, and by the importance of NER for

the Digital Humanities on the other. Collaborating with the Swiss Law Sources

Foundation1, the UZH Institute of Computational Linguistics presently conducts

investigations addressing the extraction of temporal entities from historical legal

texts2. I have been given the opportunity to write my thesis in cooperation with the

Swiss Law Sources Foundation which provided me with digitized texts from their

database, the Collection of Swiss Law Sources3. This database encompasses over 100

volumes written in historical variations of German, French, Italian, as well as Latin,

corresponding to more than 70’000 pages of source material. All texts originate

from regions nowadays belonging to Switzerland and include a time span from the

Middle Ages up to the Early Modern era (1798). Since the source material has been

digitized and made available in different file formats, it is now possible to process the

data within an experimental NLP framework. The overarching goal of my research

was to model a NER pipeline for the historical variety of two languages, German

and French, which includes pre-processing of the data, extracting NEs via rule-based

and statistical algorithms, as well as delivering corpus data and NE-annotated files

which may ultimately provide a basis for future projects.

1Schweizerische Rechtsquellenstiftung ; https://www.ssrq-sds-fds.ch/
2This project, launched in 2014, is lead by Prof. Dr. Martin Volk and Dr. Pascale Sutter. Re-

search is being conducted by Natalia Korchagina. Cf. http://www.cl.uzh.ch/en/research/
digital-humanities/hist-temporal-entities.html.

3Sammlung Schweizerischer Rechtsquellen (SSRQ); https://www.ssrq-sds-fds.ch/online/.

2

https://www.ssrq-sds-fds.ch/
http://www.cl.uzh.ch/en/research/digital-humanities/hist-temporal-entities.html
http://www.cl.uzh.ch/en/research/digital-humanities/hist-temporal-entities.html
https://www.ssrq-sds-fds.ch/online/

Chapter 1. Introduction

1.2 Research Questions

Apart from creating a NER pipeline as mentioned above, another objective in my

thesis was to experiment with several different applications from various sections of

automatic text processing, and discover how they can be modified and implemented

to work with historical data. Moreover, I wanted to illustrate what kinds of prob-

lems arise when applying off-the-shelf tools which are meant for processing modern

texts. In a more general sense, the thesis also aimed at demonstrating the chal-

lenges, problems and intricacies of NLP with historical data. The following research

questions shall be addressed:

• How can string comparison methods be efficiently employed for corpus pre-

processing and recognizing NEs? Which techniques work best for the given

data?

• How well does an off-the-shelf NE tagger perform on the historical texts?

• Is it possible to train an own Machine Learning system based on the output

of different NER methods? If so, what kind of results can be expected?

• How can the pre-processed data be arranged in a clearly structured and re-

usable format?

In order to answer these questions, the project described in this thesis has been

divided into a sequence of processing steps. The most important ones are as follows:

1. Pre-processing of the source texts and creating machine-readable corpus files

for each volume. This involves:

a) Restoring the original layout with the help of Optical Character Recog-

nition (OCR) and string comparison methods

b) Sentence boundary recognition and tokenization

2. Extraction of NEs using regular expressions and rule-based filtering methods

3. Finding and annotating the extracted NEs in the corpus by using approximate

string matching techniques

4. Applying a ready-made NE tagger and combining the output in order to train

an own statistical model for NER

5. Based on the extracted NEs, automatically creating annotation files and dictionary-

like databases.

3

Chapter 1. Introduction

1.3 Thesis Structure

In the following chapter 2, I outline the main concepts and principles of NER while

addressing the issue of NER in the cultural heritage domain. Chapter 3 introduces

the data used for this thesis, and summarizes the corpus compilation and cleanup

process. In chapter 4 I first describe secondary sources – the indices of place and

person names – that were used for storing names, spelling variants, and other rele-

vant information into a NE database. Next, I delineate the hand-crafted rules and

algorithms for locating the NEs in the text. Chapter 5 explores the possibilities

and limitations of Machine Learning, and surveys the usage of ready-made systems.

Since chapters 3 to 5 deal with different components of the pipeline, the evaluations

are given within the corresponding sections. I therefore abstained from adding a

separate chapter dedicated to an overall evaluation. The last chapter 6 summarizes

the thesis project, and mentions possible future work.

4

2 Theoretical Background

This chapter aims at giving a general introduction to the challenges of working

with historical texts. It also summarizes the task of Named Entity Recognition,

and defines the most important concepts related to the task. The last part of the

chapter presents a selection of previous studies dealing with NER in historical texts.

2.1 NLP for historical texts

2.1.1 General challenges

Historical documents have not been used for NER (or any NLP application in gen-

eral) for a relatively long time. This is due to two main reasons: firstly, a large

number of documents have not been available in any digital form, and secondly,

the specific linguistic properties and orthographic variation in historical texts pose

many challenges to NLP. However, there is now an increasing interest in making

documents accessible not only for a public readership, but more specifically for his-

torians, linguists, and paleographers. With the rise of the Digital Humanities, more

and more historical documents (such as old books and letters) are being digitized.

Since many of the documents are threatened with physical ruin, this is often the

only way to preserve their cultural heritage.

Thus, digitization is the first important step in making historical data accessible.

(Hauser et al., 2007, 147) state that this step ”in symbolic form opens the door

for using modern techniques of information access such as Information Retrieval,

text mining, hyperlinking, flexible rendering and presentation of documents”. Since

merely scanning or photographing documents grants only very limited access, digi-

tization usually involves manual transcription or OCR. Both of these processes pose

challenges when it comes to historical texts. Depending on the origin of the source

material, the text may be written in a specific historical typeface (e.g. Gothic type)

or it may possess other paleographic features (e.g. majuscules). Manual transcrip-

tion, in that case, requires expert knowledge, and is certainly very time-consuming.

5

Chapter 2. Theoretical Background

It seems that applying OCR on historical documents would be the easiest and fastest

way of transforming the input into machine-readable text formats; yet this assump-

tion is far from true. The vast majority of OCR systems are trained to process

present-day fonts such as sans-serif and are therefore error-prone with historical

texts (which may also have poor material quality, inducing more errors into OCR).

In addition, Optical Layout Recognition (OLR) software often struggles with recon-

structing the original text flow in ”complex magazine-like layouts (with images, text

boxes, non-rectangular text blocks, etc.), initials, marginals, captions, or footnotes”

(Piotrowski, 2012, 31).

The biggest challenge to NLP of historical texts, however, is the absence of an

orthographic standard connected with the presence of a big variety in different

spellings. The orthography in German documents, for example, has not been for-

mally regulated until 1901. Figure 1 illustrates the frequency of variant spellings

found in German documents over a time span of 450 years, based on a text nor-

malization project by Ernst-Gerlach and Pilz (2006). The high percentages be-

Figure 1: Frequency of variant spellings in German historical text documents from
1480 to 1885, adapted from (Kempken et al., 2006, 2)

fore orthographic standardization, and especially before the 1700s, indicate a great

number of different spelling variants for the same words. As (Piotrowski, 2012, 11)

states, this extent of variation is a problem for numerous applications in language

technology:

NLP methods generally assume that the text to process adheres to

a consistent orthography. This is because, at some point, most NLP

techniques need to consult lexical resources to obtain information (e.g.,

6

Chapter 2. Theoretical Background

part of speech, case, or number) about the word forms encountered in

the text, and the word form serves as key for accessing this information.

Due to the issues mentioned above, studies focusing on IR (and more specifically

on NER) in historical texts are still relatively marginal.

2.1.2 Dealing with spelling variation

2.1.2.1 Normalization

Spelling variation complicates the development of both ML and rule-based NER sys-

tems. ML needs meaningful features which are often based on character sequences of

tokens; the more overall variation in the tokens, the harder it will be to make correct

predictions. On top of that, the absence of available linguistic tools for historical

texts such as POS-taggers and morphological analyzers makes it impossible for a

ML system to learn from anything other than the tokens in the text. Rule-based

systems rest upon external resources, but in the context of historical NER, these are

often insufficient or – at worst – non-existent. Ultimately, general techniques such as

frequency profiling, collocation extraction or concordancing will yield poor results.

For this reason, string similarity measures are an essential component when deal-

ing with historical language varieties. They are commonly used in text processing

and NLP applications1 to calculate the similarity or distance (therefore also called

distance metrics) between strings. For historical texts, they are most useful in the

process of normalization (Piotrowski, 2012, 69ff.).

The goal of normalization is ”to bring the historical language closer to the modern

language in order to enable the use of the methods, tools, and resources available

for the modern language. Thus, given a historical word form, we are interested in

a corresponding modern word form” (Piotrowski, 2012, 69). This can be achieved

by finding the modern word form (in a given reference file or dictionary) which is

closest to the historical variant, i.e. which has the highest similarity score. It is also

possible to perform normalization automatically or semi-automatically by creating

sets of replacement rules or by making a ML system learn the rules by itself.

An exemplary study which used both approaches was outlined by Pilz et al. (2008).

Their goal was to create a system which detects and normalizes both German and

English historical spelling variants to their modern equivalent in running text (origi-

nating in a period between the 13th and the 16th century). On the basis of manually

1E.g. proper name matching, OCR correction, dialectometry, data linkage and deduplication, or
spelling error correction.

7

Chapter 2. Theoretical Background

collected one-to-one word mappings between non-standard and modern spellings2,

letter replacement heuristics were derived both manually and automatically. The

authors reported good intermediate results; for instance, the three most frequently

used replacement rules for German achieved precision scores of over 94 % (Ernst-

Gerlach and Pilz, 2006).

(Bollmann, 2012, 2), on the other hand, combined and compared different normal-

ization methods that can be flexibly trained to handle spelling varieties. He stressed

that character rewrite rules (as examined in the work by Pilz et al. (2008)) should

avoid the generation of nonsensical words, which can be achieved by considering the

frequency of the rule during training, and by matching normalization candidates

against a reference lexicon (Bollmann, 2012, 3). The study also summarized the

FlexMetric and MultiWLD measures for normalization that are easily adaptable to

different varieties. In general, these measures are modifications of the Levenshtein

distance (cf. section 2.1.2.2 below) with trainable weights for string operations. The

advantage of both rests upon the flexible parametrization by manual inspection of

only a small portion of the input data. When combining FlexMetric and MultiWLD

with rule-based methods, (Bollmann, 2012, 9) achieved a normalization accuracy of

around 93 % using the 1545 version of the Luther bible.

2.1.2.2 String similarity measures

There is a great number of different measures and algorithms used for approximate

string matching. One matching technique is called phonetic encoding which con-

verts a string into an alphanumeric code based on its pronunciation. That means

that strings with similar codes are supposed to be phonetically similar. Most of the

phonetic encoding techniques, including Metaphone as well as Soundex and its vari-

ations (i.e. Phonex, Phonix, NYSIIS) have been developed for the English language

(Christen, 2006, 292). Some of them attempt to better account for non-English

input, e.g. the Meyer-Wilde algorithm which was adapted to German (Meyer and

Wilde, 1988).

Other measures are based on string similarity or edit distance. A very straightfor-

ward and common distance metric is the Levenshtein distance developed in the

60s. It is defined as ”the smallest number of edit operations (insertions, deletions

and substitutions) required to change one string into another” (Christen, 2006, 292).

By default, the cost for each edit operation is set to 1, but can be changed according

to the desired strictness (which results in a weighted form of the algorithm, often

212’621 for German and 45’805 for English (Pilz et al., 2008, 66ff.).

8

Chapter 2. Theoretical Background

referred to as Weighted Levenshtein Distance). For instance, by setting the cost

for substitution to 2, the edit distance between the strings ’Himmel’ and ’Hymel’

is 3. Table 1 demonstrates how the distance is calculated; note that the result is

displayed in the bottom right corner of the table.

H y m e l

0 1 2 3 4 5

H 1 0 1 2 3 4

i 2 1 2 3 4 5

m 3 2 3 2 3 4

m 4 3 4 3 4 5

e 5 4 5 4 3 4

l 6 5 6 5 4 3

Table 1: Levenshtein distance between the strings ’Himmel’ and ’Hymel’, based on
(Ernst-Gerlach, 2013, 27)

A variation of the Levenshtein distance is the Damerau-Levenshtein distance in

which transposition is considered to be a single edit operation with cost 1, instead

of two different operations (Kempken, 2005, 15).

The Hamming distance is another edit distance metric similar to Levenshtein

which counts the minimum number of errors (i.e. substitutions) required to change

one string into the other. In contrast to Levenshtein, it is only defined for strings of

equal length, and is much faster for long sequences (Forouzan, 2007, 274ff.).

Another established algorithm called Jaro distance is frequently used in data

linkage tasks. It calculates the edit distance using the number of transpositions as

well as the number of common characters in relation to the string length. Common

characters are all identical characters that occur within a given distance (by default,

this distance is defined as half the length of the longer string) (Kempken, 2005, 19).

Given the two strings s1 and s2, the number of common characters c, and the number

of transpositions t, the Jaro similarity can be calculated as follows:

simjaro(s1, s2) =
1

3

(
c

|s1|
+

c

|s2|
+

c− t

c

)
(2.1)

Equation 2.1 returns a normalized score such that 0 is equal to no similarity and 1 is

an exact match. The Winkler algorithm improves upon the Jaro metric by increasing

the similarity measure for agreeing initial characters (up to four) (Christen, 2006,

292). This is based on the assumption that differences near the start of the string

are more significant (ibid.).

9

Chapter 2. Theoretical Background

Thus, the Jaro-Winkler similarity is often used for person name matching,

and is calculated as

simwink(s1, s2) = simjaro(s1, s2) +
s

10
(1− simjaro(s1, s2)) (2.2)

with s being the number of agreeing characters at the beginning of two strings.

Whereas the aforementioned algorithms basically rely on the editing operations

of two strings, the n-gram approach operates by dissecting them into sub-strings of

length n. Frequently used n-grams are unigrams (n=1), bigrams (n=2) and trigrams

(n=3). The string ’Himmel’, for example, contains the bigrams ’Hi’, ’im’, ’mm’, ’me’,

’el’ (Ernst-Gerlach, 2013, 27). The idea behind this measure is that the more n-grams

are shared by two strings, the more similar they are. The n-gram similarity measure

is calculated ”by counting the number of n-grams in common and divide by either

the number of n-grams in the shorter string (called overlap coefficient), the number

in the longer string (called Jaccard similarity) or the average number of n-grams

in both strings (called the Dice coefficient)” (Christen, 2006, 292). There are also

extensions and modifications to the n-gram approach such as the comprehensive n-

gram similarity, the positional n-gram similarity, or skip-grams (cf. Kondrak (2005)

for more detailed descriptions).

The Longest Common Sub-string (LCS) technique tries to find the longest

character sequence that is a sub-sequence of both strings. (Christen, 2006, 292)

claims that this algorithm is ”suitable for compound names that have words (like

given- and surname) swapped”. Similarity is calculated by dividing the total length

of the common sub-strings by the minimum, maximum or average lengths of the

two original strings.

Of course there are numerous other string similarity measures (and variations)

such as Editex, Covington, Jaccard, Monge-Elkan, Smith-Waterman, and so on. A

practical compendium of many of them is given by Christen (2006), Ernst-Gerlach

(2013) and Kempken (2005). Naturally, each algorithm has its advantages and

disadvantages when it comes to the comparison of strings in historical texts. Thus,

the selection of the measures depends upon the task at hand. A combination of

different methods is likely to be beneficial for normalization and NER in historical

texts.

10

Chapter 2. Theoretical Background

2.2 Named Entity Recognition

NER is an Information Extraction task and a ”core component in many Natural Lan-

guage Processing applications, including question answering (QA), summarization,

and machine translation”(Nothman et al., 2013, 151). Its goal, as stated before, is to

correctly recognize mentions of Named Entities within text. According to Benikova

et al. (2014), the process of NER can be divided into two sub-tasks: first, relevant

tokens belonging to a NE have to be found within the running text, which is referred

to as Named Entity Detection. Second, the detected entities have to classified ac-

cording to a pre-defined set of semantic categories. This step is called Named Entity

Classification. Technically, the sub-task of NE detection is a segmentation problem:

since names are defined to be sequences of tokens, they may also be nested (e.g.

Zurich airport is a NE containing the NE Zurich). In that case, the detection of

nested NEs becomes formally similar to chunking. There are different ways of rep-

resenting nested entities, including hierarchical visualization or bracket notation. A

very widespread scheme is the BIO-notation3: tokens marking the beginning of a

NE are tagged as B (’beginning’), while subsequent tokens of the NE are tagged I

(’inside’). Tokens not belonging to a NE are tagged O (’outside’) (Indurkhya and

Damerau, 2010, 523). Figure 2 shows the Latin nested NE eclesiam Sancti Martini

Rigniacencis in a tree-like visualization created with brat4 (a), in bracket notation

(b) as well as in BIO-notation (c). Other ways of representing interleaved NEs, even

Figure 2: Different forms of representing the same nested NE based on an example
given by (Aguilar et al., 2016, 69)

though less prevalent, have been suggested. For instance, Byrne (2007) developed

her own multi-word token method for nested NER in historical archive texts.

3The BIO tagging scheme, also referred to as IOB, is frequently used in NLP chunking tasks.
4brat is an online environment for collaborative text annotation, cf. https://brat.nlplab.org/
index.html

11

https://brat.nlplab.org/index.html
https://brat.nlplab.org/index.html

Chapter 2. Theoretical Background

NEs are usually defined as linguistic expressions, i.e. single tokens or phrases,

referring to names of individual entities in the real world. These entities may be

persons, locations or organizations, but also specific dates or measuring units. Most

of the current NER systems have focused on three to four classes of NE. For instance,

both the monolingual NoSta-D system (Benikova et al., 2014) and the multilingual

Stanford NER tagger (Manning et al. (2014), cf. section 5.1.1) differentiate between

person, location, organization and a fourth class ’miscellaneous’ reserved for other

detected entities5. Nothman et al. (2013), on the other hand, have further divided

each of these four classes into sub-classes. Table 2 illustrates their classification with

an example NE for each type.

Coarse-grained NE type Fine-grained NE type Example

Location Town/city Bangkok

Facility Beijing National Stadium

Other Great Wall of China

Organization Band Blink-182

Corporation Logitech

Other Manchester A’s

Person Person John F. Kennedy

Other Yoda

Miscellaneous Event South Ossetia War

WorkOfArt Entourage (TV series)

Product AK-47

Other Capoeira

Table 2: Coarse-grained and fine-grained NE types with examples, adapted from
(Nothman et al., 2013, 159)

Depending on the framework of the application, the NE labeling may be even

more fine-grained. For instance, Ratinov and Roth (2009) have presented a hierarchy

containing 18 classes of NE, while the set by Sekine et al. (2002) even uses more than

150 labels. The definition of the classes and corresponding NEs is not always trivial.

For instance, while the noun Italy belongs to the NE category ’location’, adjectives

such as Italian may or may not be included. Likewise, the temporal expression

Christmas 2017 is considered a better example of a NE rather than e.g. July, as

the latter is the month of an undefined year.

5The Stanford NER models may also be modified to differentiate between three classes (person,
location, organization) or seven classes (person, location, organization, money, percent, date,
time).

12

Chapter 2. Theoretical Background

Furthermore, NEs tend to be ambiguous. (Carstensen et al., 2010, 598) mention

two cases of ambiguity, namely polysemy and synonymy. Polysemy means that the

same name refers to different entities, e.g. the term Winchester may refer both to a

place in England or in the United States, but it can also be the name of a product,

a person, and so on. Synonymy, on the other hand, occurs when the same entity

has different names. This also includes cases where an entity may be formulated in

different ways, e.g. Barack Obama, Obama, B.O., Mr. President, and so on. The

disambiguation of NEs, i.e. ”associating each classified text span with a referent

in the world or some model thereof” (Leidner et al., 2003, 31) is also referred to

as grounding. Resolving NEs in a text usually involves mapping them to a unique

identifier in a database.

Given the high frequency and complexity of NEs, the current state-of-the-art NER

system is based on data-driven methods rather than on handcrafted rules. (Nothman

et al., 2013, 151) explain:

With a substantial amount of annotated data and a strong evalua-

tion methodology in place, the focus of research in this area has almost

entirely been on developing language-independent systems that learn

statistical models for NER. The competing systems extract terms and

patterns indicative of particular NE types, making use of many types of

contextual, orthographic, linguistic and external evidence.

The learning approaches and features used for recognizing NEs are manifold.

However, the benefits of combining different methods have already become appar-

ent in early experiments, such as the CoNLL-2003 shared task (Tjong Kim Sang and

De Meulder, 2003). Participants of this task made use of lexical and character-based

features, POS-tags, chunking, as well as orthographic information. Moreover, the in-

corporation of external resources such as gazetteers, affix lists, and additional NER

systems improved performance. The best results have been obtained by combin-

ing Maximum Entropy Models, transformation-based learning, and Hidden Markov

Models (Tjong Kim Sang and De Meulder, 2003, 146).

Of course, acquiring large amounts of human-annotated data can be highly cost-

and time-consuming. In order to minimize the annotation effort, semisupervised ap-

proaches have been suggested (Lin and Wu (2009), Nothman et al. (2013)). The lat-

est NER systems have focused on applying Neural Networks (Santos and Guimarães

(2015), Lample et al. (2016)). For English, these produce near-human performance

with F-scores of around 93 %.

13

Chapter 2. Theoretical Background

2.3 NER in historical texts

There has been a number of previous studies related to NER in historical texts.

According to the methods and tools used in these studies, they can be roughly

divided into rule-based and data-driven.

2.3.1 Rule-based approaches

Grover et al. (2008) described an approach at recognizing person and place names in

digitized records of British parliamentary proceedings6. With the ultimate goal of

implementing an online NE search engine, they developed a pipeline which includes

OCR, annotation, as well as visualization of the data. Generally, this pipeline built

on rule-based techniques accessing external resources, whereas ML techniques were

deliberately avoided. This decision was made due to the frequent capitalization

of common nouns in the documents, and the absence of a POS-tagger suitable for

historical English texts. The data used in this study included two sets from the

Journals of the House of Lords, one originating from an earlier period (1685 - 1691)

than the other (1814 - 1817).

Two different systems were applied for OCR (one for each of the two data sets).

Despite good quality of the scanned images, the OCR output was reported to be

erratic. Text properties which caused problems for the OCR process include ’f’-like

realization of the letter ’s’, quotation marks at the beginning of lines, marginal notes,

special characters, and Latin text segments (Grover et al., 2008, 1343). Figure 3

displays a number of tokens in which the OCR software failed to recognize the correct

characters. Many of the errors could be attributed to the presence of ligatures (i.e.

the binding together of two or more letters).

Figure 3: OCR errors in Parliamentary records data, taken from Grover et al. (2008)

6Their study was conducted within the framework of the 18th century parliamentary papers
digitization project (BOPCRIS). BOPCRIS delivered over 1 million pages from all surviving
18th century Parliamentary documents, cf. https://www.bopcris.ac.uk.

14

https://www.bopcris.ac.uk

Chapter 2. Theoretical Background

In order to create a gold-standard, 137 OCRed files corresponding to 188’547

tokens were manually annotated with the three entity types person, location and

’interrupt’. The third type was used to mark material inside a NE but which was

not part of it (originating from OCR errors). Ultimately, 5’950 person names and

2’185 location names were annotated with an inter-annotator agreement of 91.46 %

(Grover et al., 2008, 1344).

The main component of the pipeline was built to tag person and place names by

accessing rules defined in grammar files. Amongst others, there were rules for monar-

chs, lords, earldoms, counties, etc., which access a variety of lexicons and name lists.

General purpose name grammars operated to find high confidence names such as Mr.

Stratford or Town of London. Moreover, a grammar to identify and eliminate noise

(e.g. marginal notes or non-alphabetic symbols) was applied. The pipeline generated

a file with stand-off annotation7 file in XML format with additional markup for the

entities as well as for OCR coordinate information. Since the resulting NE-tagger

should be able to display visual output to the user, this standoff output format ”was

designed to enable highlighting of entities in the page image through a process of

mapping from the regions in the OCR XML to the regions in the image” (Grover

et al., 2008, 1345).

In the evaluation step, the authors reported average F-scores of around 71 % for

both the 17th and 19th century data sets, but stated that the scores for person names

were much higher than those for locations (66.53 % vs. 75.60 %). This reflects the

fact that person names were more resistant to OCR errors and less dependent on the

gazetteer resources8. Furthermore, precision was generally higher than recall (e.g.

74.34 % vs. 69.44 % in the 19th century data set). Error analysis demonstrated

that bad paragraph breaks and other errors by the OCR process were responsible

for this outcome (Grover et al., 2008, 1346).

In spite of various problems (mainly resulting from OCR errors), the prototype

system by Grover et al. (2008) nicely exemplified technical challenges and possibili-

ties (regarding annotation, the use of external linguistic knowledge, and visualization

techniques) when working with historical data. In future work, the pipeline could be

improved by correcting the OCR output, further developing the rules and lexicons,

and by incorporating ML techniques into the process.

7Stand-off (or remote, offline) annotation means that the markup resides in a different location
than the data. As opposed to inline annotation, the markup can be accessed separately. Cf.
Burghardt and Wolff (2009).

8For example, the erroneous string ’Earl of Shagefiury’ (Earl of Shaftesbury) was still correctly
identified as a person name by the ’Earl of XY’ pattern matching rule, whereas the place name
lookup failed.

15

Chapter 2. Theoretical Background

Other rule-based approaches relying on handcrafted rules and external resources

were proposed, for instance, by Volk et al. (2009). Their method made use of

a so-called ”learn-apply-forget”-algorithm9 for NER in the alpine heritage corpus

Text+Berg10. This algorithm accesses large lists of person names and titles in order

to save (or ”learn”) surnames in the text. The saved surname will be recognized

in a specified number of subsequent sentences, up until the point where it will

be ”forgotten” and has to be reintroduced. In addition to that, gazetteer lists

for country and city names were used in combination with linguistic processing

(lemmatization, decompounding) to recognize location entities.

There have also been more recent approaches which did not directly deal with

NER, but nevertheless provided promising solutions regarding IE for historical data.

For example, Scrivner and Kübler (2015) proposed a way of exploiting word align-

ments in an Old Occitan-English parallel corpus for QA. The corpus contains Me-

dieval provençal literature from the 13th century together with modern English

translations, while the English side is enriched with POS-tags as well as morpho-

syntactic and semantic information. By applying cross-language transfer rules from

English to Old Occitan, the historical part of the corpus was automatically anno-

tated and pre-processed for sentiment analysis. Given a parallel corpus with histor-

ical/modern word alignments, the methodology described by Scrivner and Kübler

(2015) may as well be considered for the development of NER systems.

2.3.2 Data-driven approaches

A quite recent data-driven study by Neudecker (2016) looked into the subject of NER

in digitized historical newspapers as part of the Europeana Newspaper project11. In

contrast to the rule-based methodologies outlined above, the framework described in

this approach was predicated on training Stanford CRF models using manually an-

notated data. Europeana Newspapers ’ entire collection comprised documents from

four centuries (1618 - 1990) in more than 40 different languages. Neudecker (2016)

focused on a subset with news articles in German, Dutch and French. In a first step,

100 pages containing 486’218 tokens were selected according to a number of specifi-

cations (e.g. at least 80 % OCR word accuracy per text). As a next step, all pages

were manually annotated with the NE entities person, location and organization,

9Cf. Volk and Clematide (2001).
10https://www.textberg.ch
11Europeana Newspapers is a collaborative research and digitization project co-funded by the

European Commission ”to aggregate full text and scanned images of approximately 12 mil-
lion pages of historic European newspapers” (Neudecker, 2016, 4348). Cf. http://www.

europeana-newspapers.eu/.

16

https://www.textberg.ch
http://www.europeana-newspapers.eu/
http://www.europeana-newspapers.eu/

Chapter 2. Theoretical Background

resulting in 40’801 tagged entities. This annotated material was then used to train

a Stanford NER classifier for each language which was subsequently evaluated in a

4-fold cross-validation12.

While the authors did not report results for the German data, precision scores

for Dutch and French were claimed to be in the 80-90 % range and recall at around

60-70 % (Neudecker, 2016, 4351). This slightly ”conservative” bias of the Stan-

ford system was considered to be beneficial for the further processing of the data,

where the recognized NEs are supposed to be disambiguated and linked to unique

identifiers (i.e. grounding). In other words, the mapping of entities to resource de-

scriptions benefits from precision more than from recall. It is expected that recall

improves with the inclusion of distributional similarity or semantic generalization in

the training, as well as by enlarging the size of the training data (Neudecker, 2016,

4351).

Another methodologically similar study from the same year was outlined by

Aguilar et al. (2016). Their work focused on NER in historical sources from the

10th to the 13th century written in Medio-Latin language, using an annotated

database from the CBMA13 group. This database includes cartularies, i.e. medieval

manuscript volumes with transcriptions of legal documents, and charters produced

in abbeys of Burgundy. Annotations of NEs were made in 5’300 documents of the

corpus using the NE types person and location. In order to find the most significant

features for training a NER classifier, the authors closely analyzed the morphology of

medieval Latin. They noted, for instance, that personal names usually have the end-

ings ’-o’, ’-us’ and ’-um’. Moreover, there are indicator words such as villa, castrum

and mansum characteristic of place names, titles such as sanctus, rex or dominus

which introduce person names, and finally some other ”trigger” words (e.g. specific

preposition and affixes). (Aguilar et al., 2016, 69) also isolated linguistic information

from the annotated database, including POS-tags, lemma, suffix and capitalization.

The training data contained more than 1 million words and was transformed into

a 7-column format for training with an out-of-the-box CRF toolkit. Moreover, BIO-

tags were used in order to deal with nested entities (cf. Figure 2 above). By using 26

different uni-, bi- and trigram patterns, (Aguilar et al., 2016, 70) obtained F-scores

of 96 % for person names in beginning of entities (B-PER), and 88 % inside entities

(I-PER). Similarly, recognizing the beginning of place names seemed to be easier

12Unfortunately, it is not declared in the paper which features were used for training the model. I
therefore assume that at least some standard CRF features such as character and token n-grams
were included.

13CBMA stands for Chartae Burgundiae Medii Aevi, an open access database of diplomatic sources
produced in the Middle Ages in Burgundy. Cf. http://www.cbma-project.eu/.

17

http://www.cbma-project.eu/

Chapter 2. Theoretical Background

than recognizing the rest of them (92 % F-score for B-LOC vs. 80 % for I-LOC).

The high quality was attributed to the formulaic nature of the documents which

was relatively easy to represent with patterns, while most of the errors were related

to the presence of long, nested entities (which were also inconsistently annotated

in the training data). (Aguilar et al., 2016, 71) claimed that future work would

involve verifying the robustness of the model by testing on different types of Latin

documents from different time periods. In addition, the long-term goal was to be

able to recognize more than two NE types.

In summary, studies dealing with NER in historical data have shown that systems

based on handcrafted rules or external resources (such as lists or gazetteers) tend

to be the most straightforward to implement; they also yield good precision and

recall. On the other hand, these systems are usually very project-specific and not

generic enough to be reused without further modifications. Rule-based systems

require professional knowledge of the historical language variety as well as a certain

degree of NLP expertise. ML systems do not build on as much linguistic proficiency,

but for satisfying results, big amounts of (manually) annotated training material are

necessary.

18

3 Text Pre-processing and Corpus

Creation

This chapter introduces the data from the SSRQ database upon which my project

was based. It also describes the pre-processing of the selected texts and the subse-

quent transformation into structured corpus files with XML markup.

3.1 Data

3.1.1 The Collection of Swiss Law Sources

The Collection of Swiss Law Sources (SSRQ) was established in 1898 by the Swiss

Law Sources Foundation, a research institution belonging to the Swiss Lawyers So-

ciety1. The source material in the collection was created in Switzerland (or on

territory now belonging to Switzerland), and includes documents from all its lin-

guistic regions. Thus, the texts are written in regional historical forms of German,

French, Italian, Rhaeto-Romanic, as well as Latin. The documents edited by the

foundation date back to the early Middle Ages and cover a time-span up to modern

times (to 1789, the year which marked the downfall of Switzerland’s ancien régime

(Höfler and Piotrowski, 2011, 78).). More than 100 volumes corresponding to over

70’000 pages of source material and comments have been published so far. Amongst

other types of documents, the collection contains decrees, acts, ordinances, inden-

tures, administrative documents, and court transcripts (Piotrowski and Senn, 2012,

25). The sources are organized by cantons and further subdivided into areas of

jurisdiction. Most volumes are assigned to different sections and series which refer

to particular topics; e.g. the volumes of the canton of Fribourg are divided into the

two sections Stadtrechte (municipal laws) and Rechte der Landschaft (land laws),

while the first section is further split into two series (rural towns, town of Fribourg).

Each volume contains an index of places and persons as well as a glossary.

1Schweizerischer Juristenverein, https://www.juristenverein.ch/.

19

https://www.juristenverein.ch/

Chapter 3. Text Pre-processing and Corpus Creation

The primary sources are manuscripts which have been transcribed, annotated,

and commented by different editors with expert knowledge. Manual transcription

and editing has been performed following pre-defined guidelines2 and using specific

publishing systems. Each volume contains a number of title pages, a lead text,

the edited main part (i.e. source texts in chronological order), indices and an ap-

pendix. The critical apparatuses are written in modern German, French, or Italian,

depending on the predominant historical language of the volume. Figure 4 shows a

a primary source, i.e. a scanned manuscript excerpt of a volume together with the

corresponding transcription. After transcription and editing, the volumes have been

printed in the form of books. This project is still on-going, and further volumes are

currently being transcribed.

Figure 4: Primary source (a) from the SSRQ SG III/2, No. 113 with manual tran-
scription (b) according to guidelines. Taken from (Piotrowski, 2010, 223)

2They are available on the SSRQ Wiki, cf. https://www.ssrq-sds-fds.ch/typo3/

fileadmin/user_upload/Editionsrichtlinien/SSRQEditionsrichtlinien.pdf and
https://www.ssrq-sds-fds.ch/wiki/Transkriptionsrichtlinien.

20

https://www.ssrq-sds-fds.ch/typo3/fileadmin/user_upload/Editionsrichtlinien/SSRQEditionsrichtlinien.pdf
https://www.ssrq-sds-fds.ch/typo3/fileadmin/user_upload/Editionsrichtlinien/SSRQEditionsrichtlinien.pdf
https://www.ssrq-sds-fds.ch/wiki/Transkriptionsrichtlinien

Chapter 3. Text Pre-processing and Corpus Creation

3.1.2 The SSRQ digitization project

Within the framework of a retro-digitization project from 2009 to 2011, all edited

volumes were scanned, OCR-processed and post-edited so that the facsimiles can be

accessed on the web via an online viewer. This enables users to search, browse and

navigate according to cantons, dates or keywords. Fortunately, the digital typeset-

ting data for the latest 22 volumes were restored in the form of Adobe FrameMaker 3

3.0 and 6.0 files (Höfler and Piotrowski, 2011, 78). The advantage of these files

is that the texts are identical to the contents of the printed books, and thus free

from OCR- or rekeying errors. However, since the FrameMaker files were intended

for printing, they merely contain visually oriented markup. In order to make them

more usable for research purposes, Piotrowski (2010) automatically converted the

files into valid XHTML format with cascading stylesheets (CSS) closely mirroring

the layout of the FrameMaker documents. In this process, the bodies of the volumes

were transformed into TEI4, whereas the indices were converted into ”an XML for-

mat that makes the[ir] logical structure [...] explicit, i.e., headwords, glosses, spelling

variants, page and line references, etc.” (Piotrowski and Senn, 2012, 26). The con-

verted files of the 22 volumes were then added to the text collection referred to as

DS21 (Höfler and Piotrowski, 2011, 79).

According to Piotrowski (2010), the conversion from FrameMaker files to XHTML

was not a trivial task. First of all, the files were written in different versions of

the software with very limited backward compatibility. Second, the paragraph and

character formats did not always follow a logical pattern and were sometimes lo-

cally overridden to produce a specific visual appearance. Third, a direct conversion

was not feasible but instead required interposing a transitional format. For these

reasons, a custom-built conversion pipeline operated in multiple stages with the

goal to maintain the original formatting by producing equivalent CSS and XHTML

markup. In addition, certain tags were replaced or added in order to make the

markup regularized and semantically meaningful (Piotrowski, 2010, 226). Figure 5

shows an example text taken from an edited volume: (a) is a scan from the book, i.e.

as it appears in the printed version, and (b) is the corresponding XHTML format

resulting from the conversion of the FrameMaker file.

3Adobe FrameMaker is a text processing software for creating, editing and publishing of print-
oriented documents. Its advantage lies within the extensive functionality even when working
with large, complex and structured technical texts. Moreover, it allows authors to enrich
documents with (XML-)markup ((Kornelsen et al., 2004, 37), (Piotrowski, 2010, 224).

4TEI stands for Text Encoding Initiative which has developed guidelines on how to use XML
markup to structure documents. The format has become a standard in many fields of the
humanities. Cf. https://www.tei-c.org.

21

https://www.tei-c.org

Chapter 3. Text Pre-processing and Corpus Creation

Figure 5: Excerpt from the edited volume BE II/9 of the canton of Berne (repro-
duced by (Rechtsquellenstiftung des Schweizerischen Juristenverbandes,
1995, 24)) in printed (a) and XHTML (b) format. The excerpt describes
a charter regarding the personal injury to citizens of Burgdorf.

22

Chapter 3. Text Pre-processing and Corpus Creation

3.1.3 Selection of volumes

As (Höfler and Piotrowski, 2011, 77) claim, legal texts are a fruitful object of study

for both historians and linguists. The texts do not only ”represent a crucial source

of information on the distribution of power in societies past and present”; they also

”constitute a special case of highly conventionalized language”, giving insights which

are relevant for diachronic linguistic studies. Scholars in the humanities greatly

benefit from structured corpora which provide them with additional means to study

the domain. Regarding historical legal texts from Swiss sources, the DS21 collection

by Höfler and Piotrowski (2011) clearly constitutes an important step towards this

aim. However, as their work is on-going, there is still a lack of linguistic annotations

or general semantic markup, and a redundancy of other markup in the XHTML

files. Following the definition by (Auer and Fairman, 2013, 79), the DS21 collection

is – strictly speaking – not a corpus (yet), but a well-designed text archive:

While the creation of many corpora is indeed based on a detailed plan

that tries to consider the above-mentioned criteria [balance, functionality

and representativeness], the starting point [...] is an existing collection

of texts representing a particular language/variety/genre.

I have decided to work with texts of the DS21 in order to bring its contents a little

step further to being a corpus that can be used for linguistic and historical research

purposes. More precisely, the goal was to create an alternative representation of a

small subset of the collection, while keeping the main task of NER in mind. Another

reason for choosing the DS21 texts was that I could built upon previous work, and

benefit from the advantages of the already converted XHTML files.

The decision to place my approach into a multilingual context was due the fact

that the volumes are written in four different languages, including Latin. However,

the majority of the documents are in German (all volumes except for three contain

German material). Volumes with Latin only do not exist, and Italian can be found

in merely one volume (which is also the smallest). I therefore opted for working with

two languages, German and French, as three relatively large French volumes exist

in the DS21 collection. Moreover, I preferred having an equal number of volumes

in both languages. Thus, the basis for the work described in this thesis were six

volumes of the collection. Preliminary word counts indicated a total number of at

least one million tokens, which should also meet the requirements for building a ML

system5. Table 3 lists the volumes I selected for the thesis. The languages given in

the table refer to their historical variants from the time periods indicated.

5In an earlier seminar project, we successfully trained a CRF model based on a single volume.

23

Chapter 3. Text Pre-processing and Corpus Creation

Volume ID
Volume

No.
Canton Primary language(s) Period covered Total pages

Section

/series ID

AG II/10 10 Aargau German 1303–1797 735 2

BE II/9 9 Berne German 1267–1797 735 2

LU I/2 2 Lucerne German 1426–1463 481 1

FR I/2 6 6 Fribourg French, German 1296–1795 582 1 / 2

VD C/1 1 Vaud French, German 1530–1797 971 C

VD C/2 2 Vaud French 1539–1770 925 C

Table 3: Selected German and French volumes of the DS21 collection

The selection comprises all available volumes with French content, except for one

(VD B/2, 2nd volume from section B of the canton of Vaud) in which the majority

of texts are written in Latin. I chose the three German volumes semi-randomly

based on the degree of complexity or ”corruption” of the XHTML files. In other

words, if manual inspection of these files showed that highly extensive pre-processing

and reordering would be necessary, I did not include the volume. I discharged, for

example, the XHTML files of SG I/2 3 (3rd volume from section 1 of the canton of

St. Gall) due to technical issues with pagination6.

Each volume comes with a separate index of place and person names in XHTML

format, as well as a PDF file representing the appearance of the printed book. The

converted files of the volume only contain the edited main body, i.e. excluding title

pages, preface and appendix. The content of the main body is split into several

XHTML files, one of them usually encompassing 30 to 60 pages. The goal was to

process and combine these files in such a way that the output per volume is a single,

well-formed XML file. In the ideal case, the markup should follow a logical structure

where every page, paragraph, sentence and token is enumerated, enclosed in separate

tags. Exemplary models of such structured XML files are the corpora developed for

the Text+Berg digital project (Bubenhofer et al. (2015), Volk et al. (2010)). The

markup follows a hierarchical layering of elements (from book, article, sentence,

to word level). XML attributes contain information regarding the elements, e.g.

language and number of sentences, and lemma and POS-tag of tokens.

6The first XHTML file started with page 26 instead of page 1, followed by pages 29-31, then 27
and started again at page 1. Finally at the end of the file, after page 54, there were contents
of page 25. A likely explanation for this misordering could be the presence of tabular elements
in the FrameMaker data, appearing as long juxtaposed lists or tables in the printed version.

24

Chapter 3. Text Pre-processing and Corpus Creation

3.2 Pre-processing

3.2.1 XHTML parsing

The desired output format of each processed volume was an XML file similar to

the ones built in the Text+Berg project. The first step was thus the syntactical

analysis of the XHTML files, so that their elements could be accessed and restruc-

tured. For this end, I implemented a pre-processing script in Python, and used the

ElementTree/lxml module7 for parsing. As can be seen in figure 5, the principal

component in the XHTML file is the paragraph element <p>. There, it is not only

used for ”typical” paragraphs (i.e. bigger bodies of running text), but for all units

appearing as text blocks in the printed version, including titles, subtitles, footnotes,

comments, and so on. The textual function of each text block is indicated by the

class attribute. For instance, the attribute class=’fuss’ means that the current

text block (i.e. paragraph) is a footnote. I decided to retain the class attributes so

that the paragraph function would remain apparent in the final XML file.

Unfortunately, the naming of the classes is neither very consistent nor transpar-

ent, and is different for every volume. While class names such as haupttext are

relatively evident, others do not give insight into the text function, e.g. bu ti 1,

be, standard, sta text, li, or norm. Only by manual inspection, i.e. by carefully

comparing the XHTML with the scanned version, I was able to identify the function

denoted by each class8. Ultimately, I found more than 60 different names for class

attributes in all volumes. Around half of them referred to titles, and at least 12

were rather cryptic, consisting of digits or underscores only. I therefore decided to

discard the naming as it was in the XHTML, and create an own set of class names

instead. I merged all attributes and mapped them accordingly to the seven classes

title, date, text, comment, footnote, source and table. I believe this to

be a reasonable generalization as it distinguishes between source text and editor’s

notes; at the same time, it maintains the differentiation between the most important

kinds of annotations (commentaries vs. description of the source vs. footnotes).

I additionally extracted and retained the page numbers that were given as pagemarker

class attributes. However, I decided not to store paragraph IDs (given in the id at-

tribute), since they did not seem to be semantically meaningful.

7A Python package for reading, generating, and modifying XML files, with support for XPath.
Cf. https://lxml.de/index.html.

8For instance, a volume chapter always starts with a main title, followed by a date and optional
headings before the source text begins. These titles usually have a class name starting with ti

in the XHTML.

25

https://lxml.de/index.html

Chapter 3. Text Pre-processing and Corpus Creation

3.2.2 Restoring pagination

3.2.2.1 Problem

When trying to parse the files and extract all page numbers, I realized that the

pagination in the XHTML was not always continuous. This was the case for the

volumes LU I/2 and VD C/2, and was caused by the presence of tables spanning

more than one page. For example, at the end of page 117 in the printed version

of LU I/2, the text is indented and divided into a table-like arrangement with

two columns. This arrangement continues until the beginning of page 125, and

is represented by <table> elements in the XHTML format. However, <table>

elements do not contain any pagemarker attributes, which makes it impossible to

recognize the page breaks within the table. In the case of LU II/2, this means that

the contents between page 117 and 125 were lumped together to a single block, as

illustrated by the following simplified snippet:

117...

<table id="tbl_330">

<tr><td><div>∅</div><div>Anno domini...</tr>

</table>

125...

One option to restore the original pagination would be to modify the XHTML by

manually inserting the missing pagemarker attributes. This would require compar-

ing the pages in the printed format to the XHTML, and searching the whole <table>

block for the positions of the line breaks. However, I opted for a less cumbersome

and more automated possibility, which is based on OCR-processing the PDF files9.

Obtaining a plain text version of the relevant pages makes them directly comparable

to the text in the <table> block.

By having a separate OCRed file for each page, the original pagination remains

apparent. The general idea is that, naturally, the very last text segment of an OCR

output file marks the end of the page. If this segment can be located within the

XHTML block, the page break must be inserted after it. The missing pagemarker

tag can then automatically be added at the correct position. Generally, such a text

segment may be a single token or of a sequence of tokens. However, a single token is

not distinctive enough, as it may occur at numerous positions in the text. I therefore

defined a segment to be a sequence of exactly 10 tokens.

9I also preferred an automated option because of its repeatability (in case other volumes need to
be processed in the future).

26

Chapter 3. Text Pre-processing and Corpus Creation

3.2.2.2 OCR approach

The OCR tool of my choice for this purpose was PyOCR10, a Python wrapper for

Google’s Tesseract11 engine. After some experiments with other tools such as Abbyy

FineReader 12 and Ocular 13, I chose PyOCR as it is easy to use, open-source, and

implemented in Python. Moreover, the underlying Tesseract engine is language-

independent; it operates with segmentation- and character-based algorithms rather

than language models (Smith et al., 2009). It also has UTF-8 support and is able

to recognize more than 100 languages ”out-of-the-box” (Smith, 2013). I therefore

considered PyOCR to be suited for processing historical and multilingual texts.

Since the PyOCR module only accepts input in image format, I first converted the

relevant pages of the PDF into PNG files14.

I added a pagemarker counter to the XHTML parser in order to keep track of

the page numbers. As soon as a <table> element can be located that interrupts

continuous pagination, an OCR comparison function is called. This function first

extracts the last 10 tokens per OCRed page. For each page, the function then

progressively splits sequences of 10 tokens from the <table> text, and compares

them to the OCR sequence. As soon as the OCR sequence can be located in the

<table> text, the page break is inserted, and the function continues splitting up the

remaining text. This is repeated until all page breaks are inserted.

However, a one-to-one comparison of the text sequences does not make much sense.

It is important to note that OCR-processing does not always yield flawless output;

despite the high image quality, PyOCR did not correctly recognize all characters (cf.

section 3.2.2.3 below). The text of the OCRed files will hardly ever be identical to

the one in the XHTML. Therefore, a certain degree of derivation should be accepted.

I decided to use Python’s SequenceMatcher 15 module to find the best matching text

segment. This module measures the similarity ratio of the sequences and returns a

value between 0 and 1. After a phase of testing, I found that a similarity ratio over

0.6 is enough to consider two sequences to be matches. In this manner, I was able

to reconstruct all missing page breaks, and restore the original pagination.

10https://github.com/jflesch/pyocr
11https://github.com/tesseract-ocr/tesseract
12https://www.abbyy.com/en-eu/finereader/
13https://github.com/tberg12/ocular
14I used the conversion software PDF Shaper (https://www.pdfshaper.com/, generating one

image per page with a resolution of 300 dpi (dots per inch; as suggested by (Holley, 2009, 3)).
15SequenceMatcher is a class belonging to the Python difflib library, used to compare pairs of

sequences. The similarity ratio is calculated by doubling the number of matching characters,
and then dividing by the total number of characters in both sequences. Cf. https://docs.

python.org/2/library/difflib.html.

27

https://github.com/jflesch/pyocr
https://github.com/tesseract-ocr/tesseract
https://www.abbyy.com/en-eu/finereader/
https://github.com/tberg12/ocular
https://www.pdfshaper.com/
https://docs.python.org/2/library/difflib.html
https://docs.python.org/2/library/difflib.html

Chapter 3. Text Pre-processing and Corpus Creation

3.2.2.3 Evaluation

I have applied the OCR processing approach only for a number of pages in two

volumes so far. However, I wanted to make sure that it can be reproduced for other

volumes, in case their XHTML files are missing page breaks. On that account, I

decided to conduct a small-scale evaluation of selected OCR-processed files in order

to estimate the general performance. I picked 14 files for evaluation, i.e. the first nine

pages of LU I/2, and the first five of VD C/216. In order to obtain the corresponding

reference (ground-truth) files for comparison, the XHTML parser was used to strip

all contents from the markup, so that only the plain text remained.

Standard metrics for evaluating OCR accuracy are the word error rate (WER) and

character error rate (CER) (Farooq and Al-Onaizan, 2005, 105). They are defined

as the Levenshtein distance (on word- and character level), divided by the number

of characters and words respectively in the reference text. The position-independent

word error rate (PER) additionally takes the word order into account (Ueffing and

Ney, 2004, 73). An open-source tool particularly suited for calculating OCR error

rates is ocrevalUAtion17. I chose to work with this tool mostly due to its visualizing

capability, which is especially useful for difference spotting. Apart from a statistical

report, ocrevalUAtion generates a table with the parallel input texts in which the

differences are highlighted. Figure 6 shows the beginning of the table generated for

the first page of LU I/2.

Figure 6: Example of an OCR evaluation/comparison table with highlighted differ-
ences, generated via ocrevalUAtion

16The uneven distribution is because the pages in LU I/2 contain a lot more titles and footnotes,
while the ones in VD C/2 contain more running text. However, I wanted to have about the
same numbers of tokens for each volume, so they become more comparable.

17https://github.com/impactcentre/ocrevalUAtion

28

https://github.com/impactcentre/ocrevalUAtion

Chapter 3. Text Pre-processing and Corpus Creation

LU I/2 VD C/2
Pages 1-9 1-5
Tokens 3’167 2’857
Characters 18’054 17’763
CER 4.81 3.69
WER 18.22 9.16
PER 13.96 4.70

Table 3: Error rates in the OCR-processed pages

All 14 OCR-processed pages were compared to their corresponding plain text files

by using ocrevalUAtion. The results are given in table 3. While the error rate on

character level was similar in both volumes (4.81 vs. 3.69), it was considerably

higher on word level in volume LU I/2 (18.22 vs. 9.16 WER, and 13.96 vs. 4.7

PER). The ocrevalUAtion statistics for LU I/2 revealed that a significant portion of

falsely recognized characters were diacritics such as å, ō, ñ, ẅ or ǔ. They are used

by the editors for the literal transcription of Early New High German18, the variety

in which the German volumes are written. Thus, the French volumes use diacritics

to a much smaller extent. This made the OCR in French less error-prone, resulting

in a smaller number of falsely recognized words.

Other sources of errors were certain letters or letter combinations such as ’nr’ or

’ün’, which were recognized as ’m’ or ’im’ respectively. As can be seen in figure 6,

’1’ and ’l’ were sometimes recognized as square brackets. Even more problematic

were special symbols: ocrevalUAtion frequently transformed them into different,

but visually similar symbols (e.g. different forms of quotation marks and hyphens).

While these kinds of errors were characteristic of OCR, others were rather document-

specific. For instance, the text extracted from the XHTML files did not contain the

page headline appearing in the PDFs19.

As mentioned before, Tesseract offers out-of-the-box packages for more than 100

languages and language varieties20. The results given in table 3 are based on OCR

processing with the standard (i.e. modern) packages for German and French. For

each of the two languages, there is one additional language data set available, namely

German Fraktur and French - Middle (ca. 1400-1600). For experimental reasons, I

18By definition, Early New High German belongs to the period 1350 to 1650 (Hartweg and Wegera,
2005, 23).

19The headlines indicate page number and number of the source text. While the page number is
retained in the XHTML in the form of markup, the source number appears only in the printed
version. This difference slightly increased error rates.

20Cf. https://github.com/tesseract-ocr/tessdata.

29

https://github.com/tesseract-ocr/tessdata

Chapter 3. Text Pre-processing and Corpus Creation

OCR-processed the texts again using these data sets, but this did not lead to any

significant changes in the error rates. Further investigations will be necessary to

analyze the features of the language packages, and to see how they could be used to

improve OCR accuracy of the SSRQ texts.

Probably, the OCR accuracy could be further increased by different methods,

e.g. by post-processing, rekeying or enhancing image quality. Training the OCR

engine so that it is optimized for processing the SSRQ data may be another use-

ful option. However, according to (Holley, 2009, 2), this is usually an ”incredibly

time-consuming” task. A better solution would be to work on a smaller scale, and

improve the recognition only for the characters that are likely to cause errors. In

fact, Tesseract can be configured by adding words and character patterns to the

recognition dictionary. On that note, I would like to argue that for the purpose of

page restoration – as outlined in this section – there is no need for maximized accu-

racy. Even with a relatively high WER, as it is the case for LU I/2, text segments

can be successfully matched by applying an approximate string matching technique.

3.2.3 Cleanup

After the XHTML structure had been completely parsed and restored, I decided to

perform a number of cleanup steps. As can be seen in figure 5, a very frequent ele-

ment contained in the XHTML markup is the element. Its original purpose

was to indicate text formatting (e.g. specific font style and size), but in most cases,

this information is lost. For instance, both the text segments appearing in bold and

italic in the printed version are enclosed in -tags, without any distinguishing

attributes. In the case of certain numbers and letters, however, the id attribute in-

dicates their function. I found that numbers in -tags that have an attribute

beginning with ’af’ are line markers21 (e.g. 20).

Footnote markers, i.e. reference numbers and letters, have an attribute beginning

with ’tf’. In the printed version, they appear as superscript characters after a word,

and refer to footnotes at the bottom of the page. Figure 7 shows a segment from the

scan containing line and footnote markers (a), as well as the corresponding XHTML

markup (b).

The resulting XML corpus, however, was not meant to include any information

about formatting, but was intended to represent the tokenized text. While removing

the XHTML markup resulted in the desired plain text, the line and footnote markers

21They are used for line enumeration in the printed version, and appear on the margins of a page
in front of every fifth line.

30

Chapter 3. Text Pre-processing and Corpus Creation

Figure 7: Line 20 of LU I/2, page 1, in printed (a) and XHTML (b) format. Cf.
(Rechtsquellenstiftung des Schweizerischen Juristenverbandes, 2004)

remained at their positions between tokens. Thus, I decided to remove all line and

footnote markers for the following reasons: first, the distinction between markers

and ”normal” text will be lost in the XML corpus. The concerned numbers and

letters will appear as any other token, which impairs reading fluency, and may lead

to confusion. Second, the positioning of the line markers in the XHTML is only

approximate, as illustrated in figure 7. Generally, the numbers may occur anywhere

in the line, even between tokens. Third, I did not consider the markers to be part

of the main content, as they merely serve an explanatory function. The footnote

contents themselves will be retained.

Unfortunately, the id attribute beginning with ’tf’ is not only used for footnote

markers, but also for formatted letters which are part of the running text. Removing

all elements with a ’tf’-attribute would result in numerous fragmented tokens and

incomplete text segments. I therefore defined a footnote marker to be a number

consisting of one or two digits. Consequently, I did not remove footnote markers

consisting of letters only. Since the markup does not allow a straightforward way

to distinguish page markers from other segments, I believe this solution to be a rea-

sonable compromise. Furthermore, the line and footnote markers within <table>-

elements needed special handling, as tables do not contain any -elements. All

markers, both numbers and letters, are directly appended to the preceding token.

Only by writing rules with specific regular expressions I was able to strip the digits

from the tokens. Again, the footnote markers in form of single letters could not be

removed, since there is no direct way to recognize them.

The final cleanup step was the conversion of special symbols encoded in UTF-

8. For instance, the symbol l (latin barred l) has the hexadecimal code ł

in XHTML, which is represented as u¨\u0142¨ in Python. To make sure that all

symbols will be correctly rendered, I used an external source22 to build a conversion

table which automatically converts XHTML codes into their Python representation.

22I downloaded and extracted the entities from the reference website HTML Arrows, cf.
https://www.toptal.com/designers/htmlarrows/letters/.

31

https://www.toptal.com/designers/htmlarrows/letters/

Chapter 3. Text Pre-processing and Corpus Creation

3.2.4 Sentence boundary detection

Following the example of the Text+Berg XML, the resulting corpus is supposed to

have enumeration on token and on sentence level. This requires sentence splitting

and tokenization. A versatile platform which is able to do both is the Natural Lan-

guage Tool Kit (NLTK)23 implemented in Python (Bird et al., 2010). The NLTK

sentence splitter has already been trained and tested on at least 10 European lan-

guages. For newspaper corpora, the splitter reached an F-score of around 98 % for

German and 86 % for French (Kiss and Strunk, 2006, 504). Apparently, it is ex-

pected to perform worse for historical texts. A crucial fact is that the SSRQ data is

multilingual: the volumes contain text in historical variants of German and French

as well as Latin, while the comments and annotations by the editors are written in

modern language. In addition, there is a large quantity of historical abbreviations,

many of them being specific to a volume. Working with the standard abbreviation

list of the NLTK sentence splitter (which contains 70 German and 60 French abbre-

viations) resulted in many unnecessary sentence splits. On account of this, I decided

to extend the standard list by adding abbreviations that occur in the volumes. I

made use of the list of abbreviations which is appended at the end of each scanned

volume24. I collected a total of 180 additional abbreviations from both German and

French volumes, and, considering the multilingual factor, decided to use the same

list for processing both languages.

Extending the abbreviation list significantly improved sentence boundary recog-

nition. In order to have a vague idea of performance, I manually evaluated the first

ten pages of every volume, corresponding to around 500 sentences per language. I

discovered only five cases of unnecessary sentence splits (false positives), and three

cases of missing sentence splits (false negatives) in German. In the French vol-

umes, there were seven false positives and one false negative. Error analysis showed

that the list of abbreviations is almost non-exhaustive, and that the list in the vol-

ume appendices only contains the most frequent ones. Also, abbreviations are used

extremely variably. For instance, all the following abbreviations stand for unsere

gnädigen Herren (’our gracious lords’): uggh., ugghh., ugghhr, ugh, u. g. hr., ughr..

Moreover, names of persons tend to be abbreviated, such as Heinr. (instead of

Heinrich) or Russ d. Ä. (Russ der Ältere). Ultimetely, the NLTK splitter tended

to insert a sentence boundary after digits that are followed by a period, which is

problematic for dates (e.g. 5. Januar) and enumerations.

23NLTK is a freely available compilation of libraries, tools and corpora for NLP tasks.
Cf. https://www.nltk.org/.

24For some unknown reason, the volume LU I/2 does not have a list of abbreviations. I therefore
copied the abbreviations from another volume of the canton of Lucerne, LU II/3.

32

https://www.nltk.org/

Chapter 3. Text Pre-processing and Corpus Creation

3.2.5 Tokenization

I used the NLTK for word tokenization, which, according to a rough manual investi-

gation, seemed to perform well. However, the tokenizer did not produce the desired

output in the case of square brackets. Square brackets frequently occur inside words,

as depicted in figure 8:

Figure 8: Usage of square brackets in an excerpt from AG II/10. Cf. (Rechtsquel-
lenstiftung des Schweizerischen Juristenverbandes, 2009, 4)

The brackets always contain texts by the editors, who may use them to to indi-

cate omissions, additions, unreadable segments, and mistakes in the source text25.

However, square brackets are treated as single tokens by the NLTK tokenizer, and

therefore split from the word they belong to. For instance, the string ’Albr[echt]’ in

figure 8 above is split into the tokens ’Albr’, ’[’, ’echt’, and ’]’. I considered three

possible solutions to resolve this issue. One option would be the direct modification

or ”tweaking” of the NLTK tokenizer so that it excludes the brackets as a delimiter.

I discarded this option as there seemed to be no straightforward way to achieve this.

Another solution is to write rules that join the brackets and words together after

tokenization. However, I opted for the third solution, which is to simply remove

all square brackets from the text. This decision was predicated on the following

reasons: first of all, there were numerous words – often proper names – which con-

tained more than one pair of brackets. Since the subsequent NER task is based

on approximate string matching, my claim is that the presence of brackets inside

tokens will lower string similarity. This, in turn, may lead to the rejection of strings

which are actually matches. Second, while the contents of the brackets are essential

for the understanding of the text, the brackets themselves are not. Lastly, removing

them is the fastest way to resolve the tokenization problem.

Other symbols leading to incorrect tokenization were low and high double quo-

tation marks, which remained stuck on a word instead of being tokenized. When I

replaced them all with the basic quotation mark ”, they were correctly tokenized.

Ultimately, I replaced a single occurrence of the ampersand & with the word ’und’26.

25As defined by the SSRQ transcription guidelines. Note that in the French volumes, angle brackets
are sometimes used instead of square brackets.

26The ampersand occurred in the volume VD C/1 inside a German book title. However, it is a
symbol with a special function (it declares the beginning of an entity reference) in XML, and
therefore needs to be either escaped or replaced.

33

Chapter 3. Text Pre-processing and Corpus Creation

Once the text had been tokenized, it was possible to determine the number of

tokens and types in each volume. The removal of square brackets – as described

before – slightly modified the text and lead to a change in tokenization. I therefore

calculated the tokes and types for two versions, one in which the brackets are deleted,

and one in which they are retained. Table 4 shows the numbers for all volumes.

Without brackets With brackets

Tokens Types Tokens Types

AG II/10 293’221 35’871 297’322 36’035

BE II/9 411’371 45’915 418’204 45’980

LU I/2 163’450 15’308 167’052 15’331

German total 868’042 97’094 882’578 97’346

FR I/2 6 236’308 21’782 239’767 21’929

VD C/1 407’849 42’405 410’031 42’476

VD C/2 389’736 20’694 390’205 20’703

French total 1’033’893 84’881 1’040’003 85’108

Both total 1’901’935 181’975 1’922’581 182’454

Table 4: Numbers of tokens and types in the selected volumes

Naturally, retaining the square brackets leads to an increase in token and type

size. The NLTK tokenizer splits the brackets from the words, creating numerous

fragmentary, ”nonsensical” tokens. In general, the total number is slightly bigger

for French than for German. The whole collection that was ultimately used for

corpus creation encompasses 1’901’935 tokens and 181’975 types. The relatively

high type-token-ratio (about 10 % per volume)27 suggests wide lexical diversity,

which is characteristic of historical texts with extensive spelling variation.

After tokenization, I assigned an ID for each token and sentence. The IDs always

trace back to the current page number, e.g. <W id=’p126-s24-t21’> refers to

page 126, sentence 24, token 21. I also enumerated the pages and paragraphs, and

assigned a class attribute to the paragraphs according to the set of classes I defined

in section 3.2.1. The ultimate result is a valid XML corpus for each volume, following

the example of the Text+Berg XML. The beginning of the corpus created for VD

C/1 is depicted in figure 9.

27For comparison, a modern newspaper corpus described by Perkuhn et al. (2012) consisting of
374’495 tokens has a type-token-ratio of 3.2 %. In contrast to that, VD C/1 (with around
408’000 tokens) has a ratio of 10.4 %, and AG II/10 (293’221 tokens) has a ratio of 12.2 %.

34

Chapter 3. Text Pre-processing and Corpus Creation

Figure 9: Excerpt from the final corpus in XML format of VD C/1

3.2.6 Remaining issues

In section 3.1.2 above, I explained why the conversion from FrameMaker files into

XHTML was a rather complex task. I also mentioned that for this reason, some

converted files displayed a degree of data corruption. For example, in some files, the

markup was not valid (e.g. due to missing angle brackets), which had to be corrected

manually. The most problematic aspect, however, is that the paragraph distribution

in the XHTML files does not always correspond to what can be seen in the printed

pages. More precisely, the last paragraph of a printed page was frequently moved

to the next page in the XHTML. This happened because the XHTML markup does

not allow a page break inside a paragraph; the break is always placed before or after

it. So far, I have not found an easily manageable way to resolve this problem. An

OCR approach similar to what I used for layout restoration could be an option;

however, this requires conversion, OCR-processing and comparison of all volumes,

which would be very time-consuming. I therefore decided to leave the paragraph

distribution unchanged. The XML corpus arranges paragraphs and their contents

in the way they are represented in the XHTML files.

35

4 Name Extraction and Recognition

In this chapter, I explain the methods and techniques applied for extracting as

well as generating NEs from the volume indices. I also describe and evaluate the

algorithms used for the subsequent detection of NEs in the text.

4.1 Indices of place and person names

In chapter 2 I explained that most NER systems make use of external resources such

as dictionaries, gazetteers, or other databases containing proper names. This may

be especially fruitful for rule-based approaches, in the absence of large manually

annotated corpora. This is also the case for the SSRQ volumes which do not have

any annotations. However, finding appropriate external dictionaries is not trivial.

The names occurring in the SSRQ texts refer to historical persons and places, many

of which are very specific to Swiss regions. Names of small valleys, townships,

communes or districts of medieval Switzerland are unlikely to appear in a dictionary,

even if it contained Early New High German names. I also do not expect that Swiss

historical surnames such as Stannpffer, Cauerschwin and Geissistein, or nicknames

such as Clewi and B̊usingerly can be found in external name lists.

Fortunately, there is another resource that can be employed for the SRRQ texts: as

mentioned in section 3.1, every volume contains an index of place and person names

(German Orts- und Personenverzeichnis, French Index des noms de personnes et de

lieux). This is highly beneficial to the NER task, as NEs can be extracted and then

located according to the page information given in the indices. Furthermore, the

indices are specific to the volumes, and therefore only contain relevant names.

The idea of utilizing secondary sources for historical NLP was already advocated in

similar projects. (Linde and Mitmann, 2013, 235), who used authoritative glossaries

to pre-annotate Old German reference corpora, claim:

Creating a linguistically annotated corpus of texts in a historical lan-

guage is a task that seems to imply a huge amount of manual annotation

36

Chapter 4. Name Extraction and Recognition

work. [...] Thankfully, modern technical facilities allow us to digitize the

secondary sources needed, and to automate both the gathering of infor-

mation and its assembly into a reasonably searchable data structure.

In the case of the SSRQ volumes, the indices are already available in digitized form.

They were converted into XHTML files in the same manner as the the volume

bodies, as described by Piotrowski (2010). Based upon the visual markup of the

FrameMaker files, the XHTML tags made the logical structure of the entries explicit.

Figure 10 depicts six entries in the index belonging to volume LU I/2, together with

the corresponding XHTML code.

Figure 10: Example entries in the index of place and person names of LU I/2, rep-
resented in printed (a) and XHTML (b) format.

The entries in an index appear in alphabetical order and consist of main and

subordinate entries. For instance, Antonius in figure 10 contains three subordinate

entries, indicated by a dash. In the XHTML file, subordinate entries denote the

corresponding main entry via the title attribute. The first name in a main entry,

enclosed in <dfn>-tags in the XHTML, is usually a modernized spelling variant. The

names following it are the historical variants occurring in the text (e.g. Anthonius,

37

Chapter 4. Name Extraction and Recognition

confessor), separated by commas. Surnames are always listed before first names.

Moreover, there may be an editorial description or comment which is written in

italics in the printed version, and embedded in <i>-tags. Superscript numbers are

used for the relevant lines in the text, e.g. ’14534’ means that the preceding names

can be found on page 145, line 34. The XHTML files have different ways of repre-

senting page and line numbers: they may be given with or without curly brackets,

and frequently appear together with the tag <sup>. Lastly, an entry may contain a

cross-reference to another entry, as can be seen in the case of Ansorg. Each entry in

the XHTML has a unique identifier (indicated by the id attribute) and is assigned

to one of the following four class attributes: person, place, saint, and term1.

4.1.1 Pre-processing

In order to locate and annotate the NEs in the texts, they first need to be extracted

from the indices and stored in an expedient format. Thus, my goal was to create an

easily accessible database containing the entries, together with all the corresponding

information given in the indices. I first used the ElementTree/lxml module (cf.

section 3.2.1) to parse the index files. As was the case with the volume bodies,

a number of structural problems and inconsistencies in the XHTML needed to be

resolved as well. For instance, there were some cases of broken markup (missing

brackets, redundant tags, etc.), fragmented strings (e.g. names and page numbers

disrupted by whitespaces), and literal errors in the classes (e.g. ’pplace’ instead of

place). Also, there were omitted characters (commas, dashes) which are visible

in the printed version, but dropped away during the conversion from FrameMaker.

Since the number of structural errors was small, I decided to correct them manually.

Another problem was that in the French index files, the XHTML identifiers of some

entries occurred multiple times: whenever an entry contained a cross-reference, it

adopted the ID of the referenced entry. However, I preferred to have a unique iden-

tifier for each entry. This was not only expected by the ElementTree/lxml parser,

but was needed for the later distinction of entries in the database. What is more,

the duplication also lead to gaps in the numerical naming of IDs, which made a re-

distribution of the IDs by hand too elaborate. I therefore implemented a small enu-

meration algorithm in Python that automatically and sequentially assigned unique

IDs to every entry.

1The class term is used for entities such as documents, treaties, organizations, conferences, mea-
suring units, campaigns or battles.

38

Chapter 4. Name Extraction and Recognition

Lastly, I decided to remove all Roman numerals from the entries, since they are

not relevant for the NER task2. Also, as they only consist of letters, they may be

mistaken for names in the NE extraction process. I achieved the removal by using

a function specifically designed for recognizing Roman numerals.

4.2 NE database compilation

Basically, there are two requirements for the name extraction task: exactness and

completeness. On the one hand, the goal is to have an assembly which ideally con-

tains all names and their spelling variants listed in the indices. On the other hand,

the extraction should be as precise as possible, excluding any strings or elements

that are not names. Given the clearly arranged structure of the XHTML files, this

seems to be a quite straightforward task. However, this is far from true. The ways

in which the spelling variants may appear in an index entry are extremely manifold

and often inconsistent. On top of that, except for the modernized variant enclosed

in the <dfn>-tags, the spelling variants are not indicated by specific markup. Once

other elements such as editorial descriptions and page information are extracted,

there is still a lot of ”noise” left that should not be treated as a NE. A set of specific

rules, algorithms and regular expressions were necessary in order to extract (and

reconstruct) the names, as described in the following sections.

4.2.1 Extracting and generating name variants

In the indices, the editors made extensive use of parentheses to indicate spelling

variation. Parentheses do not only contain whole words as alternatives (e.g. ’Johann

(Hans)’; ’uf (uff) dem Berg’), but also alternative sub-strings (e.g. ’Uberschlacht-

ten (-slachtten)’). They may also contain parts of a name that are not essential

(e.g. ’Barill(i)et’; ’Längenberg(wald)’; ’(nostre) ville de Berne’). In some cases,

parentheses are used before or after a name for reasons of clarity or distinction (e.g.

’(Varniman) Heini’. I manually investigated the indices in the volumes, categorized

all strings containing parentheses, and, based upon these strings, tried to craft a

number of rules that are able to produce the respective spelling variants. I further

conducted a small evaluation regarding the usefulness of the production rules. Due

2Roman numerals in the index refer to pages appearing before the source text (i.e. in the foreword
and lead texts) at the beginning of a volume. However, the XHTML files of the main body do
not contain these initial pages.

39

Chapter 4. Name Extraction and Recognition

to the fact that parentheses occur much more frequently in the German indices3,

this evaluation was only based on the results for German. Table 5 exemplifies four

usage categories of parentheses with input strings, as well as the resulting output

strings. The two rows below each category describe the method that I used in order

to produce the given output. The numbers in the third column indicate the per-

centage of correctly produced variant lists per category. I developed the rules based

on observations and generalized assumptions about the usage of the parentheses.

For instance, if they appeared at the string beginning, I assumed that they con-

tain surnames (which may or may not occur with the first name). Furthermore, the

Jaro-Winkler metric (explained in section 2.1.2.2) was applied in order to determine

whether the parentheses contain a spelling variation or an optional element. The

LCS technique (starting from the back of the string) fit the particular purpose of

creating variants with alternative endings.

Given input strings Generated output strings Correct (%)

(Felwer) Hans

(Stukki) Berchtold

Hans, Felwer Hans

Berchtold, Stukki Berchtold
89.3

Assumption: String in parentheses is a surname, followed by first name.

Solution: Create two variants: 1) first name only, 2) surname and first name.

Philippus (Filippus) et Jacobus

im (jmm) Hasli

Philippus et Jacobus, Filippus et Jacobus

im Hasli, jmm Hasli
79.4

Assumption: If token in parentheses is similar to preceding token, it is an alternative spelling.

Solution: Check if Jaro-Winkler similarity of the two tokens is >0.65. Create two variants.

den Wegus (us) gan den Wegus gan, den Wegus us gan 100

Assumption: If token in parentheses is not similar to the preceding token, it is optional.

Solution: Create variants: 1) including optional element, 2) without optional element.

Purificatio (-cio) Purificatio, Purificacio 44.4

Assumption: String in parentheses is an alternative suffix or syllable.

Solution: Use LCS to find the point for replacing and inserting suffix. Create two variants.

Table 5: Examples of strings with parentheses and generated variants

The percentages may be slightly misleading, as they are dependent on the num-

ber of cases in which the rules actually came into play. For example, the third

rule (which treated the parentheses’ contents as optional) performed best, but it

generated variants only five times. In contrast to that, the second rule generated

output in 34 cases. As mentioned before, the production rules are generalizing, and

therefore do not always lead to the desired results. While the assumption concerning

3I counted 90 different strings with parentheses in the German indices, and 15 different strings
in the French ones.

40

Chapter 4. Name Extraction and Recognition

surnames and first names was mostly true, the rule did not take into account that

parentheses may contain several tokens, as in the string ’(Christen, Kristen) Jenny’.

Furthermore, the Jaro-Winkler measure failed to capture dissimilar strings that are

actually meant to be spelling variants. For instance, the string ’hofgericht (unseres

hofs gericht) am St.’ should produce the variants ’hofgericht am St.’ and ’unseres

hofs gericht am St.’. Also, in the ideal case, the rule should recognize that ’Hensli’

is an alternative spelling of ’Johannes’. On the other hand, the rule for parenthe-

ses containing a dash was too specific. It did not perform well as it neglected the

correct treatment of strings such as ’Ärnizhalde (Erniz-)’ or ’Hitzkirch(-Richensee)’.

My conclusion is that further specifications of the rules (including the improvement

of the similarity and LCS-approach) would lead to improved results.

Another step in the NE extraction process was the reconstruction of abbreviated

or shortened strings. Given the space-saving aspect, the use of abbreviations in-

stead of the full form (e.g. ’Lu.’ for Lucerne) is very frequent in the indices. The

same applies for dashes which are used as place holders, as in ’Winterhalden, -halten’

or ’Biem-, Wiembach’. This is problematic, because the written out form is needed

to correctly locate the NE in the corpus. Hence, I decided to produce an additional,

written out variant of every string containing an abbreviation or shortened form. I

achieved this by making use of the entry name, i.e. the (modernized) name given in

the <dfn>-tags. For reasons of simplicity, I defined abbreviations as strings consist-

ing of up to three letters, followed by a period. Whenever these letters corresponded

to the beginning of the entry name, I extended the abbreviation accordingly4. In

order to extend the strings with dashes, I extracted the letter occurring just be-

fore or after the dash. If the letter could be found in the entry name, I made a

split at this position, and inserted the substring there5. Of course, this assumption

is relatively näıve, and may lead to wrong reconstructions. I therefore included a

number of additional rules so that special cases such as ’Mauritius, -cyus’ or ’Bartlo-,

Partholomeus’ were extended in the right way. This crude way of splitting and in-

serting worked surprisingly well: out of 40 shortened strings with a dash, 32 (i.e. 80

%) were correctly reconstructed. In five cases, there was no correct split possible by

only checking a single letter (e.g. ’Schiessi-, Schiessenbrunnen’). Four splits would

have worked if phonetic similarity had been considered (as in ’Lutiß-, Lutishofen’,

’Kalch-, Kalkbrunnen’, or ’Ow-, Augraben’). Table 6 shows six examples of strings

containing abbreviations (column 2), together with their entry names (column 1)

that were used to produce the written out strings (column 3).

4In case the entry name consisted of more than two tokens, I compared the letters to any of its
tokens, until I found a match.

5The search for the letter proceeded in left-to-right fashion. I made sure that the entry name did
not get split at its first or last letter.

41

Chapter 4. Name Extraction and Recognition

Entry name

(<dfn>)

Abbreviated variant

(Input)

Written out variant

(Output)

Egloff E. von Kriens Egloff von Kriens

Chessel metral de Ch. metral de Chessel

am Graben vierteil amm G. vierteil amm Graben

Kleindietwil Clein- Cleindietwil

Fischmarkt -mergkt Fischmergkt

Laurentius -cyus Laurencyus

Table 6: Examples of strings in their abbreviated and extended form

As a last step, I defined short rules for the treatment of names with more than

one token. This was, for instance, the case with names containing prepositions and

articles. In the index entries, these are mostly listed in a dictionary-like fashion, such

as ’Hertenstein von’, ’Gilgen Zur’, ’Alpes, les’, or ’Affry, d’ ’. Based on a handcrafted

list of keywords, I reversed the orders of the tokens. I then made use of the list as

well as the entry name in the <dfn>-tag, so as to extend incomplete name variants

(e.g. ’Pays de’ was extended to ’Pays de Vaud’).

Once the name extraction and production process had been completed, I stored

all spelling variants with the entry name, and assigned them to their unique entry

ID given in the index. As mentioned before, each entry has a class attribute, which

I used to classify the NEs. Table 7 shows the total number of entries and name

variants as well as the NE class distribution for each language. In total, I extracted

9’658 name variants from almost 5’000 index entries. Person names were the most

frequent with 2’873 entries, whereas only 73 entries contained saints’ names.

Index entries Classes

IDs Variants Person Place Saint Term

German 3’687 6’329 2’271 1’236 70 110

French 1’421 3’329 606 773 3 39

Total 5’108 9’658 2’877 2009 73 149

Table 7: Distribution of names and classes in all volume indices

42

Chapter 4. Name Extraction and Recognition

4.2.2 Extraction of other information

In order to complete the database, I needed to consider four more pieces of infor-

mation per entry: a) page and line indication, b) cross-referencing, c) sub- and

super-ordination, and d) editorial notes/descriptions. As mentioned earlier in sec-

tion 4.1, the page and line numbers may appear in different forms in the index. By

a manual inspection I found that the following formatting variations are possible:

• 110117

• 24723, 32

• 15233ff.

• 6223-31

• 2684–27025

• 26915ss

My initial assumption was that the line numbers could be very valuable for the NER

task, since they help to locate the names at the correct position in the text. This

would lead to a precise recognition, as well as to a simplified evaluation. However,

I had to discard this idea due to two main reasons: on the one hand, the indicators

are not always exact in the sense that they may specify a range of lines or pages.

The examples given above – with the exception of the first two – do not specify all

the single lines in which a name can be found. For instance, it is not possible to

deduce the successive pages or lines from the abbreviations ’ff.’ and ’ss.’. On the

other hand, the line enumeration in the volume bodies was removed, as explained

in section 3.2.3: in the XHTML version of the volume, the line numbers appeared

at arbitrary positions in the text, and there was no proper way to find the original

line breaks. Thus, I decided to use only the page information, and ignore all line

indicators6. To this end, I developed a set of regular expressions for the extraction

of all page numbers (which assumed various shapes in the XHTML). In the case of

page indicators with a range, I automatically added all in-between pages7.

The next step was the correct mapping of cross-references. A referenced entry is

mostly given in italics, and therefore enclosed within <i>-tags. In a first iteration of

the index files, I marked all entries containing a cross-reference. This was possible

via rules and regular expressions based on the occurrence of specific strings (such as

’cf.’, ’s.’, ’s.a.:’, ’vgl.’)8. In a second iteration, I added all names and variants given

6I retained the line numbers in the form of page/line tuples, but did not employ them in the NER
task. I made sure all page numbers were correctly extracted by a manual evaluation.

7For instance, I inserted page 269 between 268 and 270 in the fifth example above.
8It was necessary, however, to exclude special cases like ’s. auch Sachregister und Glossar’ or ’cf.

Index des matières’, which refer to the glossary and not to another entry.

43

Chapter 4. Name Extraction and Recognition

in the marked entries to their cross-referenced entries. In doing so, I ensured that

each entry contained a complete list of name variants.

As explained before, entries may have a list of subordinate entries which are

related to it semantically or historically. The distinction between main and subor-

dinate entries was possible by searching for either the initial dash or the title tag

(cf. figure 10 in section 4.1). Since subordinate entries do not have a <dfn>-tag, I

simply added it by transforming the <title>-tag. I decided to do this because some

subordinate entries did not contain any names or variants at all; at times, they only

consisted of an editorial note and a page indicator. This means that, ultimately, all

subordinate entries contained at least the name given in the main entry. For the

sake of completeness, I made the distinction between main and subordinate explicit

in the database, but it was irrelevant for the NER task. All entries were stored and

looked up in the same manner. Likewise, comments and descriptions in italics were

ignored in the recognition task; I only used them for accessing cross-references.

4.2.3 Post-processing and output

Before definitely storing all extracted elements into a database, I removed characters

and strings that I considered as ”noise”. Among others, the removal list included

square brackets, triple-dots, question and exclamation marks, multiple white spaces,

as well as irrelevant punctuation occurring at the beginning or end of a name.

Moreover, I removed strings which remained at the end of the extraction process,

most of which were fragments of editorial notes such as ’parfois’, ’oder’, ’Nr.’, ’Gde.’,

’BE’, or ’auch’.

An intermediate format of the database was a nested Python dictionary which

contained all entries per volume index. For each entry, I stored the following infor-

mation: definition (i.e. entry name in <dfn>), class, name variants, page and line

numbers, description, super-ordinate entry, and (optional) cross-references. Ad-

ditional output formats included a pickled9 version of the dictionary, a tabulator-

separated CSV file, and a plain text file. While the former database format does not

deliver insight into its contents (and was therefore merely used for the recognition

task), the latter two files simplified manual evaluation and error analysis. In addi-

tion, they may be useful for potential future projects involving data visualization

and statistics, or even the creation of online IE and QA systems.

9Pickling converts a Python object into a compressed format, so that it can be reconstructed in
another Python script. Cf. https://docs.python.org/2/library/pickle.html.

44

https://docs.python.org/2/library/pickle.html

Chapter 4. Name Extraction and Recognition

4.2.4 Remaining issues

Overall, the correct and complete extraction of names plus corresponding informa-

tion was relatively difficult. The way in which the indices are structured differs

depending on the language, the volume, and the editors. For some reason, the

French indices tend to shuffle subordinate entries together instead of creating sep-

arate entries10, as can be seen in figure 11 below. This resulted in extremely big

database items.

Figure 11: Excerpt from a problematic entry in the index of VD C/1

Furthermore, the entries do not only list names, but may contain many other

textual elements. For instance, the entry Lausanne in figure 11 contains descriptive

strings that stem from the editors (e.g. ’Clergie bâtiment situé à la Cité’, ’artisans:

horlogers’). Without manual investigations, these strings are very hard to automat-

ically distinguish from ”real” names. Apart from that, the following issues need to

be addressed in future work:

Distinction of names and phrases: Entries may contain phrases related to a name

(e.g. ’ze Kriens verkunden’, ’gen Ure faren’). Although the phrases actually

occur in the text, they cannot really be treated as NEs.

Contents in italics: The formatting in the indices – as well as the XHTML markup

– is not used consistently. This means that in some cases, name variants are

enclosed in the <i>-tags, where I could not distinguish them from irrelevant

contents (such as descriptions and notes).

10For example, the entry Fribourg in the index of FR I/2 6 spans three printed book pages,
corresponding to a huge single entry in the XHTML.

45

Chapter 4. Name Extraction and Recognition

Cross-references: The referencing abbreviations are sometimes used for indicating

(vaguely) related entries (e.g. ’Frédéric III, cf. Habsbourg’). In that case, the

name variants should not be added to the referenced entry.

Missing page numbers: If an entity occurred very frequently in a volume, the ed-

itors omitted the page and line indicators (e.g. Luzern in LU I/2).

Common and ambiguous words: The entries may contain names that are, at the

same time, common words such as ’Hof’, ’Sohn’, or ’ville’. As the line numbers

could not be used, this resulted in wrong matches during the NER process.

I believe that most of these problems can only be solved by manual investigations

and extensive post-editing. Automated processes, as described in this section, are

highly dependent on the consistency of the input, which was unfortunately not given

in the SSRQ data11. However, a manual review of the resulting database showed

that the methods used in the extraction task are promising, leading to correct output

in most of the entries. I would also like to argue that the use of approximate string

matching techniques, as described in the next section, was able to compensate for

many of the shortcomings of the extraction process.

4.3 Recognition and annotation of entities

Once the database compilation had been completed, the names and page information

could be used to detect the NEs in the volume bodies. For this end, I implemented a

detection procedure in Python which takes as input the created database and corpus

files (XML files, as described in chapter 3). Note that, in fact, the task of the NER

procedure as such is NE detection only, as it locates relevant strings in the text. The

NE classification was carried out based on the classes given in the database entries.

I first reordered and sorted the Python dictionary according to page numbers, and

then searched through the complete XML corpus of every volume. Thus, the search

was not limited to the source text, but included all paragraphs – i.e. including titles

and all contents composed by the editors. The output of the algorithm was, again,

based on the model of the Text+Berg digital project, in which annotations were

made in a stand-off XML file. The Text+Berg annotation file contains an entry for

every NE occurring in the corpus, and gives information about its position and class

embedded in XML element attributes.

11Generally, the extraction performed better in the German indices, as they tended to be less
variably structured.

46

Chapter 4. Name Extraction and Recognition

4.3.1 Procedure

The recognition process was divided into two components: a direct search and an

approximate search component. Approximate string matching was essential in this

task for three reasons. First of all, as mentioned before, historical texts do not have

a standardized orthography, which means that names appear in numerous different

spelling variants. Although the indices normally list the most frequent variants,

the list is never complete. Second, it should be taken into account that the indices

hardly ever mention inflected forms, such as genitive, plural, or adjectival forms (e.g.

’Verenen’, ’Laurentii’, ’Hofmanns’, ’Lausannensis’, ’Zürcher’, ’Capelgassen’). Third,

both the tokens in the corpus and in the database may be erroneous to some extent.

In section 3.2.3 I explained that footnote reference letters were not removed from

the text, and that within <table> elements, these letters were directly attached to

the tokens. This means that some tokens had an additional last letter which is not

part of the word. Moreover, the complete removal of unwanted strings in the index

entries was not always possible12.

Basically, the procedure operated in two nested iterations per volume. The first

iteration parsed13 the whole XML corpus on page, paragraph, sentence and token

level, looked up entries and all name variants relevant for the current page (as

specified in the Python dictionary), and stored all name variants that could be

matched. The remaining entries, i.e. the ones that could not be found anywhere

(neither by direct nor approximate matching) in the corpus after the first iteration,

were stored separately. This process was repeated in the second iteration, with

the important difference that it only searched the first paragraph of each page. I

decided to do this because, as explained in section 3.2.6, numerous paragraphs were

accidentally moved down to the following page in the XHTML. In other words, if

a NE was not detectable on the relevant page in the first corpus iteration, it could

mean that it occurred in a moved paragraph on the next page14. This method was

very effective as it was able to find a significant portion of missing NEs. For example,

in the first corpus iteration of volume FR I/2 6, I could not find any matches for

86 different database entries. After the second iteration, only five entries remained,

which means that more than 90 % of all entries contained NEs occurring in displaced

paragraphs.

12This sometimes resulted in the comparison between corpus tokens and ”noisy” strings which
were actually not NEs.

13Using ElementTree/lxml.
14To make sure that the correct pages were searched, I incremented the page numbers of the

missing entries in the temporary database by 1.

47

Chapter 4. Name Extraction and Recognition

4.3.2 Direct and approximate search

In the direct search component, I tried to find strings that are one-to-one matches.

For every page in the corpus, I extracted only the relevant entries from the (re-

ordered) database. All name variants given in these entries were then searched for

in the current page. This search was always based on the number of tokens in the

variant: for instance, if a variant consisted of three tokens, I progressively dissected

the text into strings of three tokens15. This made sure that only strings of the same

token length were compared to each other16. If there was a one-to-one correspon-

dence between all characters in both strings, I stored them as direct matches.

I conducted several experiments with different similarity measures and thresholds

in order to find the best technique for the approximate search component. I also

estimated the usefulness of all measures that were mentioned in section 2.1.2.2 for

this specific detection task. I discarded the idea of using phonetic encoding tech-

niques, since almost all of them are designed to process English input, and none of

them are adapted to historical texts17. Moreover, a phonetic code alone does not

quantify similarity; further measures are required to define which codes should be

considered similar. Testing the Levenshtein distance demonstrated that, despite its

advantages, the measure did not put enough weight on the beginning of the strings.

Ultimately, given the fact that the Jaro-Winkler metric has been proven to work

well with proper names, I decided to base the approximate search algorithm pre-

dominantly upon this measure. The Python module I used for approximate string

matching was Jellyfish18.

The most difficult aspect of engineering the algorithms was finding an optimal

threshold for the Jaro-Winkler metric, while bearing the trade-off between precision

and recall in mind. By using a high threshold of at least 0.9, several matches were

not captured, i.e. lead to False Negatives (e.g. Agatha – ’Agathe’, or Barnabas –

’Barnabe’). On the other hand, lowering it to 0.8 resulted in False Positives (e.g.

Peter – ’empter’, Hilarius – ’hinaus’). After numerous repeated test runs with

different thresholds, I found that 0.825 was a very balanced ratio. Unfortunately,

15I used the NLTK tokenizer to tokenize both the variant strings and the sentences.
16This token-based approach was also easy to perform because the corpus had already been to-

kenized. Reassembling the tokens to a string and then performing a full-text search would
have been more time-consuming, especially since Python’s regular expressions treats diacritical
symbols as a word boundary.

17I did not make any experiments with the Meyer-Wilde algorithm for German, since the replace-
ment rules seemed to be very simplistic (cf. (Kempken, 2005, 11).). However, it would be
interesting to test its performance with Early New High German input in future work.

18Jellyfish contains ten different algorithms for doing approximate and phonetic string matching.
Cf. https://pypi.python.org/pypi/jellyfish.

48

https://pypi.python.org/pypi/jellyfish

Chapter 4. Name Extraction and Recognition

the encoding framework of Jellyfish’s calculation function tended to split single

diacritical symbols into two separate symbols, e.g. the symbol ó was split into the

letter o and the diacritical mark ’. Assuming this might lead to wrong comparisons,

I implemented a normalization rule that removed all diacritical symbols from the

strings. Note that this rule only applied if the Jaro-Winkler ratio of the strings was

below the threshold; if the threshold could be reached by removing the diacritics,

the strings were considered as matches.

Furthermore, very short strings were extremely problematic, as it was easier for

them to pass the threshold. The person name Hag, for instances, was always falsely

matched with the string ’Tag’. Therefore, I defined further restrictions for strings

shorter than four characters: the Jaro-Winkler similarity needed to be higher than

0.84, and the Hamming distance (cf. section 2.1.2.2) lower than 2. As a last step, I

added a list of exceptions based on the German and French stop word lists included

in NLTK. The tokens in these list (mostly function words) were not treated as names

and thus ignored in the string matching. The following pseudo code summarizes the

steps of the approximate search algorithm:

Algorithm 1 Decide if name variant and current text string are matches

Ensure: text string not in stopwords & variant not in stopwords
if length(variant) > 4 then

if jaro sim > 0.825 then return variant
else

if jaro sim normvariant > 0.825 then return variant
end if

end if
else

if jaro sim > 0.84 & hamming dist < 2 then return variant
end if

end if

It is true that the algorithm could be refined by incorporating more similarity

measures or techniques such as n-gram or LCS comparisons. I also conducted some

experiments with combining the Jaro-Winkler similarity with the Levenshtein dis-

tance: the results showed that further restricting the search by setting the maximal

Levenshtein distance to 3 lead to slightly better precision, whereas recall worsened

(e.g. the historical holiday name Symon et Judas could not be matched to the string

’Simonis et Jude’ anymore). In most of the other experiments, I found that the

combination of different techniques just complicated and slowed down the matching

process, and did not lead to significant improvements.

49

Chapter 4. Name Extraction and Recognition

4.3.3 Stand-off annotation

Every NE detected by either the direct or the approximate search process was stored

in a stand-off XML file, following the example of the Text+Berg digital XML. This

file was created once for every volume and contained the following elements: match

ID, NE class, position in the text (given in the form of a token span19), the ID of

the NE in the database, and a confidence value. The confidence value is simply the

(rounded up) Jaro-Winkler distance; in case of a direct match, the value is 1. The

match IDs were assigned continuously, i.e. depending on the order of occurrence.

Figure 12 shows an excerpt from the stand-off file created for AG II/10.

Figure 12: Example of a stand-off NE annotation file in XML format

Note that I generated a new <ne> entry for every name variant that was found

by the two search algorithms. Thus, overlaps are possible, since each variant string

could match several times within the same text string. For example, token 57 in the

excerpt above was matched two times, once in the direct search, and once in the

approximate search. Of course, one might argue that this generates a certain kind

of redundancy. However, my motivation for creating the stand-off file in this way

was completeness. Every file stores all possible matches, thus enabling a filtering

according to confidence value.

The main advantage of a stand-off annotation file is that it can be inspected

separately from the corpus, and thus easily extended or used for further applications.

For instance, the token position given in the -tag may be employed to later

visually highlight the NEs in the running text of the volumes. Apart from the

stand-off annotation file, I additionally created a verticalized version of the corpus

with inline annotations in the form of (B)IO-tags. This version contained plain text

(i.e was free of markup) and was later used for Machine Learning experiments, as

described in section 5.

19For example, span=’p1-s20-t43, p1-s20-t44’ means that the NE has 2 tokens, beginning at
token 43 and ending at token 44 in sentence 20.

50

Chapter 4. Name Extraction and Recognition

4.3.4 Evaluation

4.3.4.1 Precision

As a by-product of the stand-off annotation, I created a subset file for every volume

which stored only matches with a confidence value below 1. This allowed me to carry

out an evaluation of the results generated by the approximate search component,

and to see how well the matching algorithm – as outlined in the previous section –

performed. I investigated these evaluation files of two randomly selected volumes

(one per language), and manually checked whether the matched strings are actually

corresponding20.

At an early stage of the evaluation, it became evident that a large amount of False

Positives (especially in the French volume, VD C/2) came about due to only one

single character mismatch. Since the algorithm compared strings of the same token

number, this resulted in matches such as La Mauguettaz - ’Mauguettaz ,’ or Kappel

brugg - ’) Kappelbrugg’. I therefore decided to evaluate in two steps: first with a

low error tolerance, in which these mismatches were not counted as errors, and after

with a higher error tolerance, where I counted them as errors. The results of the

evaluation are displayed in table 8 below.

Predicted Tolerance TP FP Precision (%)

LU I/2 5223
low 4792 431 91.76

high 4843 380 92.73

VD C/2 1597
low 1408 189 88.17

high 1528 69 95.68

Table 8: Evaluation of the approximate search algorithm for two volumes

Overall, the precision was reasonably high in both volumes (92.73 % for German

and 95.68 % for French, allowing +1 token mismatches). It should be kept in mind,

however, that the French index was smaller: the approximate search in volume LU

1/2 generated a total of 5’223 matches, whereas it found 1’597 matches in VD C/2.

My claim is that precision is not mainly dependent on the language, but on the

quality of the indices. Generally, the French name variants were much longer (the

index of VD C/2 contained multi-token variants, e.g. ’villes et communaultez du

Pays de Vaud’).

Moreover, the token-based string comparison seemed to be quite problematic.

For instance, the variant stattschriber was matched to the string ’schriber’, but

20Workload of approx. 5 hours.

51

Chapter 4. Name Extraction and Recognition

not to ’statt schriber’. A full-text search or regular expressions may solve this

problem. I also believe that removing punctuation after tokenization would lead

to less mismatches. Nevertheless, considering the fact that the approximate search

was mainly built upon the Jaro-Winkler metric, the results were quite promising.

Table 9 lists a number of good and bad examples of matches with the corresponding

(rounded up) Jaro-Winkler similarity.

String from index String in volume text Jaro

LU I/2

Ysengass Eisengasse 0.86

Correct

matches
Symon et Judas Symonis et Jude 0.89

Leodegarius Leodegarstag 0.86

Peterman iederman 0.83

Wrong

matches
der Wechsler den wechsell 0.86

Münchs wib Münch nit 0.84

VD C/2

Sainct-Jean- Sainct-Jehan-Baptiste 0.86

Correct

matches
Sainct-Barthélémi Sainct-Bartholomier 0.87

Lausanne lausanneoise 0.84

Suisse puisse 0.89

Wrong

matches
ville de Nyon ville de Moudon 0.85

ville fille 0.87

Table 9: Examples of correct and wrong matches, taken from two volumes

The advantage of the approximate search algorithm was that it was able to capture

variational morphology, as can be seen with Lausanne - ’lausanneoise’. In cases like

’Eisengasse’ and ’Bartholomier’, the algorithm recognized the strings as spelling

variants. Furthermore, it was sometimes able to compensate for gaps in the indices:

for example, the fragment ’Sainct-Jean-’ was correctly matched with ’Sainct-Jehan-

Baptiste’, and the compound ’Leodegarstag’ – which was not listed in the index entry

– was correctly matched with the name Leodegarius. In other cases, the strings

were too similar to be distinguished (e.g. ’wib’ and ’nit’, ’Nyon’ and ’Moudon’).

Potential solutions include putting even more weight on the beginning of strings,

and extending the list of stop words.

52

Chapter 4. Name Extraction and Recognition

In this evaluation I focused on the string matching ability of the approximate

search. Given the absence of the line numbers, I was not able to deal with grounding

of NEs. Thus, the results in table 8 did not take NE ambiguity into account. For

instance, there were multiple entries in the LU I/2 index with the entry name Peter,

all referring to different individuals21. In the evaluation, I checked whether the

person name Peter is a spelling variant of, say, Petter, as defined by the index; but I

did not verify if the ID that matched the name was actually the ”right” person. The

search operated on whole (single) pages, without taking line indicators into account.

If it was possible to reconstruct line numbers, one could restrict the scope of the

search, thus limiting the possibility of wrongly associated IDs. For the remaining

ambiguity, i.e. occurrence of multiple individuals on the same line, the idea of ”one

sense per discourse” might be interesting22.

4.3.4.2 Recall

Unfortunately, since line numbers could not be taken into account, calculating the

recall turned out to be a very laborious task. The elicitation of the exact number of

False Negatives (i.e. name variants that could not be matched) requires the manual

look-up of all variants in the indices and then counting them in the volume bodies,

based on the line numbers indicated. After, the occurrences need to be compared

to the output of the algorithm. As this would go beyond the scope of my project, I

decided to perform the evaluation on the level of index entries instead of the level

of name variants.

The first part of the evaluation focused on the number of queries. I defined a

query to be the looking up of a single entry on a given page. For example, according

to the index database of volume AG II/10, there were two different entries (not

name variants!) to be found on page 6: ’IDX0142’ and ’IDX0300’. This corresponds

to two queries.

For every volume, I counted the following: 1) total number of queries to be made,

2) number of successful queries, and 3) number of failed queries. A successful query

means that an entry had at least one name variant that could be matched on the

relevant page. The counting of 1), total number of queries to be made, was done

automatically via the reordered NE database. This generated a Python dictionary

which could be used for manual evaluation, as exemplified in the following snippet:

21Note that, however, the editors often conflated several different individuals under the same entry.
For correct NE grounding, these need to be assigned to separate IDs first.

22Cf. Gale et al. (1992).

53

Chapter 4. Name Extraction and Recognition

FR-I-2_queries = {

’Page 1’: [IDX0238, IDX0226, IDX0143], # 3 queries

’Page 2’: [IDX0238, IDX0298, IDX0226, IDX0459], # 4 queries

’Page 3’: [IDX0143], # 1 query

’Page 4’: [IDX0226, IDX0459, IDX0143], # 3 queries

...}

I achieved the automated counting of 2) and 3) by modifying the search compo-

nents so that they kept track of the matches. In the second step of the evaluation,

I developed a function which automatically counts the number of different entries

(i.e. IDs in the database), for which the algorithms did not find any matches at all.

The results of the two evaluation steps are given in table 10 below.

Number of queries Number of entries

Total Successful Failed Total Matched Unmatched

AG II/10 2’649 2’528 (95.4 %) 121 1’119 1’045 (93.4 %) 74

BE II/9 2’686 2’566 (95.5 %) 120 1’615 1’528 (94.6 %) 87

LU I/2 2’042 1’955 (95.7 %) 87 953 918 (96.3 %) 35

FR I/2 6 977 972 (99.5 %) 5 471 467 (99.2 %) 4

VD C/1 1’993 1’813 (90.7 %) 180 619 542 (87.6 %) 77

VD C/2 666 630 (94.6 %) 36 331 304 (91.8 %) 27

Table 10: Evaluation of recall on entry level in all volumes

The table lists the total number of queries in each volume, as well as the number of

successful and unsuccessful queries. In AG II/10, for instance, the algorithm looked

up entries 2’649 times, and in 2’528 cases this returned matches. In 121 queries, the

algorithm could not find any match. The number of entries refers to the relevant

IDs in the database. For AG II/10, the database contained 1’119 dfferent entries,

1’045 of which could be matched at least once anywhere in the corpus. 74 entries

could not be matched at all, neither by the direct nor by the approximate search,

and even when considering all spelling variants.

Except for VD C/1, the search algorithms reached a query and entry recall of over

90 % in all volumes. They performed best in volume FR I/2 6, and worst in VD

C/1. It is not exactly clear why in FR I/2 the search achieved outstanding results;

it can be assumed that, in turn, the precision was slightly worse than for the other

volumes. My explanation for the relatively low results in VD C/1 is the complexity

of the volume index, which made it difficult to properly extract spelling variants.

54

Chapter 4. Name Extraction and Recognition

As already mentioned, the manual evaluation of False Negatives is very time-

consuming. In order to conduct an error analysis, I therefore decided to randomly

select 105 cases of unsuccessful queries per language23, and determine the reason

why the query failed. I looked the entries up in the (printed version of) the volume

indices, investigated the relevant pages, and distributed the error sources into five

categories. The results of this evaluation are given in figure 13.

Figure 13: Sources of error for False Negatives

By investigating the queries I found that the following issues lead to False Nega-

tives, which will need to be addressed in the future:

Below threshold: A significant number of unsuccessful queries were due to the Jaro-

Winkler measure specified in the algorithm. For instance, the name Conversio

Sancti Pauli could not be matched to the string ’conversionem Pauli’. Fre-

quently, the threshold was missed by only 0.03 (e.g. when trying to match

the saint’s name Gallus with its inflected form ’Galli’)24. These cases could

have been matched by lowering the threshold (which would, however, lead to

new False Positives). It could be beneficial to set the thresholds for individual

tokens of a string, instead of defining one for the whole string.

Missing variant: Some entries contained the name variant embedded within <i>-

tags. As explained before, the search algorithm ignored strings in these tags,

as they were regarded as editorial comments.

2335 queries per volume, except for French (where I picked 5 of FR I/2 6 and 65 of VD C/1);
evaluation workload of approx. 6 hours.

24The similarity measure is case-sensitive. In very short strings, the differences in lower- and
upper-casing easily lead to a rapid drop in the ratio.

55

Chapter 4. Name Extraction and Recognition

Synonymy: This was a problem especially in the French volumes. Page/line in-

dicators in the indices often pointed to strings which were not listed in the

entry, but denoted the same entity. For example, one entry contained the

name Frédéric empereur, but in the given pages this person was referred to

as ’prince’. Another example was the name Schindler which always appeared

in the text as ’der Vogt’. Naturally, the volume editors constructed the index

entries in such a way that they are understandable and deducible by human

readers. Automated processes, however, would need more refined rules and

sophisticated algorithms25.

Wrong page: In fact, the page indicators given by the editors were not always

correct. Sometimes, they miscounted by one page, so that the NE could not

be located at the given position.

Pre-processing: These queries would have been successful if the name variant ex-

traction and production task had performed better (this includes dealing with

parentheses in names such as Niederwil(-Tägerig) or expanding the abbrevia-

tion ’St.’ to ’Sankt’.).

As stated before, this evaluation gives an insight into the recall on entry level (not

on level of spelling variants). However, taking the results of the approximate search

into account, it allows for a rough estimation of the overall accuracy26. Of course,

the (rare) case of wrong one-to-one matches need to be taken into account as well.

In summary, the NE detection process was focused more on precision than on recall.

The error analysis in this section underlined the important role consistent input

plays in automated processes, and that careful pre-processing is essential in order

to prevent subsequent faults. In the future, more experiments will be carried out

so as to find the ideal similarity measures, thresholds and rules for the approximate

search algorithm.

25E.g. co-reference resolution, cf. Krug et al. (2015), Ebling et al. (2011).
26E.g. by calculating the average number of variants per entry, and the average number of occur-

rences of a variant per page.

56

5 Machine Learning Approach

This chapter addresses two experiments that were conducted using systems based on

CRF models. The first experiment deals with tagging the pre-processed SSRQ data

with Stanford ’s off-the-shelf NER tool, while the second is training an own CRF

classifier by combining the tags generated by Stanford NER with the ones produced

by the rule-based algorithms.

5.1 Applying modern language NER systems

After having completed the work steps delineated in the previous two chapters, the

result is a cleaned XML corpus with externally annotated NEs. Since the annota-

tions were made automatically by handcrafted rules and have not been post-edited

so far, the corpus could be referred to as being ”pre-annotated”. As noted earlier,

the algorithm applied in the NE detection process was centered more on correct-

ness (precision) than on completeness (recall), which left certain NEs unrecognized.

It can also be assumed that a volume index, being a manually produced resource,

contains a certain number of gaps. For instance, I have explained that frequent oc-

currences of a NE such as Luzern were not always indicated by page/line numbers.

I also expect that volume editors may – either accidentally or deliberately – omit

the mentions of names and references in the index entries. On account of this, it

would be desirable to find a way of detecting remaining NEs, and thus compensate

for the aforementioned shortcomings. One way of doing so is the use of another

NER tool originally designed for modern texts. In fact, ”when working with a his-

torical variant of an extant language, a frequent approach is to start off with an

existing tagger for the modern variant” (Piotrowski, 2012, 91). In this context, I

was especially interested in the question whether an off-the-shelf modern language

NER system would find names and spelling variants which were not mentioned in

the indices, or which could not be recognized by the algorithm.

57

Chapter 5. Machine Learning Approach

5.1.1 Stanford NER

There is a rich array of open-source NE recognizers for modern languages, such as

GATE/ANNIE (Cunningham et al., 2002), NLTK’s NE classifier (Bird et al., 2010,

281ff.), the Stanford NER (Finkel et al., 2005), or Cogcomp-NER (Ratinov and Roth,

2009). I ultimately decided to use Stanford NER1 due to the following reasons:

first, the software is well documented and, being implemented in Java, available

with numerous extensions (including interfaces for Perl, PHP, Ruby, and Python).

Second, there are several pre-trained models ready for use to tag English, German,

Chinese, French and Spanish input. Third, Stanford NER is often regarded as

the state-of-the-art system because of its robustness across domains, and reportedly

good performance: for English, the system reached F-scores ranging from 85.5 % (on

the CoNLL-2003 dataset) to 92.3 % (CMU Announcements dataset) (Finkel et al.,

2005, 368). The Stanford NER software is based on linear chain CRF sequence

models using a wide range of features.

5.1.1.1 Classifiers

The two serialized classifiers for tagging German input were developed by Faruqui

and Padó (2010). Both models were trained on the German training set from the

CoNLL-2003 Shared Task2 using generalization data from two large corpora: the

HGC (Huge German Corpus, also known as Stuttgart University Newspaper Cor-

pus3) and deWac (German Web Corpus4). The generalizations were made by form-

ing distributional similarity lexicons from 175 million tokens of each corpus. While

the HGC is a collection of news-wire texts, the deWac corpus was compiled by scrap-

ing off content from the web. It thus contains data from various genres and has been

suggested to be used with all documents other than news texts. For NE-tagging the

German data, I therefore chose to apply the deWac model.

The French classifier was trained on a Wikipedia-based corpus project described

by Nothman et al. (2013). In this so-called WP2 corpus, meta-data and links be-

tween encyclopedia articles were exploited for creating NE annotations. Evaluating

the automatically labeled corpus against a gold-standard of manually annotated data

demonstrated that ”transforming Wikipedia into training data [...] provides a free

1https://nlp.stanford.edu/software/CRF-NER.html
2Cf. Tjong Kim Sang and De Meulder (2003) and https://www.cnts.ua.ac.be/conll2003/

ner/.
3Cf. https://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/hgc.en.html.
4Cf. Adam et al. (2010).

58

https://nlp.stanford.edu/software/CRF-NER.html
https://www.cnts.ua.ac.be/conll2003/ner/
https://www.cnts.ua.ac.be/conll2003/ner/
https://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/hgc.en.html

Chapter 5. Machine Learning Approach

and high-yield alternative to the laborious manual annotation required for NER”

(Nothman et al., 2008, 131). A part of the project involved manually annotating

4’800 English Wikipedia articles, and then using inter-language links to project the

labels onto eight other languages, including French. The resulting French corpus

consisted of around 3.5 million tokens, which was subsequently used to train the

CRF model.

Both the German deWac and the French WP2 classifier produce BIO-tags for the

four classes person (PER), location (LOC), organization (ORG), and miscellaneous

(MISC). In the Stanford NER execution command, different settings can be speci-

fied, as well as the models, input file, and output format. There are five choices of

different output formats available including XML markup and tab-separated values.

Moreover, it is possible to tag input that is already tokenized5. In order to use the

Stanford NER tagger on my corpus, I first extracted the markup from the XML

corpus files for all volumes, so as to obtain the volume bodies in tokenized plain text

format. Then, I concatenated all three volumes for the two languages, which re-

sulted in two large plain text files (one for German and one for French). Per default,

the Stanford NER output is produced in the slashTags format, in which each token

is followed by a slash and the tag. The following excerpt from the German corpus

file shows slashTags-formatted output produced by the tagger (ellipses inserted by

me):

Friedensabkommen/O zwischen/O Thierstein/I-LOC und/O Basel/I-LOC

sowie/O Kiburg/I-LOC und/O Burgdorf/I-LOC 1378/O Dezember/O 29/O [...]

Und/O stost/O die/O vorgenant/O [...] an/O den/O Toggelbrunnen/I-LOC

und/O ander/O obgenanten/O von/O Burgdorff/I-PER hoeltzer/O ./O Aber/O

die/O Winterhalten/O stost/O an/O Niklisbrunnen/I-LOC hinder/O dem/O

Tûtlisperg/I-LOC und/O an/O der/O Cartuser/I-MISC hôltzer/O ./O

Interestingly, both with the German and French model, the tagger did not generate

any B (beginning) tags in any of the corpus files. For reasons of time I had to abstain

from conducting research regarding the cause of this lack. However, I assume that

since the German and French models were developed for the Stanford NER version

1.2 (the newest release is 3.8.0), they use simplified tags only. Having said that, the

distinction between an entity (I) and a non-entity (O) was still explicit, which is

why I chose to proceed with the IO-tagged output.

5This can be done by setting the parameter ”tokenizeNLs=true”. Otherwise, Stanford NER
applies an own tokenization algorithm to tokenize the input, which differs from the one used
by NLTK.

59

Chapter 5. Machine Learning Approach

5.1.1.2 Building an IO-tagged corpus

In order to compare the Stanford NER-tagged corpus to the annotations generated

by the hand-crafted algorithms, I modified the output function to produce an addi-

tional version of the corpus with IO-tags. Thus, whenever a match could be found,

it was not only added to the stand-off annotation file, but also to the plain text cor-

pus (in the form of the corresponding tag). Since the Stanford NER models operate

with a different set of NE classes, I first needed to transform the classes from the

indices. For instance, the models do not have a label for saints’ names or terms. I

therefore mapped the index classes to the Stanford NER labels as follows:

• person→ I-PER

• place→ I-LOC

• term→ I-ORG

• saint→ I-MISC

While person and place are used in the same way as I-PER and I-LOC, it could

be argued that term is not exactly corresponding to the class I-ORG (as term also

includes treaties and documents). It is true that mapping saint to I-MISC is an

abstraction, and that it could also be subsumed by the tag I-PER. However, it is a

very small class, and I preferred adhering to a fourfold classification.

As explained earlier, the search algorithms could match name variants to the same

string multiple times, i.e. in the cases of nested entities or overlaps. Nested entities

occurred whenever a longer string was matched which contained a substring that

was matched as well. For instance, the string ’Zuo dem Brunnen’ was first detected

by the one-to-one search. There, it could be directly matched to the identical name

variant. After that, the place name Brunnen was additionally detected within that

string. Overlapping refers to cases where the same string was first detected by the

direct search, and later by the approximate search.

However, for the creation of a tagged file in slashTags format I decided to resolve

nesting and avoid any overlaps. This was partly methodologically motivated, since

”shallow” annotations on one level are easier to generate and maintain. It also

had a pragmatic motivation, since the output created by Stanford NER did not

include the B-tag. Moreover, if the goal is to train an own CRF model based on

nested annotations, it would be necessary to add two or more columns of labels

to the tokens. This ”complicates the treatment of the data, because most machine

learning classifiers are not designed to attribute more than one class to each instance”

(Aguilar et al., 2016, 69).

60

Chapter 5. Machine Learning Approach

In order to obtain a shallow annotation, I made sure that longer strings were

tagged before short strings, and that the same tokens could not be matched multiple

times. Thus, in the example of ’Zuo dem Brunnen’, the substring ’Brunnen’ could

not be matched anymore. The NE tags assigned by the search algorithms were

gradually added to the corpus, based on the following hierarchy:

1. Direct search, strings longer than one token

2. Direct search, strings with exactly one token

3. Approximate search, strings longer than one token

4. Approximate search, strings with exactly one token

By using this hierarchy, I made sure that one-to-one correspondences had priority

over fuzzy matches, and that strings consisting of more than one token were tagged

first. For adding the tags in each language, I created a plain text version of the corpus

and stored it in the form of a Python dictionary, where the token IDs were used as

key and the NE tags as value. Initially, each token ID had the default value O. Every

step in the hierarchy above corresponded to one full iteration over the tokens in the

dictionary. Once a name variant could be matched to a string, the token values

were changed from O to the corresponding class tag. In the next iteration, the same

tokens could not be matched again. The result was one tokenized, IO-tagged corpus

per language that was directly comparable to the output generated by the Stanford

NER classifiers.

5.1.1.3 Comparison and evaluation

Table 11 below shows the number of tags generated by Stanford NER as well as

by the rule-based algorithms. Stanford NER produced an extremely large amount

in both text files: the total number of tags (on token level) is 35’225 in German,

and 61’629 in French. In contrast, the rule-based approach tagged tokens 16’247

times in the German text, and 13’254 times in the French text. In other words, the

total amount of all tags for German more than doubled; for French, Stanford NER

produced about four times more tags than the algorithms, which signifies an increase

of around 365 %. Furthermore, the CRF classifiers produced a substantial number

of NE tags for tokens that were not at all tagged by the algorithms (referred to as

’Stanford only’ in the table). The number of corresponding tags, i.e. the tokens

which were assigned to the same NE tag by both Stanford NER and the algorithms,

was relatively small (7’489 corresponding tags in German, and 5’711 in French).

In a nutshell, Stanford NER agreed to approximately 43–46 % of all the NE tags

suggested by the rule-based algorithms.

61

Chapter 5. Machine Learning Approach

German French

Total Stanford tags: 35’225 61’629

Total rule-based tags: 16’247 13’254

Corresponding tags: 7’489 5’711

Stanford only: 25’556 53’921

Table 11: Number of tags generated by Stanford NER and by the search algorithms

I also compared the class tag distribution produced by Stanford NER to the one

by the algorithms. Table 12 illustrates that in German and French, both approaches

most frequently used the PER and LOC tags, followed by ORG. Paradoxically, the

rule-based search for French only tagged 5 tokens with MISC, whereas Stanford

NER used this tag for 27’197 tokens. The MISC class appeared to be the most

problematic in general, and the Stanford tagger seemed to ”overuse” this label in

case of insecurity. For this reason, I decided to analyze the MISC class separately.

Class Rule-based Stanford

PER 10’071 20’604

LOC 4’522 8’377

ORG 912 5’440
German

MISC 742 804

PER 2’385 8’584

LOC 10’746 24’028

ORG 118 1’819
French

MISC 5 27’197

Table 12: Distribution of NE class tags

Correctly tagging the SSRQ data is, as I would claim, an extremely difficult

task for a modern NER system. Apart from the spelling variation and absence of

standardized orthography, the volume contents are multilingual. Big chunks of text

in the French volumes are written in a historical variant of German or in Latin,

which is why the Stanford NER performed worse than in the German volumes.

For multilingual documents, it would be desirable to have a language-independent

classifier. As can be seen in the excerpt in section 5.1.1.1 above, the CRF models

correctly recognized NEs in the parts written in modern German, but failed to

classify NEs such as Winterhalten (place name). On the other hand, it recognized

Cartuser (a religious order), a NE which is not mentioned in the volume index.

62

Chapter 5. Machine Learning Approach

In order to gain insight into the results of the Stanford classifiers and to perform an

error analysis, I randomly selected6 150 cases of non-corresponding tags per language

(50 of each class, except for MISC). These non-corresponding tags included all cases

in which the rule-based algorithms disagreed with Stanford NER: i.e. whenever

they generated a different NE tag for a token, or none (’O’). For all three classes

in each language, I manually annotated the 50 selected tokens to create a small

gold-standard, and then counted the correct and wrong tags produced by Stanford

NER. Table 13 summarizes the results of the evaluation.

’Compensations’ is a subset of the true positives, and refers to cases where Stanford

NER was able to compensate for missing tags (NEs not captured by the algorithm).

In other words, I counted those tokens for which Stanford NER produced a correct

class tag, but which were not detected by algorithms at all. ’Borderline’ is a subset

of the false positives. It denotes tags which did not correspond to my gold-standard,

but were not exactly wrong either.

German French

Class PER LOC ORG PER LOC ORG

True Positives 21 41 7 18 16 8

Compensations 21 22 6 16 13 5

False Positives 29 9 43 32 34 42

Borderline 18 0 13 4 2 8

Precision (%) 42 82 14 36 32 16

Table 13: Precision of Stanford NER evaluated for three classes

Table 13 illustrates that – as expected – precision was generally low, except for

the German LOC class which achieved 82 %. False Positives in this class occurred

only due to ambiguous phrases, such as ’im Urbar’ (referring to a an urbarium, i.e.

a historical document). In the German PER class, there were various borderline

cases of place names being tagged as person names: this happened if the place was

preceded by a person name and the preposition ’von’, e.g. ’Walther von Burgdorff’7.

The ORG class performed worst, since it was assigned to numerous uppercase to-

kens. Examples are common nouns such as ’Zolldirektion’, ’Gemeinde’, ’Schule’, and

acronyms such as ’BvB’. I counted some of them to the borderline category because

the tokens actually denote organizations, but do not refer to individual entities.

6I did not completely randomize the selection: since NEs can consist of several tokens, I ensured
that multi-token NEs stayed together.

7If the PER tags of these place names were not considered as errors, precision would increase
from 42 % to 78 %.

63

Chapter 5. Machine Learning Approach

In the French text, Stanford NER performed especially bad because of multilingual

contents and other unknown segments. The PER tag was frequently assigned to

German nouns (e.g. ’Guggisberg’, ’Vogt’), and sometimes to place names. Most

False Positives in the ORG and LOC class occurred with historical spelling variants

of function words (often upper-cased, e.g. ’Cecy’, ’Ainsy’), Latin tokens (’Postremo’,

’Ciceronis’), and Roman numerals. Borderline cases included ambiguous NEs such

as ’Sainct-Gal’ (both place and saint’s name) or ’Officia Politica’ (which was tagged

ORG).

Comparisons between the MISC tags distributed by Stanford NER and the rule-

based approach were difficult to make. The algorithms applied this class for saints’

names only, while the Stanford NER classifiers tended to use it for strings that

could potentially be NEs. In the German corpus, the classifiers mostly used the

class for adjectival forms: out of 50 MISC tags, 39 were attributed to tokens such as

’Zürcher’, ’rheinischen’ or ’Luzerner’. However, I was not able to identify any pattern

or logic in the distribution of the MISC tags in the French texts, and the results

were extremely noisy. Among the tagged tokens were function words, acronyms,

Roman numerals, German nouns, and all-caps strings.

The low percentages seem to suggest that modern NER systems are not at all

suited for tagging historical texts. However, I would like to underline the category

’Compensate’ in table 13. Stanford NER classified many tokens which remained

untagged by the rule-/index-based search; in fact, 74.8 % of all correctly tagged

tokens were not found by the algorithms. With some investigations it became evident

that index editors frequently stopped listing page/line indicators after a certain

amount of pages, or if the name occurs too frequently. Also, if the name appears

in titles or footnotes, the indicators were often omitted. Various NEs found by

Stanford NER were not given in any indices at all, including Heilbrunn, Augustin,

and Montbret. Lastly, it was able to capture a number of NEs that were not tagged

by the algorithms, since they did not pass the threshold in the approximate search.

Overall, the comparisons between rule-based and ML-based output were not too

surprising. Traditionally, rule-based systems make use of relevant lists, and are

thus ”custom-tailered” to a specific corpus or task. ML systems, on the other

hand, are prone to a certain degree of over-generalization with unknown data. My

conclusion is that despite their low precision, the Stanford classifiers were indeed

able to counterbalance some of the shortcomings of the rule-based approach, and

at least partly compensate for the lower recall. Having established the up- and

downsides of both approaches, I was aiming at combining them in an ideal way so

as to produce output which can be used to build an own, optimized NER model.

64

Chapter 5. Machine Learning Approach

5.2 CRF classifier training with Wapiti

As stated before, Stanford NER is a classifier predicated on CRF – a typical statis-

tical modeling method used for sequential data. Sequential means that the order

of tokens in the text is crucial for the correct labeling. Hence, the goal of ML is

to calculate probabilities based on the training data, and using them to predict

the best label for the current sequence. Probabilities are calculated according to

given features, which in turn are extracted from the ”whole” sequence of evidences

(i.e. not only in relation to the current token). CRFs find applications in NLP

tasks such as shallow parsing and POS-tagging, but also in NER. There is a wide

range of open-source ML systems available that allow the training of own classifiers

(including the Stanford NER software). However, for building a CRF model using

my pre-processed SSRQ data, I decided to use the open-source ML toolkit Wapiti

developed by LIMSI-CNRS8 (Lavergne et al., 2010). We have already tested this

toolkit on the SSRQ texts in an earlier seminar project with promising results.

Wapiti is a platform-independent ML package for the implementation of linear-

chain CRFs, which allows the labeling of sequential data with discriminative mod-

els9. Wapiti ’s main assets rest upon the fact that it includes the most important

training and optimization algorithms, as well as various regularization methods to

avoid over-fitting. The standard training algorithm is quasi-newton optimization

(L-BFGS) with L210 regularization. Another feature of the toolkit is the ability

for multi-threading and N-best-tagging. According to (Constant and Tellier, 2012,

505), Wapiti is one of the best known and most efficient implementations of linear

CRFs.

5.2.1 Data and features

In the previous chapter, I have discussed the results of Stanford NER and the rule-

based algorithms, and claimed that the approaches have complementary strength

and weaknesses. Since the rule-based algorithms are based on the indices, their

results were more precise, whereas Stanford NER produces more tags and achieved

better recall. I therefore developed a so-called silver-standard version of the data

by automatically combining the output of the two approaches in each language.

8Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur ;
cf. https://wapiti.limsi.fr/.

9Wapiti also supports maximum entropy Markov models and softmax/multinomial logistic re-
gression.

10By default, the value for L2 regularization is 0.0001.

65

https://wapiti.limsi.fr/

Chapter 5. Machine Learning Approach

For this purpose, I unified the IO-tagged corpora to a tab- and newline-separated

file with four columns, as illustrated in table 14 below.

Token MyTag SNERTag SilverTag

Allso O O O

hatt O O O

Petter O I-PER I-PER

Māder O I-PER I-PER

, O O O

amman O I-MISC I-MISC

ze O O O

Langentan I-LOC I-PER I-LOC

, O O O

geredt O O O

Table 14: Tokenized, tab-separated data format with four columns

Each line is composed of the token, the tag given by the rule-based approach

(’MyTag’), and the tag given by Stanford NER (’SNERTag’). The fourth column

contains the silver-standard tag (’SilverTag’), which is either ’MyTag’ or ’SNERTag’,

depending on the following rule:

Algorithm 2 Decide which tag to use for silver-standard

for line in 4c corpus do
if MyTag = O & SNERTag 6= O then return SNERTag
else

if MyTag 6= O then return MyTag
end if

end if
end for

In other words, the rule-based NE tags always had priority over the Stanford

tags, since they are expected to be more precise. The Stanford tag only applied in

case there was no rule-based tag (i.e. ’MyTag’ = O). Logically, if both ’MyTag’ and

’SNERTag’ were O, then so was ’SilverTag’. The resulting four-column format could

be directly used as input for training and testing with Wapiti. For each language, I

split the silver-standard file into a three sets: the first 80 % of the file were used for

training, the following 10 % for development, and the last 10 % for testing11.

11Since Wapiti ’s sequence error rate operates on sentence level, I manually restored sentences at
file beginning or end in case the file splitting process ripped them apart.

66

Chapter 5. Machine Learning Approach

In the training phase, I built three different classifiers per language using the

default settings for Wapiti ’s training mode. Wapiti automatically performed fine-

tuning on the given development set. In every run, a different template of feature

patterns was used. Two of them extracted evidence from the tokens (i.e. from

column 1 in the corpus), whereas the third one also included evidence from the tags

(i.e. columns 2 and 3):

Template B.1 defined a set of (case-sensitive) unigram features within a context

window of two tokens12, as well as a binary feature regarding the upper- or

lower-casing of the current token. It also considered the first and last three

characters of the current token.

Template B.2 contained all aforementioned features, but completed them with 12

additional ones. These included features regarding first and last two characters

in the current token, last four characters in the current token, and upper-

casing of previous and current token. Moreover, there were five binary features

returning ’True’ if the current or previous token contained punctuation.

Template B.3 was composed of all features from template 1, but additionally trans-

formed the NE tag evidence (within a context window of 2) into features.

The labeling mode was called with the parameters -check (since the test set was al-

ready labeled and in 4-column format) and -post (for activating posterior decoding

instead of the classical Viterbi decoding, which allows to output normalized score

for sequences and labels).

5.2.2 Evaluation

5.2.2.1 Silver-standard comparison

In the evaluation phase, I decided to first compare the results of the trained classifiers

to the silver-standard test set in each language. I excluded, however, the third

template B.3 at this point, as its features were based on extracted evidence from

the tags. As mentioned, these tags were consistently distributed based on algorithm

2 above, and the classifier – when presented with columns 2 and 3 – would almost

always be able to predict the silver-standard tags13. On the other hand, testing the

12Corresponding to five different unigram features: current token [0], preceding token [-1], token
before preceding, [-2]; following token [+1] and token after following [+2]. Cf. appendix B.

13In other words, evaluating the model trained with template B.3 against the silver-standard test
set will only reveal how well it can ”imitate” the heuristic. To verify this, I conducted a test
run and found that, indeed, F-scores were around 99 to 100 % for all classes.

67

Chapter 5. Machine Learning Approach

classifiers built with templates B.1 and B.2 shed light on their ability to predict

silver-standard tags based on the token information only. The results for both

of these two classifiers were extremely similar, and for some classes even identical.

Moreover, both had a token error rate of around 4 %. For this reason, table 15 below

shows the performance of classifier B.2 only, giving precision, recall and F-score for

all labels.

German French

Pr Rc F1 Pr Rc F1

O 98 99 98 95 99 97

I-PER 86 70 77 81 61 69

I-LOC 40 21 27 70 46 55

I-ORG 64 82 72 51 64 57

I-MISC 85 6 12 54 43 48

Table 15: Label statistics of the Wapiti model B.2; numbers in percentages

The very high F-scores for the O label imply that the model was good at predicting

what is not a NE; however, correctly classifying them seemed to be more complex.

As expected, the MISC class was most problematic, and resulted in the lowest

precision and recall, while PER and ORG were easier to classify. Interestingly, the

LOC class achieved lower than ORG, mostly due to lower recall. Apparently, it was

relatively difficult to predict the silver-standard tags by only the string information

from the tokens. The fact that both B.1 and B.2 were similar indicates that generally,

features considering letters and punctuation in a token does not contribute much to

performance.

5.2.2.2 Gold-standard comparison

Simply put, testing the trained models on the silver-standard test sets demonstrated

their predicting ability when using evidence from the token sequences. However,

in order to perform a meaningful evaluation, I decided to create two small gold-

standard test sets by manually annotating a selected corpus excerpt in both lan-

guages. Since the annotation is a highly time-consuming task14, I limited the ex-

cerpts to a token number equivalent to ten book pages (that is, ten pages in the

printed volumes). For both German and French, I randomly selected a volume and

14Without fundamental knowledge of the historical language varieties, there is always the factor of
uncertainty, ant it was necessary to frequently consult the indices for verification. Annotation
workload in total was approximately 6 hours.

68

Chapter 5. Machine Learning Approach

a starting page. From this page onward, I extracted ten consecutive pages, and

annotated them while adhering to the line-separated 4-column format. The result-

ing excerpts contained 5’647 tokens in German, and 4’994 in French15. I tested all

three models on the gold-standard test set. Unfortunately, due to the small size of

the gold-standard, the only NE classes that occurred were PER, LOC and MISC

in both languages. MISC was very rare (less than 10 occurrences), which is why

table 16 gives results for PER and LOC only. The percentages for the O class were

extremely high again (between 96 and 100 % F-score in both German and French),

so I decided not to include them in the table.

German French

Pr Rc F1 Pr Rc F1

B.1
I-PER 88 71 79 82 85 83

I-LOC 33 10 16 38 80 51

B.2
I-PER 91 67 77 76 89 82

I-LOC 39 10 16 40 78 53

B.3
I-PER 91 85 88 86 87 87

I-LOC 63 86 73 25 99 40

Table 16: Statistics for two labels of all Wapiti models; numbers in percentages

The first model trained on features from template B.1 already achieved reasonably

good results for the PER class, with F-scores of around 80 % in both German and

French. Precision and recall were similar, except for German, where it was slightly

lower (71 %). The LOC class was very problematic, especially in German. In French,

recall for this class was acceptable (80 %), but precision was not (merely 38 %).

Comparing these results to the ones of the model trained with template B.2 revealed

that the numerous additional token features from B.2 did not contribute much to

performance. Even though there were more features considering the characters and

punctuation in token sequences, there were no significant improvements in the overall

results. Precision and recall for the LOC labels slightly improved, and precision of

the German PER label even climbed over 90 %. However, the features from template

B.2 were generally not better suited to predict the gold-standard. My claim is that

the spelling and orthographic variation in historical texts is simply too extensive, so

that no inferences can be made from only looking at token strings. Upper-/lower-

casing and characters of a token are highly variable, and thus do not allow much

inspection regarding its NE class. Models B.1 and B.2 had an average token error

rate of about 4.4 % in German and 5.7 % in French.

15A test set traditionally comprises around 5 to 10 % of the training size, which is of course much
bigger than my selection.

69

Chapter 5. Machine Learning Approach

In the evaluation of model B.3 against the gold-standard, I was interested in the

predictive power of the classifier if presented with the tags by Stanford NER and the

search algorithms. In that case, the classifier did not only make the predictions based

on token information, but also based on the decisions made by the two NER systems.

As expected, this lead to better results over all classes, and in both languages. PER

was again easiest to classify, leading to F-scores of 88 % in German, and 87 % in

French. Although the classifiers achieved very good recall for LOC in both languages

(86 % and 99 %), precision was rather low, resulting in F-scores of 73 and 40 %

respectively. It could be argued that person names are indeed more predictable than

other NEs. For instance, the context in which person names appeared seem to be

more revealing and consistent, and both Stanford NER and the rule-based algorithm

tended to agree about whether a string is a person name or not. Probably due to

the ambiguity of person and place names (as in ’Walther von Burgdorff’), the LOC

class was less transparent, and thus harder to classify. Lastly, I believe that the

multilingual aspect of the data diminished overall performance of the classifiers.

Even though the gold-standard test set was very small, it was possible to obtain

promising intermediate results and some important insights. The classifiers were not

only trained on a CRF system designed for tagging modern languages, but partly on

a system relying on handcrafted rules; naturally, both approaches have their flaws.

It should be kept in mind that all processes which lead to the final result – including

the corpus compilation from the XHTML files, the extraction and processing of NEs

in the indices, as well as the detection and annotation task – incorporated potential

errors from the previous processes. Therefore, one should refrain from making high

demands on a ML classifier built upon these data.

It should also be taken into account that the classifiers could not resort to other

linguistic features such as morphological information, lemma or POS, and evidence

was only extracted from sequences of strings. One option to improve the classi-

fiers’ performance is trying to incorporate linguistic information into the corpora.

However, ”since older forms of the language [...] are increasingly different from the

modern language, language tools need to be adapted or built from scratch in order to

deal successfully with these historical language stages” (Borin and Forsberg, 2011,

42). Another option would be the normalization of the data before training. In

future projects, I would like to explore these possibilities, while aiming at building

more generalized models able to perform NER in historical texts of different size,

genre, and language varieties.

70

6 Conclusion

6.1 Summary

The work described in this thesis pursued the following three main objectives: first,

pre-processing and compiling a multilingual collection of digitized historical texts,

second, extracting NEs and relevant information from secondary sources, and third,

investigating different systems for the automatic recognition and annotation of the

entities in the pre-processed corpus.

The first objective was achieved by parsing, re-structuring and cleaning up XHTML

files of selected SSRQ volumes written in medieval German and French. In the course

of this task, I have highlighted the general complexities of automatically digitized

and converted historical data, and illustrated how OCR software can be used for

text reconstruction. I have also described the process of adapted sentence splitting

and tokenization in order to achieve a well-structured and valid XML output format.

Although the resulting data set is, by definition, not a representative corpus (in the

absence of an explicitly pre-defined time span, genre and spatial dimension), it is still

a comprehensive and multi-purpose collection of cultural heritage documents. Such

documents have ”numerous usages in the various branches of historical research:

some of these are related to the task of revealing general trends and patterns about

a historic period or personality while others focus on discovering specific [...] pieces

of information” (Berzak et al., 2011, 207). Now that the digitized primary sources

are cleaned, tokenized and enumerated, it is possible to utilize them for various other

research projects in the humanities.

The second and most substantial part of my thesis was focused on the extraction

and production of names, variants and page indicators from the volume indices.

This involved defining particular regular expressions and rules so as to filter only

relevant information from the index entries. The task of producing spelling variants

out of fragmented or ill-formatted strings emphasized once more the importance

of consistent input data. Furthermore, I demonstrated the usage of approximate

string matching techniques with the goal to correctly detect the resulting NEs in

71

Chapter 6. Conclusion

the texts. Due to the fact that in the historical texts, orthography and the language

itself was not standardized, finding ideal thresholds for similarity turned out to be

very complicated. I have therefore concluded that the lexicon- and rule-based NER

task was aimed at better precision at the expense of recall. The final products of

this process included an extensive standoff-annotation file in XML format, as well

as a NE database reflecting the contents of the indices. (Linde and Mitmann, 2013,

244) carried out a similar project for pre-annotating historical texts, and described

it in the following terms:

[This project] is distinguished by the extent to which it automates

existing data. Not only are the texts themselves digitized on the basis

of existing sources, but the digitization of [...] glossaries, and the ex-

ploitation of their data in the annotation of medieval texts, constitute

a time-saving innovation that helps focus on the specific problems of

annotation. [...] The approach outlined here allows for an effective and

efficient creation of large text corpora.

I would like to argue that this statement holds true for the approach in my thesis

as well, and that the applications of the resulting database go beyond NER and

annotation. For instance, the NE database holds the potential for the creation of

Semantic Web Ontologies1 and Open Linked Data projects, data visualization, or

historical linguistic research (e.g. concerning spelling variation in proper names).

Ultimately, in the third and last part of my thesis, I conducted experiments deal-

ing with the application of ML systems to the pre-processed data. I first tested

performance of a modern language NE tagger, Stanford NER, when applied to the

German and French texts. This revealed that Stanford NER was complementary to

the rule-based algorithms insofar as it achieved higher recall, and produced more

tags. The second experiment involved training own classifiers for each language with

the CRF toolkit Wapiti on the combined data. I developed three different models

based upon three sets of features, and partially tested them on silver- and gold-

standard data sets. I have pointed out that classification is increasingly difficult

for a ML model if the evidence can be extracted from tokens only, and no other

linguistic information is available. Figure 14 depicts a flowchart including the major

processes and deliverables that were established in the course of this thesis.

1In fact, the Swiss Law Sources Foundation has already launched online thesauri for historical
persons, places and organizations; cf. https://www.ssrq-sds-fds.ch/persons-db/.

72

https://www.ssrq-sds-fds.ch/persons-db/

Chapter 6. Conclusion

Figure 14: Thesis project pipeline

6.2 Outlook

This thesis project has laid the groundwork for future investigations and improve-

ments in the context of historical data in general, and specifically for the SSRQ

data. One of the next goals is to further upgrade the XHTML cleanup and name

extraction processes, as well as to refine the approximate search algorithms. Related

to that, I also want to research into the possibilities and limitations of the different

string similarity measures. An important topic which needs to be addressed in the

future is normalization: it would be, for example, desirable to follow the lead of

Hauser et al. (2007) who have identified and collected the most common phonolog-

ical, graphical and dialectal variations of Early New High German. It would also

beneficial to analyze the impact of multilinguality and language mixing in historical

texts, especially in the context of ML. Once the NER pipeline has been optimized, I

would like to proceed to the task of NE grounding, disambiguation and co-reference

resolution.

73

References

K. Adam, R. Siva, P. Jan, and P. Avinesh. A corpus factory for many languages.

Proceedings of LREC 2010, 2010.

S. T. Aguilar, X. Tannier, and P. Chastang. Named entity recognition applied on a

data base of medieval latin charters. the case of chartae burgundiae. In

Proceedings of the 3rd HistoInformatics Workshop on Computational History

co-located with Digital Humanities conference (DH 2016), pages 67–71, July

2016. URL http://ceur-ws.org/Vol-1632/paper_9.pdf.

A. Auer and T. Fairman. New Methods in Historical Corpora, volume 3, chapter 4:

Letters of artisans and the labouring poor (England, C. 1750-1835), pages

77–93. Narr, Tübingen, 2013. ISBN 978-3-8233-6760-4.

D. Benikova, C. Biemann, and M. Reznicek. Nosta-d named entity annotation for

german: Guidelines and dataset. In LREC, pages 2524–2531, 2014.

Y. Berzak, M. Richter, C. Ehrler, and T. Shore. Language Technology for Cultural

Heritage. Selected Papers from the LaTeCH Workshop Series, chapter 11:

Information Retrieval and Visualization for the Historical Domain, pages

197–212. Theory and Application of Natural Language Processing. Springer,

Berlin/Heidelberg, 2011.

S. Bird, E. Klein, and E. Loper. Natural Language Processing with Python.

O’Reilly UK Ltd., 2010. ISBN 0596516495.

M. Bollmann. (semi-)automatic normalization of historical texts using distance

measures and the norma tool. In Proceedings of the Second Workshop on

Annotation of Corpora for Research in the Humanities (ACRH-2), Lisbon,

Portugal, 2012.

L. Borin and M. Forsberg. Language Technology for Cultural Heritage. Selected

Papers from the LaTeCH Workshop Series, chapter 3: A Diachronic

Computational Lexical Resource for 800 Years of Swedish, pages 41–61. Theory

74

http://ceur-ws.org/Vol-1632/paper_9.pdf

Chapter 6. Conclusion

and Application of Natural Language Processing. Springer, Berlin/Heidelberg,

2011.

N. Bubenhofer, M. Volk, F. Leuenberger, and D. Wüest. Text+berg-korpus

(release 151v01). XML-format, 2015. Digitale Edition des Jahrbuch des SAC

1864-1923, Echo des Alpes 1872-1924, Die Alpen, Les Alpes, Le Alpi 1925-2014,

The Alpine Journal 1969-2008.

M. Burghardt and C. Wolff. Stand off-annotation für textdokumente: Vom

konzept zur implementierung (zur standardisierung?). Proceedings of the

Biennial GSCL Conference, pages 53–59, 2009.

K. Byrne. Nested named entity recognition in historical archive text. In Semantic

Computing, 2007. ICSC 2007. International Conference on, pages 589–596.

IEEE, 2007.

K.-U. Carstensen, C. Ebert, C. Ebert, S. Jekat, H. Langer, and R. Klabunde.

Computerlinguistik und Sprachtechnologie: Eine Einführung. Springer-Verlag,

2010.

P. Christen. A comparison of personal name matching: Techniques and practical

issues. In Proceedings of the IEEE Sixth Data Mining Workshop (ICDMW 06),

pages 290–294, Australian National University, 2006. IEEE.

M. Constant and I. Tellier. Evaluating the impact of external lexical resources into

a crf-based multiword segmenter and part-of-speech tagger. In 8th International

Conference on Language Resources and Evaluation (LREC’12), pages 646–650,

2012.

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A Framework

and Graphical Development Environment for Robust NLP Tools and

Applications. In Proceedings of the 40th Anniversary Meeting of the Association

for Computational Linguistics (ACL’02), 2002.

S. Ebling, R. Sennrich, and D. Klaper. Digging for names in the mountains:

Combined person name recognition and reference resolution for german alpine

texts. In Language and Technology Conference, pages 189–200. Springer, 2011.

A. Ernst-Gerlach. Retrievalmethoden für historische Korpora mit nicht

standardisierten Schreibweisen. PhD thesis, Universität Duisburg-Essen,

Fakultät für Ingenieurwissenschaften und Informatik, 2013.

75

Chapter 6. Conclusion

A. Ernst-Gerlach and T. Pilz. Search methods for documents in non-standard

spelling. Talk at the Workshop on Historical Text Mining, Lancaster, U.K., July

2006. URL

http://www.is.inf.uni-due.de/bib/pdf/talks/Ernst_Pilz_06ta.pdf.

F. Farooq and Y. Al-Onaizan. Effect of degraded input on statistical machine

translation. In 2005 Symposium on Document Image Understanding Technology,

pages 103–108. UMIACS, University of Maryland, Nov. 2005. URL

https://lamp.cfar.umd.edu/meetings/Proceedings/SDIUT05.pdf.

M. Faruqui and S. Padó. Training and evaluating a german named entity

recognizer with semantic generalization. In Proceedings of KONVENS 2010,

Saarbrücken, Germany, 2010.

J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local information

into information extraction systems by gibbs sampling. In Proceedings of the

43rd annual meeting on association for computational linguistics, pages 363–370.

Association for Computational Linguistics, 2005.

B. A. Forouzan. Data Communications and Networking. McGraw Hill Higher

Education, 4. edition, 2007.

W. A. Gale, K. W. Church, and D. Yarowsky. One sense per discourse. In

Proceedings of the workshop on Speech and Natural Language, pages 233–237.

Association for Computational Linguistics, 1992.

C. Grover, S. Givon, R. Tobin, and J. Ball. Named entity recognition for digitised

historical texts. In LREC. Citeseer, 2008.

F. Hartweg and K.-P. Wegera. Frühneuhochdeutsch: Eine Einführung in die

deutsche Sprache des Spätmittelalters und der frühen Neuzeit. Walter de

Gruyter, 2005.

A. Hauser, M. Heller, E. Leiss, K. U. Schulz, and C. Wanzeck. Information access

to historical documents from the early new high german period. In Dagstuhl

Seminar Proceedings, pages 147–154. Schloss Dagstuhl-Leibniz-Zentrum für

Informatik, 2007. URL http://drops.dagstuhl.de/opus/volltexte/2007/

1057/pdf/06491.HellerMarkus.Paper.1057.pdf.

S. Höfler and M. Piotrowski. Building corpora for the philological study of swiss

legal texts. JLCL, 26(2):77–88, 2011.

76

http://www.is.inf.uni-due.de/bib/pdf/talks/Ernst_Pilz_06ta.pdf
https://lamp.cfar.umd.edu/meetings/Proceedings/SDIUT05.pdf
http://drops.dagstuhl.de/opus/volltexte/2007/1057/pdf/06491.HellerMarkus.Paper.1057.pdf
http://drops.dagstuhl.de/opus/volltexte/2007/1057/pdf/06491.HellerMarkus.Paper.1057.pdf

Chapter 6. Conclusion

R. Holley. How good can it get? analysing and improving ocr accuracy in large

scale historic newspaper digitisation programs. D-Lib Magazine, 15(3/4), Mar.

2009.

N. Indurkhya and F. J. Damerau. Handbook of Natural Language Processing,

Second Edition. Chapman and Hall/CRC, 2 edition, 2010. ISBN

978-1-4200-8593-8.

S. Kempken. Bewertung historischer und regionaler Schreibvarianten mit Hilfe von

Abstandsmaßen. phdthesis, University of Duisburg-Essen, Dec. 2005.

S. Kempken, W. Luther, and T. Pilz. Comparison of distance measures for

historical spelling variants. In IFIP International Conference on Artificial

Intelligence in Theory and Practice, pages 295–304. Springer, 2006.

T. Kiss and J. Strunk. Unsupervised multilingual sentence boundary detection.

Computational Linguistics, 32(4):485–525, 2006.

G. Kondrak. N-gram similarity and distance. In International Symposium on

String Processing and Information Retrieval, pages 115–126. Springer, 2005.

L. Kornelsen, U. Lucke, D. Tavangarian, M. Waldhauer, and N. Ossipova.

Strategien und werkzeuge zur erstellung multimedialer lehr-und lernmaterialien

auf basis von xml. In DeLFI, pages 31–42, 2004.

M. Krug, F. Puppe, F. Jannidis, L. Macharowsky, I. Reger, and L. Weimer.

Rule-based coreference resolution in german historic novels. on Computational

Linguistics for Literature, page 98, 2015.

G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer. Neural

architectures for named entity recognition. Proceedings of NAACL-2016, San

Diego, June 2016.

T. Lavergne, O. Cappé, and F. Yvon. Practical very large scale CRFs. In

Proceedings the 48th Annual Meeting of the Association for Computational

Linguistics (ACL), pages 504–513. Association for Computational Linguistics,

July 2010. URL http://www.aclweb.org/anthology/P10-1052.

J. L. Leidner, G. Sinclair, and B. Webber. Grounding spatial named entities for

information extraction and question answering. In Proceedings of the

HLT-NAACL 2003 workshop on Analysis of geographic references, volume 1,

pages 31–38. Association for Computational Linguistics, 2003.

77

http://www.aclweb.org/anthology/P10-1052

Chapter 6. Conclusion

D. Lin and X. Wu. Phrase clustering for discriminative learning. In Proceedings of

the Joint Conference of the 47th Annual Meeting of the ACL and the 4th

International Joint Conference on Natural Language Processing of the AFNLP,

volume 2, pages 1030–1038. Association for Computational Linguistics, 2009.

S. Linde and R. Mitmann. New Methods in Historical Corpora, volume 3, chapter

16: Old German reference corpus: digitizing the knowledge of the 19th century.

Automated pre-annotation using digitized historical glossaries, pages 235–246.

Narr, Tübingen, 2013.

C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and

D. McClosky. The stanford corennlp natural language processing toolkit. In

ACL (System Demonstrations), pages 55–60, 2014.

C. Meyer and G. Wilde. Nicht wörtlich genommen–schreibweisentolerante

suchroutinen in dbase implementiert. c’t Magazin für Computer und Technik,

10:126–131, 1988.

C. Neudecker. An open corpus for named entity recognition in historic newspapers.

In N. Calzolari, editor, Proceedings of the Tenth International Conference on

Language Resources and Evaluation (LREC 2016), Paris, France, May 2016.

European Language Resources Association (ELRA). ISBN 978-2-9517408-9-1.

J. Nothman, J. R. Curran, and T. Murphy. Transforming wikipedia into named

entity training data. In Proceedings of the Australian Language Technology

Workshop, pages 124–132, 2008.

J. Nothman, N. Ringland, W. Radford, T. Murphy, and J. R. Curran. Learning

multilingual named entity recognition from wikipedia. Artificial Intelligence,

194:151–175, 2013.

R. Perkuhn, H. Keibel, and M. Kupietz. Korpuslinguistik. LIBAC/UTB. Fink,

Paderborn., 2012.

T. Pilz, A. Ernst-Gerlach, S. Kempken, P. Rayson, and D. Archer. The

identification of spelling variants in english and german historical texts: manual

or automatic? Literary and Linguistic Computing, 23(1):65–72, 2008.

M. Piotrowski. Document conversion for cultural heritage texts: Framemaker to

html revisited. In Proceedings of the 10th ACM symposium on Document

engineering, pages 223–226. ACM, 2010.

M. Piotrowski. Natural language processing for historical texts. Synthesis Lectures

on Human Language Technologies, 5(2):1–157, 2012.

78

Chapter 6. Conclusion

M. Piotrowski and C. Senn. Harvesting indices to grow a controlled vocabulary:

towards improved access to historical legal texts. In Proceedings of the 6th

Workshop on Language Technology for Cultural Heritage, Social Sciences, and

Humanities, pages 24–29. Association for Computational Linguistics, 2012.

L. Ratinov and D. Roth. Design challenges and misconceptions in named entity

recognition. In Proceedings of the Thirteenth Conference on Computational

Natural Language Learning, pages 147–155. Association for Computational

Linguistics, June 2009. URL

http://cogcomp.cs.illinois.edu/papers/RatinovRo09.pdf.

D. Rechtsquellenstiftung des Schweizerischen Juristenverbandes, editor. Die

Rechtsquellen der Stadt Burgdorf und ihrer Herrschaften und des

Schultheißenamts Burgdorf, volume SSRQ BE II/9 of Sammlung Schweizerischer

Rechtsquellen. Verlag Sauerländer Aarau, Switzerland, 1995. Prepared by

Anne-Marie Dubler.

D. Rechtsquellenstiftung des Schweizerischen Juristenverbandes, editor. Stadt und

Territorialstaat Luzern: Satzungen und andere normative Quellen (1426–1460),

volume SSRQ LU I/2 of Sammlung Schweizerischer Rechtsquellen. Schwabe

Verlag Basel, Switzerland, 2004. Prepared by Konrad Wanner.

D. Rechtsquellenstiftung des Schweizerischen Juristenverbandes, editor. Die Freien

Ämter III: Die Ämter Meienberg und Merenschwand, volume SSRQ AG II/10 of

Sammlung Schweizerischer Rechtsquellen. Schwabe Verlag Basel, Switzerland,

2009. Prepared by Anne-Marie Dubler and Jean Jacques Siegrist.

C. N. d. Santos and V. Guimarães. Boosting named entity recognition with neural

character embeddings. In Proceedings of The Fifth Named Entities Workshop

(NEWS), 2015. URL https://arxiv.org/pdf/1505.05008.pdf.

O. Scrivner and S. Kübler. Tools for digital humanities: Enabling access to the old

occitan romance of flamenca. In Proceedings of the Fourth Workshop on

Computational Linguistics for Literature, pages 1–11, 2015.

S. Sekine, K. Sudo, and C. Nobata. Extended named entity hierarchy. In LREC,

2002.

R. Smith, D. Antonova, and D.-S. Lee. Adapting the tesseract open source ocr

engine for multilingual ocr. In Proceedings of the International Workshop on

Multilingual OCR, page 1. ACM, 2009.

79

http://cogcomp.cs.illinois.edu/papers/RatinovRo09.pdf
https://arxiv.org/pdf/1505.05008.pdf

Chapter 6. Conclusion

R. W. Smith. History of the tesseract ocr engine: what worked and what didn’t.

In DRR, 2013.

E. F. Tjong Kim Sang and F. De Meulder. Introduction to the conll-2003 shared

task: Language-independent named entity recognition. In Proceedings of the

seventh conference on Natural language learning at HLT-NAACL 2003,

volume 4, pages 142–147. Association for Computational Linguistics, 2003.

N. Ueffing and H. Ney. Bayes Decision Rules and Confidence Measures for

Statistical Machine Translation, chapter 7, pages 70–81. Springer, Berlin,

Heidelberg, 2004.

M. Volk and S. Clematide. Learn-filter-apply-forget. mixed approaches to named

entity recognition. In 6th International Workshop on Applications of Natural

Language for Informations Systems, volume 1, pages 153–163, Madrid, Spain,

2001.

M. Volk, N. Bubenhofer, A. Althaus, and M. Bangerter. Classifying named entities

in an alpine heritage corpus. KI, 23(4):40–43, 2009.

M. Volk, N. Bubenhofer, A. Althaus, M. Bangerter, L. Furrer, and B. Ruef.

Challenges in building a multilingual alpine heritage corpus. In LREC, 2010.

80

Curriculum Vitae

Personal Details

Yvonne Gwerder

Rösslimatt 10

6423 Seewen SZ

yvonne.gwerder@uzh.ch

Education

2010–2014 B.A. studies in English Literature and Linguistics and

Computational Linguistics at the University of Zurich

2014–2015 Translational studies at the SAL School of Applied Linguistics, Zurich

since 2014 M.A. studies in Multilingual Text Analysis at the University of Zurich

Work experience

2012 Research assistant in the bilingual corpus project Bilingwis,

Institute of Computational Linguistics, University of Zurich

2014 Research assistant for Sentiment Analysis,

Institute of Computational Linguistics, University of Zurich

2015 Research assistant for the normalization and annotation of historical texts,

Institute of Computational Linguistics, University of Zurich

2015 Terminology internship at Roche Diagnostics International, Rotkreuz

2016 Student assistant for database pre-processing and deduplication,

Swiss Economic Institute (KOF), ETH Zurich

81

A Python Scripts

[A1] corpus preproc **.py

Corpus pre-processing for the single volumes, as outlined in chapter 3. There

is a separate script for each volume (** being a placeholder for the volume

codes ag, be, lu, fr, vd, and vd2).

[A2] clean register.py

Removal of duplicate IDs in the indices, as outlined in section 4.1.1.

[A3] extract variants de.py

Script for extracting and generating name variants in the German indices.

[A4] extract variants fr.py

Script for extracting and generating name variants in the French indices.

[A5] lookup de.py

Script for NER in German volumes; creates stand-off annotation and IO-

tagged corpus.

[A6] lookup fr.py

Script for NER in French volumes; creates stand-off annotation and IO-tagged

corpus.

[A7] cat files.py

Concatenation of OCR-processed pages in order to evaluate them with ocreval-

UAtion. It is called with the additional command line argument ’de’ or ’fr’.

[A8] ocr de.py

OCR-processing of all PNG files for volume LU I/2.

[A9] ocr fr.py

OCR-processing of all PNG files for volume VD C/2.

82

APPENDIX A. PYTHON SCRIPTS

[A10] splitstanford.py

Script for creating a tab- and newline separated text file from the slashTag-

formatted output produced by Stanford NER. It is called with the additional

command line argument ’de’ or ’fr’.

[A11] combine.py

Script for combining the rule-based and Stanford NER tags to a 4-column file.

It is called with the additional command line argument ’de’ or ’fr’.

[A12] splitfiles wapiti.py

Splitting the output of [A11] into a training, development and test set ready

for use with Wapiti. It is called with the additional command line argument

’de’ or ’fr’. The default values for splitting are 80 % for the training set, and

10 % each for development and test set.

83

B Wapiti Feature Templates

B.1 Template 1

current token (case-sensitive)

U:word=%x[0,0]

token features (context window +/-2)

U:word X=%x[0,0]

U:word L=%x[-1,0]

U:word LL=%x[-2,0]

U:word R=%x[1,0]

U:word RR=%x[2,0]

upper case of token (binary)

*:starts-upper X=%t[0,0,"^\u"]

lower case of token (binary)

*:starts-lower X=%t[0,0,"^\l"]

suffix of 3 characters in token

U:suf-3 X=%m[0,0,"...$"]

prefix of 3 characters in token

U:pre-3 X=%m[0,0,"^..."]

B.2 Template 2

current word (case-sensitive)

U:word=%x[0,0]

token features (context window +/-2)

U:word X=%x[0,0]

84

APPENDIX B. WAPITI FEATURE TEMPLATES

U:word L=%x[-1,0]

U:word LL=%x[-2,0]

U:word R=%x[1,0]

U:word RR=%x[2,0]

suffix of 3 characters in token

U:suf-3 X=%m[0,0,"...$"]

prefix of 3 characters in token

U:pre-3 X=%m[0,0,"^..."]

upper case of token (binary)

*:starts-upper X=%t[0,0,"^\u"]

lower case of token (binary)

*:starts-lower X=%t[0,0,"^\l"]

Unigram-Feature: first character of current token

U:Pre-1 X=%m[0,0,"^.?"]

first two characters of current token

U:Pre-2 X=%m[0,0,"^.?.?"]

last two characters of current token

U:Suf-2 X=%m[0,0,".?.?$"]

last four characters pf current token

U:Suf-4 X=%m[0,0,".?.?.?.?$"]

Unigram-Feature: True if previous token is upper-cased.

U:Caps? L=%t[-1,0,"\u"]

True if current token is upper-cased.

U:Caps? X=%t[0,0,"\u"]

True if current token starts with upper-case letter.

U:BegC? X=%t[0,0,"^\u"]

True if previous token is punctuation mark.

U:Punc? L=%t[-1,0,"\p"]

True if current token is punctuation mark.

U:Punc? X=%t[0,0,"\p"]

True if following token is punctuation mark.

U:Punc? R=%t[1,0,"\p"]

True if current token contains a punctuation mark.

U:InsP? X=%t[0,0,".\p."]

85

APPENDIX B. WAPITI FEATURE TEMPLATES

B.3 Template 3

current token (case-sensitive)

U:word=%x[0,0]

token features (context window +/-2)

U:word X=%x[0,0]

U:word L=%x[-1,0]

U:word LL=%x[-2,0]

U:word R=%x[1,0]

U:word RR=%x[2,0]

suffix of 3 characters in token

U:suf-3 X=%m[0,0,"...$"]

prefix of 3 characters in token

U:pre-3 X=%m[0,0,"^..."]

upper case of token (binary)

*:starts-upper X=%t[0,0,"^\u"]

lower case of token (binary)

*:starts-lower X=%t[0,0,"^\l"]

rule-based features (context window +/-2)

U:tag X=%X[0,1]

U:tag L=%X[-1,1]

U:tag LL=%X[-2,1]

U:tag R=%X[1,1]

U:tag RR=%X[2,1]

stanfordNER features (context window +/-2)

U:tag X=%X[0,2]

U:tag L=%X[-1,2]

U:tag LL=%X[-2,2]

U:tag R=%X[1,2]

U:tag RR=%X[2,2]

U:tag L/0=%X[-1,2]/%X[0,2]

86

C Modules and Tools

This list contains Python modules (which are not part of the standard library), as

well as other tools that were used for the work described in this thesis.

• Python modules:

– nltk (https://www.nltk.org/)

– editdistance (https://pypi.python.org/pypi/editdistance)

– jellyfish (https://pypi.python.org/pypi/jellyfish)

– pyocr (https://pypi.python.org/pypi/pyocr)

– PIL (https://pypi.python.org/pypi/Pillow)

– natsort (https://pypi.python.org/pypi/natsort)

• Tools:

– PDF Shaper (https://www.pdfshaper.com/)

– ocrevalUAtion (https://github.com/impactcentre/ocrevalUAtion)

– Stanford NER (https://nlp.stanford.edu/ner/)

∗ German model: ’dewac 175m 600.ser.gz’

(https://www.nlpado.de/~sebastian/software/ner_german.shtml)

∗ French model: ’french.4class.wp2.ser.gz’

(available on the UZH r2d2 server)

– Wapiti (https://wapiti.limsi.fr/)

87

https://www.nltk.org/
https://pypi.python.org/pypi/editdistance
https://pypi.python.org/pypi/jellyfish
https://pypi.python.org/pypi/pyocr
https://pypi.python.org/pypi/Pillow
https://pypi.python.org/pypi/natsort
https://www.pdfshaper.com/
https://github.com/impactcentre/ocrevalUAtion
https://nlp.stanford.edu/ner/
https://www.nlpado.de/~sebastian/software/ner_german.shtml
https://wapiti.limsi.fr/

Philosophische Fakultät

Studiendekanat

Universität Zürich

Philosophische Fakultät

Studiendekanat

Rämistrasse 69

CH-8001 Zürich

www.phil.uzh.ch

Selbstständigkeitserklärung

Hiermit erkläre ich, dass die Masterarbeit von mir selbst ohne unerlaubte Beihilfe verfasst worden ist

und ich die Grundsätze wissenschaftlicher Redlichkeit einhalte (vgl. dazu:

http://www.uzh.ch/de/studies/teaching/plagiate.html).

Schwyz, 28. Juni 2017

 ..

Ort und Datum Unterschrift

	Abstract
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Research Questions
	Thesis Structure

	Theoretical Background
	NLP for historical texts
	General challenges
	Dealing with spelling variation
	Normalization
	String similarity measures

	Named Entity Recognition
	NER in historical texts
	Rule-based approaches
	Data-driven approaches

	Text Pre-processing and Corpus Creation
	Data
	The Collection of Swiss Law Sources
	The SSRQ digitization project
	Selection of volumes

	Pre-processing
	XHTML parsing
	Restoring pagination
	Problem
	OCR approach
	Evaluation

	Cleanup
	Sentence boundary detection
	Tokenization
	Remaining issues

	Name Extraction and Recognition
	Indices of place and person names
	Pre-processing

	NE database compilation
	Extracting and generating name variants
	Extraction of other information
	Post-processing and output
	Remaining issues

	Recognition and annotation of entities
	Procedure
	Direct and approximate search
	Stand-off annotation
	Evaluation
	Precision
	Recall

	Machine Learning Approach
	Applying modern language NER systems
	Stanford NER
	Classifiers
	Building an IO-tagged corpus
	Comparison and evaluation

	CRF classifier training with Wapiti
	Data and features
	Evaluation
	Silver-standard comparison
	Gold-standard comparison

	Conclusion
	Summary
	Outlook

	References
	Curriculum Vitae
	Python Scripts
	Wapiti Feature Templates
	Template 1
	Template 2
	Template 3

	Modules and Tools

