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Abstract

Designing effective reading comprehension tests is a labor-intensive process involving
experts manually writing and reviewing test items, as well as running trials with large
numbers of test-takers to ensure their quality. This thesis investigates how large lan-
guagemodels (LLMs) can be used to automatically generate and evaluatemultiple-choice
reading comprehension items. I presentDWLG, a German dataset consisting of 454 sim-
plified news articles and 1361 human-written reading comprehension items. I also intro-
duce a new evaluation metric called text informativity, which measures how answerable
and how guessable reading comprehension items are based on a small number of item
responses. I used this metric in a human evaluation study to compare the quality of items
generated by Llama 2 (70B) and GPT-4. Results showed that GPT-4 clearly outperforms
Llama 2 in zero-shot item generation, but does not reach human-level text informativity.
I then demonstrate that this metric can also be used for automatic evaluation by substi-
tuting human responses with responses from LLMs. Both GPT-4 and Llama 2 showed
showed good agreementwith human responses. Finally, I experimentedwith fine-tuning
Llama 2 to improve its item generation capabilities. Although item quality did not im-
prove, the results shed a light on the challenges associated with adapting LLMs to the
requirements of test items. Overall, although modern LLMs are able to generate usable
reading comprehension items, there is still room for improvement, and data scarcity for
German remains a problem.



Zusammenfassung

Die Entwicklung effektiver Leseverständnistests ist ein arbeitsintensiver Prozess, der
das manuelle Schreiben und Überprüfen von Test-Items durch Expert:innen sowie die
Durchführung von Testläufen mit einer grossen Anzahl von Teilnehmenden erfordert,
um dieQualität der Aufgaben sicherzustellen. DieseArbeit untersucht, wie grosse Sprach-
modelle (large language models, LLMs) zur automatischen Generierung und Evaluation
von Multiple-Choice-Leseverständnis-Items eingesetzt werden können. Ich präsentie-
re DWLG, einen deutschen Datensatz aus 454 vereinfachten Nachrichtenartikeln und
1361 von Menschen geschriebenen Leseverständnis-Items. Ausserdem stelle ich Textin-
formativität als neue Evaluationsmetrik vor, die basierend auf einer geringen Anzahl von
Antworten misst, wie beantwortbar und wie erratbar Leseverständnis-Items sind. Diese
Metrik habe ich in einer Humanevaluationsstudie verwendet, um die von Llama 2 (70B)
und GPT-4 generierten Items in Bezug auf ihre Qualität zu vergleichen. Die Ergebnis-
se zeigen, dass GPT-4 bei der Zero-Shot-Item-Generierung Llama 2 deutlich übertrifft,
aber das menschliche Niveau für Textinformativität nicht erreicht. Dann demonstriere
ich, dass diese Metrik auch für die automatische Evaluation verwendet werden kann, in-
demmenschliche Antworten durch Antworten von LLMs ersetzt werden. Sowohl GPT-4
als auch Llama 2 zeigten eine gute Übereinstimmung mit den menschlichen Antwor-
ten. Schliesslich habe Fine-Tuning-Experimente mit Llama 2 durchgeführt, um dessen
Item-Generierung zu verbessern. Obwohl sich die Qualität der generierten Items nicht
verbessert hat, werfen die Ergebnisse ein Licht auf die Herausforderungen, die mit der
Anpassung von LLMs an die Anforderungen von Test-Items verbunden sind. Insgesamt
sind moderne LLMs zwar in der Lage, brauchbare Leseverständnis-Items zu generie-
ren, aber es gibt noch Verbesserungspotential, und die Datenknappheit für die deutsche
Sprache bleibt ein Problem.
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1 Introduction

Many important decisions in society are made based on tests. From receiving the right
to drive a car to admission to a university or obtaining citizenship – tests have a tremen-
dous impact on an individual’s life and opportunities. As a result, test developers have
a great responsibility to ensure that the tests they create are valid and actually measure
the intended traits and skills. This responsibility is also reflected in the cost of test de-
velopment: Writing, reviewing, and piloting a high-stakes test can cost up to several
thousand dollars per item, and developing an item bank for large-scale assessment costs
millions (Gierl and Haladyna, 2013). In an effort to speed up development and reduce
costs, researchers have been looking for ways to automatically generate test items since
the 1970s (Haladyna, 2013). Recently, the advent of generative large language models
(LLMs) has presented new opportunities and challenges for automatic item generation
(AIG) (Circi et al., 2023). The present thesis is an attempt to tap into this newly gained
potential and develop methods to support the test development process. Specifically, I
will investigate how LLMs can be effectively used to automatically generate and evaluate
multiple-choice items for German reading comprehension tests.

1.1 Relevance of reading comprehension

Reading comprehension is one of the primary communicative language activities defined
by the Common European Framework of Reference for Languages (CEFR) (Council of
Europe, 2020) and an established part of standardized language testing. It is commonly
assessed by letting test-takers read a text and answer questions about its content (Jeon
and Yamashita, 2020). This type of test is a good candidate for AIG, because reading
comprehension items can be written only based on the text that is shown to the test-
taker, unlike tests assessing external factual knowledge (e.g., a history test). However,
writing such items is also a challenging task, because it requires in-depth semantic un-
derstanding, awareness of what is and what isn’t implied by the text, the ability to ask
relevant questions, and in the case of multiple-choice items the additional ability to find
distractors that are plausible but unambiguously false.

1



Chapter 1: Introduction

Beyond testing human language proficiency, there are also other applications for reading
comprehension items. For example, they can be used to benchmark the natural language
understanding capabilities of language models (Bandarkar et al., 2023), to evaluate fac-
tual consistency in summarized texts (Manakul et al., 2023), or to assess the comprehen-
sibility of texts in simplified language (Säuberli et al., 2023). In all of these applications,
the goal is to measure howwell information can be extracted and inferred from a written
text, but the specific requirements for the test items may differ substantially depending
on the use case (Dunietz et al., 2020). In the present thesis, I will focus on the classi-
cal language assessment scenario, where the goal is to determine the level of reading
comprehension skills of human test-takers.

1.2 Anatomy of a multiple-choice item

Multiple-choice tests have been the most common choice of format in standardized read-
ing assessments (Jeon and Yamashita, 2020). The main advantage of multiple-choice
items is that they are exceptionally simple to administer and mark compared to, for
example, open-ended questions, making them an ideal format for fully computerized
testing (Jones, 2020).

After its adoption by Congress on July 4, a handwrit-
ten draft signed by the President of Congress John Han-
cock and the Secretary Charles Thomson was then sent
a few blocks away to the printing shop of John Dun-
lap. Through the night between 150 and 200 copies were
made, now known as “Dunlap broadsides”. [...]

Whose signature appeared on the handwritten draft?

(A) John Dunlap
(B) George Washington
(C) John Nixon
(D) Charles Thomson

Text

Stem

Answer options Distractors

Key

Item

Figure 1.1: Example of a multiple-choice reading comprehension (MCRC) item from the
Belebele dataset (Bandarkar et al., 2023).

A multiple-choice item consists of a stem (usually a question) and a list of answer
options from which the correct one is to be selected (see Figure 1.1 for an example).
In the conventional case, exactly one of the answer options is correct (the key) and the
others are incorrect (the distractors). However, variants with multiple correct answer
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options also exist. Three has been suggested as the ideal number of answer options
(Jones, 2020), but four is another common choice. While a higher number of answer
options reduces the probability of randomly guessing the correct answer, it also makes
it more difficult to find plausible distractors. The plausibility of distractors (meaning that
the distractors should not be identifiable as such without having read the text) is one of
the major factors in the quality of a test item, and measuring plausibility will be a key
aspect in the evaluation of generated items in this thesis.

1.3 Challenges in test development

Developing high-quality items is challenging for many reasons. I will name just three
challenges I have faced while writing and reviewing test items in the context of language
education and research. First, a number of factors have to be balanced, such as difficulty,
clarity, or the time and cognitive effort required to respond. These factors are often in
conflict with each other, and test developers have to decide how to prioritize them. Sec-
ond, it is difficult to predict how actual test-takers will behave when they respond to an
item. Especially for multiple-choice items, which heavily rely on natural language, am-
biguity or vagueness can cause differences between test-takers’ interpretations. Third,
tests are usually designed to measure a single and rather specific trait, but in reality, it is
rarely possible to isolate the effect of this trait in the response to a test item. For example,
developers of reading comprehension tests have to make sure that a test-taker’s result
is only affected by their ability to read and understand texts, and not by confounding
factors like the amount of world knowledge they have.

In the development of high-stakes tests, these challenges are tackled through extensive
quality control, including expert reviews and pilot studies with large numbers of test-
takers, in order to make sure that the test is valid and reliable (Green, 2020). For example,
the TOEFL Essentials test (an English language test required bymany universities) under-
went three stages of trials: first with 570, then with 700, and finally with 5000 test-takers
(Papageorgiou et al., 2021). At each stage, items that did not meet the necessary quality
criteria were dropped from the test. It goes without saying that running pilot studies at
this scale is extremely time-consuming and expensive.

I will investigate ways in which natural language processing (NLP) can potentially con-
tribute to improving and accelerating the test development from two perspectives: first,
by supporting the item writing process with AIG, and second, by developing a method
for automatically evaluating item quality.

3
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1.4 Research gaps in automatic item generation

Even though AIG is by no means a new idea, NLP research so far has mostly been unsuc-
cessful in developing appropriate solutions that could actually be applied in large-scale
assessment (Gierl et al., 2021; Circi et al., 2023). I argue that this is due to three major
issues that have received too little attention in the NLP community:

1. Lack of non-English data: There are almost no datasets of reading comprehen-
sion items available in languages other than English. For training and evaluating
AIG systems for languages like German, high-quality datasets are indispensable.

2. Lack of valid automatic evaluation metrics: The development and improve-
ment of NLP systems relies on automatic evaluation metrics. For AIG, NLP re-
search has mainly resorted to similarity-basedmetrics designed for machine trans-
lation or text summarization, which is far from the objective of generating test
items. Meanwhile, running human evaluations at the scale that is common in
language assessment is not viable. As long as there are no empirically validated
methods for automatic evaluation that actually reflect item quality, the field is un-
likely to make significant progress.

3. Lack of interdisciplinarity: It appears that the communities of NLP and lan-
guage testing researchers are to a large degree mutually exclusive and unaware of
the state of research in each other’s fields. Although some more interdisciplinary
work has been done in recent years (e.g. Attali et al., 2022), most of the work in
NLP is done without referencing the large body of literature about AIG and the
methodologies developed in other fields. In order to make measurable progress
in this challenging task, a better exchange of requirements, knowledge, methods,
and data between the involved disciplines is vital.

The present thesis contributes towards addressing these issues by (1) compiling and
analyzing a new dataset of German multiple-choice reading comprehension (MCRC)
items, (2) developing a protocol for automatic item evaluation, and (3) bridging the gap
between test theory and NLP by applying the former to AIG evaluation.

1.5 Structure of this thesis

This main part of this thesis is thematically divided into five chapters:

• Chapter 2 introduces some relevant theoretical background on test theory, in-
cluding a primer on item response theory (IRT). It also presents a new metric for
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item quality called text informativity, which will then be applied in the experimen-
tal chapters.

• Chapter 3 provides an overview of existing datasets of reading comprehension
items, highlighting their differences. Moreover, it introduces DWLG, a new Ger-
man dataset of news articles and MCRC items authored by the German broad-
casting company Deutsche Welle (DW). The experiments in Chapters 4 to 6 are
centered around this dataset.

• Chapter 4 presents an experiment evaluating zero-shot generation ofMCRC items
with two LLMs, Llama 2 and GPT-4.

• Chapter 5 introduces and empirically validates a protocol for automatically eval-
uating the quality of MCRC items.

• Chapter 6 attempts to improve on the AIG results from Chapter 4 by experiment-
ing with LLM fine-tuning.

The thesis will close with an overall conclusion in Chapter 7, summarizing and synthe-
sizing the insights from the experiments.
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2 Background: theory of testing

There are two statistical frameworks that are commonly applied in test development
and assessment: classical test theory (CTT) and item response theory (IRT). In test de-
velopment, these frameworks can be used to evaluate different properties of test items
such as difficulty or reliability. When applying the test items in assessments, they can be
used to estimate traits of test-takers, for example, language proficiency. In many ways,
IRT extends CTT and is the more powerful and versatile of the two theories. Therefore
this chapter will focus on IRT and only draw comparisons to CTT to highlight some
important differences.

IRT is very well established with a large body of literature in the field of psychomet-
rics, where it has also been used to evaluate automatically generated items (Sinharay
and Johnson, 2013). However, the method has barely received any attention in natu-
ral language processing (NLP). More interdisciplinarity in this area could contribute to
much-needed advancements in human and automatic evaluation methodology in NLP.

This chapter will present central concepts of IRT, in an attempt to bridge the gap between
established theories in language assessment and the challenge of evaluating the quality
of items generated by NLPmodels. These concepts will be useful in discussing the design
and results of the evaluations in Chapters 4 to 6.

2.1 Measuring test-taker proficiency

The ultimate purpose of language testing is to measure a person’s language proficiency.
However, proficiency is not a trait that is directly observable. In a test, the only obser-
vations we can make is how the person responds to items in that test. Thus, in IRT,
proficiency is modeled as a latent trait that is inferred from item responses.

In order to do this, the items need to be able to distinguish test-takers with a higher profi-
ciency from thosewith a lower proficiency. In other words, the responses to an item need
to be sensitive to the respondent’s proficiency. For example, in a reading comprehen-
sion test, a specific item should elicit correct responses from test-takers above a certain
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proficiency threshold, and incorrect responses from test-takers below that threshold. If
we want to measure a person’s proficiency as precisely as possible, we (as test design-
ers) need to make sure that there are enough items with a threshold around that person’s
proficiency, and that these items are sufficiently good at discriminating between persons
above and below that threshold.

Importantly, we do not judge the person’s proficiency merely based on the number of
correct responses, but we take into account each item’s inherent characteristics such as
difficulty and discrimination to estimate it. The scale on which we measure proficiency
is not fixed or predefined, but determined by how the items behave in relation to the test-
takers. Therefore, the question remaining is how to measure these item characteristics.

2.2 Measuring item characteristics

While the test-takers are only characterized in a single dimension (i.e., proficiency), the
test items can potentially differ from each other in many ways. This section will list the
ones which are most commonly considered when evaluating items using IRT, focusing
on intuitive explanations. More formal definitions will be given in Section 2.3.

2.2.1 Difficulty

One the most basic properties of a test item is its difficulty. We can think of this as the
threshold that separates test takers who are proficient enough to respond correctly to
this item from test-takers who are not (see Section 2.1). Essentially, when item difficulty
is high, a higher proficiency is required to respond correctly, and vice-versa. In CTT,
an item’s facility (the opposite of difficulty) is defined as the percentage of test-takers
who responded correctly to that item. This is simple to calculate, but it requires that
every test-taker responds to every item, and it does not consider that the proficiencies of
the test-takers may not be evenly distributed and therefore not every correct response
should contribute equally to the item’s facility. IRT takes this into account by jointly
modeling proficiency and item difficulty.

2.2.2 Discrimination

Discrimination is a measure of how effective an item is at distinguishing betweenmore
and less proficient test-takers. Every item separates the test-takers into two disjoint sets:
the ones who responded correctly to that item and the ones who did not. If the discrimi-
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nating power of the item is maximal, this means that the proficiencies in the first set are
all higher than the proficiencies in the second set. In other words, the item is perfectly
capable of telling whether some test-taker is above or below a certain threshold. The
lower the discrimination, the blurrier the boundaries of the two sets become, and the
less reliably the item can tell apart highly proficient from lowly proficient test-takers.
If the discrimination is minimal, the item is completely insensitive to proficiency, ren-
dering it useless. In CTT, discrimination is calculated as the correlation between the
test-takers’ scores in the item and the test-takers’ total scores across all items.

2.2.3 Guessability

Although a person with a low proficiency is not likely to respond correctly to a diffi-
cult item, they may still do so by chance. For example, in multiple-choice tests, even the
worst performing test-takers will get some items correctly, either just by randomly pick-
ing answer options or by excluding obviously implausible distractors without actually
knowing the correct answer. Thus, guessability can be considered an item characteris-
tic, and it is obvious that an item of high quality should have a low guessability.

In practice, it is very difficult to empirically quantify how guessable an item is, because
we cannot easily determine whether a test-taker responded correctly because they knew
the answer or because they were simply guessing. There is also no equivalent measure
in CTT. However, IRT still allows us to infer an item’s guessability through statistical
modeling.

2.2.4 Answerability

By analogywith guessability, it is also possible that highly proficient test-takers get some
very easy items wrong. This phenomenon can also be modeled as an item characteristic
in IRT, and is sometimes referred to as carelessness (Barton and Lord, 1981). However,
I argue that carelessness would be a property of the person and not the item, since it is
plausible that certain test-takers tend to respondmore carelessly than others but implau-
sible that some items evoke more carelessness than others across all test-takers. Instead,
I suggest to label this phenomenon as answerability: some items mislead test-takers
into giving an incorrect response, even if they know the correct answer, and this affects
all test-takers equally. In multiple-choice tests, a reason for this might be that the item is
written in a confusing way, such that it is unclear what the correct answer option really
is. From this perspective, it is of course desirable to maximize item answerability.
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2.3 Common IRT models

To summarize Sections 2.1 to 2.2, IRT lets us infer each test-taker’s proficiency and
each item’s characteristics by looking at the test-takers’ item responses. Specifically,
IRT models the test-taker’s probability of responding correctly to an item based on the
test-taker’s proficiency and the item characteristics.1 This section describes the most
commonly used IRT models, which differ only in what item characteristics they include
or exclude.

This simplest model is the one-parameter logistic model (1PLM), which only uses a single
parameter to characterize items, namely difficulty. It is commonly called the Raschmodel
(Rasch, 1960). Formally, it is equivalent to logistic regression:

𝑃(correct response to item 𝑖 by person 𝑗) = logit
−1
(𝜃𝑗 − 𝑏𝑖),

where 𝜃𝑗 ∈ ℕ is a person parameter representing the proficiency level of person 𝑗 , 𝑏𝑖 ∈ ℕ

is an item parameter representing the difficulty of item 𝑖. Note that 𝑏𝑖 is simply subtracted
from 𝜃𝑗 , which means that person proficiency and item difficulty use the same unit of
measurement (logits), and we can compare them on a common scale (Wright and Stone,
1979). On this scale, when some person parameter is equal to so some item’s difficulty,
that person has a predicted probability of 50% of responding correctly to the item. If
the person parameter is higher than the item difficulty, the person is expected to have a
higher probability of responding correctly.

The probabilities can be visualized as a function of the person parameter 𝜃. The resulting
sigmoid curve is called an item response curve (IRC). As shown in the top left panel of
Figure 2.1, a higher difficulty parameter causes the IRC to shift to the right.

The two-parameter logistic model (2PLM) adds a second item parameter 𝑎𝑖 representing
discriminating power, which is fixed to 1.0 in the 1PLM:

𝑃(correct response to item 𝑖 by person 𝑗) = logit
−1
( 𝑎𝑖 (𝜃𝑗 − 𝑏𝑖))

Items with a higher discrimination parameter have a higher slope in the logistic sigmoid
curve (see Figure 2.1, top right panel). In other words, the item is better at distinguishing
test-takers with small differences in proficiency, as long as the proficiencies are close to
the difficulty of the item.

1For the sake of simplicity, I only consider dichotomous IRT models here, which are applicable for pre-
dicting binary outcomes (e.g., correct/incorrect response). There are also polytomous models, which
can predict the probabilities for responses on an ordinal scales.
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Figure 2.1: IRCs comparing the effects of changing the difficulty, discrimination, guess-
ability, and anwerability parameters. The dashed gray IRC always corre-
sponds to an item with 𝑏 = 0.0, 𝑎 = 1.0, 𝑐 = 0.0, and 𝑑 = 1.0, from which each
solid blue IRC differs in a single parameter.

In the three-parameter logistic model (3PLM), another item parameter 𝑐𝑖 is introduced,
which changes the lower asymptote of the sigmoid curve (Lord, 1980, p. 12–14):

𝑃(correct response to item 𝑖 by person 𝑗) = 𝑐𝑖 + (1 − 𝑐𝑖) logit
−1
(𝑎𝑖(𝜃𝑗 − 𝑏𝑖))

As a result, the probability of correct response to this item can never be lower than 𝑐𝑖.
Similarly, the four-parameter logistic model (4PLM) introduces 𝑑𝑖 as the upper asymptote
(Barton and Lord, 1981):

𝑃(correct response to item 𝑖 by person 𝑗) = 𝑐𝑖 + ( 𝑑𝑖 − 𝑐𝑖) logit
−1
(𝑎𝑖(𝜃𝑗 − 𝑏𝑖))

These modifications are visualized in the bottom panels of Figure 2.1. According to the
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Model 𝜃 𝑏 𝑎 𝑐 𝑑

1PLM Est. Est. 1 0 1
2PLM Est. Est. Est. 0 1
3PLM Est. Est. Est. Est. 1
4PLM Est. Est. Est. Est. Est.

Table 2.1: Summary of the parameters in IRT models up to 4PLM. Est. indicates that this
parameter is estimated based on observed data. Note that the conventional
variable names for item parameters are not alphabetically ordered.

intuition described in Sections 2.2.3 and 2.2.4 the lower and upper asymptote can be
interpreted as the item’s guessability and answerability.

Table 2.1 summarizes the four models and all of the parameters involved. The 4PLM
with the upper asymptote parameter is only rarely applied in practice. However, we
will see that it is particularly useful for conceptualizing the evaluation of automatically
generated questions, where poor answerability and guessability are a common issue.

2.4 Information functions

The ultimate goal of a test is to measure proficiency as accurately and precisely as pos-
sible. As discussed in Section 2.2, the items in a test can differ from each other in several
ways, and as a result, each item’s contribution to the precision of measurement is also
different. Some items may be good at measuring test-takers at a specific proficiency,
and some may be more reliable than others. An item’s contribution to measurement
precision is quantified by its item information function (IIF) (Lord, 1980, p. 72–73):

𝐼𝑖(𝜃) =
𝑃 ′
𝑖 (𝜃)

2

𝑃𝑖(𝜃)(1 − 𝑃𝑖(𝜃))
,

where 𝑃𝑖 is the IRC of item 𝑖, and 𝑃 ′
𝑖 is its derivative. A more intuitive description of the

IIF is that it tells us how sensitive the item is to small changes in proficiency. As can be
seen from Figure 2.2, different item characteristics have specific effects on the IIFs:
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Figure 2.2: IRCs and IIFs for three fictional items in a 4PL IRT model. Dashed curves are
IIFs. The solid gray curve is the test information function, which is the sum
of all IIFs.

12



Chapter 2: Background: theory of testing

• An item provides the largest amount of information when its difficulty is close to
the test-taker’s proficiency.

• An item provides more information when its discriminating power is high.

• An item provides more information when the difference between its lower and
upper asymptote is high.

The information function of the entire test is defined as the sum of all IIFs, visualized by
the solid gray curve in Figure 2.2 (Lord, 1980, p. 70–71):

𝐼test(𝜃) = ∑

𝑖

𝐼𝑖(𝜃)

The amount of information in a test is directly related to the standard error of estimation
in the latent trait. Specifically, the more information a test provides, the more precisely
we are able to estimate the proficiency level of a test-taker (Lord, 1980, p. 71). In this
sense, information functions are an appropriate way of evaluating the quality of single
items or an entire test.

2.5 Text informativity for reading comprehension

items

For reading comprehension items, I propose to use the difference between guessability
and answerability (𝑑𝑖 − 𝑐𝑖) as a metric for evaluating item quality. I call this metric text
informativity.

Intuitively, the guessability parameter for reading comprehension items tells us how
likely test-takers are at guessing the correct answer without looking at or understanding
the text, while answerability represents the probability for a correct response given that
the text was understood perfectly. Therefore, text informativity is a measure of how
strongly the evidence available in the text can inform the test-taker’s response accuracy.
In other words, it measures by how much at best a test-taker can improve their response
accuracy by reading the text. Since the aim of the item is to test reading comprehension,
it is obvious that maximizing text informativity is desirable.

Theoretically, the text informativity metric can be justified using the definition of the
IIF of the 4PLM. Magis (2013) derived the maximum information for a given 4PLM item
as a function of its item characteristics. Based on their formula, Figure 2.3 shows that
the maximum information increases monotonically and (at least for high answerability
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Figure 2.3: Relation between the text informativity metric and the maximum of the IIF
of an item 𝑖 for different answerability values (𝑑𝑖). Difficulty (𝑏𝑖) is set to 0 and
discrimination (𝑎𝑖) is set to 1 in all cases.

values) close to linearly with increasing text informativity and constant difficulty and
discrimination parameters.

2.6 Applications in NLP

As mentioned in the introduction to this chapter, IRT is well established in various fields
of research and widely used for estimating proficiency and evaluating test items. There
are also many potential use cases in NLP research, for instance, to analyze responses in
human evaluations, to evaluate the quality of automatically generated items, or to test
the performance of question answering models. Recently, some researchers have made
use of IRT in various NLP contexts (Lalor et al., 2019; Vania et al., 2021; Rodriguez et al.,
2021, 2022; Byrd and Srivastava, 2022; Uto et al., 2023), but these remain exceptions.

An important disadvantage of IRT is that especially the higher-parameter models (e.g.,
3PLM and 4PLM) require large sample sizes, both in terms of the number of test-takers
and the number of items, in order to get precise parameter estimations. According to rec-
ommendations in the literature, estimating item parameters in a 4PLM requires several
thousand test-takers (Cuhadar, 2022). This may contribute to the reluctance to adopt this
method in human evaluations in NLP, where it is common to use rather small sample
sizes.
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In addition, the assumption that the response data fit the logistic models defined by
IRT – although thoroughly tested for human responses – might not necessarily hold
for artificial intelligence applications (see Rodriguez et al., 2022). All the more, further
research is needed to tap the full potential of IRT and make effective use of it in NLP.

2.7 Summary

Classical test theory (CTT) and item response theory (IRT) are two statistical frameworks
for analyzing test items. IRT models the probability of a given test-taker responding cor-
rectly to a given item, based on the test-taker’s proficiency and the item’s characteristics,
which we can infer by fitting the model to item response data. Different IRT models in-
clude different types of item characteristics like difficulty, discrimination, guessability,
and answerability. The item information function (IIF) tells us how precisely an item is
able to measure a test-taker’s proficiency and essentially reflects the quality of that item.

I introduced the text informativity metric, which is defined as the difference between
guessability and answerability. For reading comprehension items, this metric measures
how much reading the text can inform a proficient test-takers’ response to that item.
We will use text informativity as an indicator of item quality in the experiments in the
following chapters.
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3 Datasets of reading comprehension
items

Most standardized language tests contain items for assessing reading comprehension.
Consequently, an abundance of item banks with high quality items in many languages
have been professionally developed. However, these item banks are usually confidential,
partly due to their commercial value, but also because the items lose their validity if
test-takers can access them beforehand. This makes them unsuitable for use in natural
language processing (NLP), where publicly available test sets are essential for developing
and evaluating models. Therefore, research into machine reading comprehension has
made use of datasets which were collected through various means and have never been
properly validated (with few exceptions, e.g., Xu et al., 2022).

The idea of testing a machine’s understanding of texts by letting it answer questions
is not recent. Initial experiments date back at least to the 1970s (Lehnert, 1977), and
some resources were developed by Hirschman et al. (1999). However, the field only
started picking up pace by the mid-2010s, and since then a large number of question
answering (QA) and machine reading comprehension (MRC) benchmark datasets have
been published (Zeng et al., 2020; Dzendzik et al., 2021). More recently, also multiple-
choice MRC has become a standard task in natural language understanding, in part due
to the wide-spread use of the RACE dataset (Lai et al., 2017) and the addition of MultiRC

(Khashabi et al., 2018) to the SuperGLUE benchmark (Wang et al., 2019).

This chapter will give an overview of the different types of currently available MRC
datasets (without a restriction on language or item types), followed by a more detailed
comparison of Germanmultiple-choice reading comprehension (MCRC) resources. Then,
I will present a new German MCRC dataset, which will serve as the main dataset for the
experiments in Chapters 4 to 6.
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Chapter 3: Datasets of reading comprehension items

3.1 A taxonomy of MRC datasets

In the following, I will describe several dimensions in which MRC datasets differ, give
examples, discuss advantages and disadvantages, with a particular focus on the suitabil-
ity of datasets for human and machine reading comprehension. The taxonomy is largely
based on the surveys by Zeng et al. (2020), Dzendzik et al. (2021), and Rogers et al. (2023).

3.1.1 Text properties

The texts which a system (or human) is required to understand in order to answer items
correctly are a central part of MRC. They are the main difference to QA, which may also
rely on other sources of evidence such as knowledge bases or images.1

3.1.1.1 Text length and linguistic unit

The text may be an entire document, a short passage from a document, a single para-
graph, or just a few sentences.

RACE and Natural Questions (Kwiatkowski et al., 2019) are examples of datasets on the
document level. Text lengths can vary widely for document-level datasets. On average,
texts in RACE are 330 tokens long, whileNaturalQuestions is based onWikipedia pages
with an average text length of 7312 (Dzendzik et al., 2021). SQuAD (Rajpurkar et al., 2016,
2018) and MultiRC are paragraph-level datasets with an average text length of 137 and
263 tokens, respectively.

This variability in the length of the text has several consequences:

• Number of items: The longer the text, the more items can be written about it.

• Skill/difficulty level of items: Longer texts can provide more opportunities for
writing items that require combining facts from different parts of the text (see, e.g.,
MultiRC), while items for short texts may be more oriented towards retrieval and
therefore less difficult.

• Processing effort: In general, longer texts are more challenging and/or time-
consuming to process and extract information from for both machines and hu-
mans.

1Although there are multimodal QA datasets which may require understanding of written text (e.g., text
and image: Kembhavi et al., 2017), I will only consider datasets which fully rely on the text as a source
of evidence. The item itself, however, may still be multimodal.

17



Chapter 3: Datasets of reading comprehension items

However, not all datasets with long documents make use of these advantages. For in-
stance, the questions inNaturalQuestions originate from real online search queries, and
thus tend to be more focused on retrieval from large documents. In assessment of hu-
man reading comprehension, reading time and therefore cost increases with the length
of the text. As a result, having a large number of items compared to the text length is
desirable.

3.1.1.2 Text source, genre and domain

Datasets created from language tests often contain texts written by experts specifically
for the test, in order to precisely control for difficulty level and content. RACE andReClor
(Yu et al., 2020) are examples of such resources. Datasets designed a priori for MRCmore
often use publicly available texts, e.g., Wikipedia articles (SQuAD, Natural Questions,
WikiQA (Yang et al., 2015)), books from Project Gutenberg or BookCorpus (BookTest
(Bajgar et al., 2017), LAMBADA (Paperno et al., 2016)), or news articles (CNN/Daily Mail

(Hermann et al., 2015), NewsQA (Trischler et al., 2017)). Several datasets contain written
dialogs or movie scripts, such as DREAM (Sun et al., 2019) and NarrativeQA (Kočiský
et al., 2018).

Genre and domain can affect the difficulty of the comprehension task, both for humans
andmachines, and the suitability of using a specific genre/domain is highly dependent on
the research question at hand. However, a generally important factor in reading com-
prehension assessment is the reader’s prior knowledge and familiarity with the topic
or domain of the text: A test-taker is more likely to answer an item correctly if they
have prior knowledge about the content of the text (Smith et al., 2021; Spyridakis and
Wenger, 1991). Recently, Liusie et al. (2023) and Raina et al. (2023a) have found that
MRC models are also subject to this effect. This means that some items may measure
the reader’s/system’s world knowledge instead of comprehension, and that some read-
ers/systems may have an advantage due to individual differences in world knowledge.
These problems can be reduced (but likely not completely avoided) by carefully choos-
ing the the topic according to the reader. For instance, news of current events are a bad
choice for human test-takers, but may be good for language models with a knowledge
cutoff before the events have happened.

The effect of prior knowledge will be of particular importance in Chapters 4 and 5, and
I will discuss them in more detail there.
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3.1.1.3 Text difficulty

Several MRC datasets (especially those created as educational resources) contain texts
written to match a specific difficulty level. For example, RACE++ (Liang et al., 2019)
contains texts from English examinations on three educational levels: middle school,
high school, and college. However, the texts and items are not related across the three
difficulty levels. OneStopQA (Berzak et al., 2020) is based on theOneStopEnglish corpus
(Vajjala and Lucic, 2018) containing news articles in their original version, in addition
to two simplified versions (Elementary and Intermediate), with the same items across all
versions. FairytaleQA (Xu et al., 2022) excludes texts above a certain difficulty threshold,
according to surface-level readability metrics.

A higher level of difficulty is expected to lead to a lower performance in comprehension
by humans. Berzak et al. (2020) showed that this is also the case for MRC models.

A disadvantage of choosing texts with a lower linguistic complexity is that the com-
prehension questions may then be more difficult to understand than the text. This is
problematic because we would end up measuring the comprehension of the items in-
stead of the text. Consequently, writing items that are linguistically simple enough but
still accurately test comprehension is challenging. In second language acquisition, this
could be avoided by asking comprehension questions in the native language of the test-
taker, while in first language acquisition, different modalities (e.g., images) could be used
(see, e.g., RecipeQA (Yagcioglu et al., 2018)).

3.1.2 Item properties

3.1.2.1 Item type

Zeng et al. (2020) propose a taxonomy of item types in MRC datasets, which classifies
items with respect to three dimensions:

• Question type

– Natural: a question in natural language without manipulations
Example: What does the president think about the new law?
Example datasets: NewsQA, RACE

– Cloze: usually a sentence with a placeholder to be filled with an appropriate
word or a phrase
Example: The president thinks that the new law should be ___ immediately.
Example datasets: LAMBADA, BookTest
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– Synthetic: a sequence of words which do not necessarily follow natural lan-
guage grammar, such as keyword queries
Example: president, opinion about the new law, ?
Example datasets: WikiReading (Hewlett et al., 2016), MC-AFP (Soricut and
Ding, 2016)

• Answer type

– Natural: a single natural language word, phrase, sentence, or image
Example: abolished (in response to the cloze question above)
Example datasets: SQuAD, LAMBADA

– Multiple-choice: several answer options from which a subset is to be se-
lected
Example: abolished, passed, withdrawn (in response to the cloze question
above)
Example datasets: RACE, BookTest

• Answer source

– Spans: the answer is a substring of the text
Example datasets: SQuAD, ReviewQA (Grail and Perez, 2018)

– Free-form: the answer is not (necessarily) a substring of the text
Example datasets: NarrativeQA, RecipeQA

Many large crowdsourced QA datasets such as SQuAD and NewsQA are span-based,
because span annotations are easier to compare between annotators and checking for
grammar or spelling errors in the answer is not required. In addition, responses to
span-based items are easier to evaluate (e.g., through span overlap or exact matching)
compared to free-form natural answers. Evaluating multiple-choice items is even more
straight-forward, but writing good multiple-choice items is notoriously difficult (Jones,
2020), and even professionally written items (such as in RACE) sometimes suffer from
low quality, for example, due to implausible distractors (Berzak et al., 2020).

Cloze-style questions are often extracted directly from the text and can therefore be
generated automatically, although human filtering may be necessary to ensure quality
(e.g., LAMBADA). As gap-filling is essentially the pre-training objective for masked and
causal language models, this task is particularly well-suited for MRC, although it is un-
clear whether it actually tests reading comprehension, as opposed to world knowledge
or language production.
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3.1.2.2 Item source

In most cases, datasets are generated based on texts from existing corpora, and items
are created by crowdworkers (e.g., SQuAD, NewsQA) or experts (e.g., OneStopQA, Re-
Clor), automatically generated (e.g.,MC-AFP, BookTest), or a combination of automatic
generation and manual annotation (e.g., NaturalQuestions, DuReader (He et al., 2018)).
When the items are also taken from existing resources like exams, the item writing pro-
cess is often unknown (e.g., RACE), whereas newly created datasets can involve well-
documented guidelines and extensive quality control (e.g., Belebele (Bandarkar et al.,
2023), QA4MRE (Peñas et al., 2011, 2012)).

Although employing crowdworkers or non-experts allows creating datasets at a much
larger scale, the quality of the resulting items may suffer (Dunietz et al., 2020; Rogers
et al., 2020). For item types that are more difficult to write, even professionally designed
items can contain quality issues (Berzak et al., 2020).

Dunietz et al. (2020) made a compelling argument as to why the method through which
items are obtained is particularly important in the context of MRC. They advocate for
a better definition of what researchers mean by comprehension and argue that the item
generation process should be aligned with this definition. For the most part, the guide-
lines provided to crowdworkers (e.g., for SQuAD) as well as the requirements for items
designed in an educational settings (e.g., for RACE) do not reflect this, limiting the use
of these datasets for measuring MRC.

3.1.2.3 Item difficulty and skill

Not many datasets specify the level of difficulty or the type of skill to be tested by the
items. One notable exception is FairytaleQA, which contains texts and items written for
students between kindergarten and eighth grade. The questions target different skills in-
volved in narrative comprehension by asking about various aspects of the stories, such
as characters, feelings, causal relationships, or outcomes of events. QA4MRE also in-
cludes items that take the skill level into consideration. For example, they specify which
items require combining information from different parts of the text and categorize them
according to the type of information they target (e.g., cause, purpose, or degree of truth).
HotpotQA (Yang et al., 2018) is a dataset of so-called multi-hop question-answer pairs,
which require reasoning in multiple steps and including several parts of the text, in-
creasing the level of skill being tested.
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3.1.3 Language

MRC and QA tasks are currently highly English-centric (Rogers et al., 2023). Some re-
sources exist for Chinese (DuReader, ReCO (Wang et al., 2020), LiveQA (Liu et al., 2020);
C3 (Sun et al., 2020)), Vietnamese (ViMMRC (Nguyen et al., 2020; Luu et al., 2023)), Rus-
sian (DaNetQA (Glushkova et al., 2021)), and other languages. For German, the only
original monolingual dataset appears to be GermanQuAD (Möller et al., 2021), which is
a span-based QA dataset similar to SQuAD.

There are also several datasets containing texts and comprehension questions inmultiple
languages in parallel. QA4MRE is a dataset developed for a shared task, containing par-
allel texts and items in English, German, Italian, Romanian, and Spanish. Pirà (Paschoal
et al., 2021; Pirozelli et al., 2023) is a domain-specific Portuguese-English dataset. The
most recent and the most substantial addition is Belebele, a parallel MCRC dataset for
122 language variants, including multiple writing systems for some languages.

One issue to consider when creating parallel multilingual datasets is that some item
types may not be easily translatable between languages. For example, span-based or
cloze items heavily rely on the specific syntactic structure of the question or the text
(e.g., the continuity of verb phrases), which may not always be replicable in another
language.

3.1.4 Purpose

Reading comprehension items can be designed for different purposes. When items are
intended for human users, their purpose can be to assess reading skills in examinations
(RACE), to support the language learning process in textbooks, or merely to motivate
readers to pay attention to the text in order to study their reading behavior (Dillon et al.,
2013). In contrast, the vast majority of the datasets presented in this chapter are specif-
ically created as NLP tasks for machines. Many of these datasets are created from re-
sources that are completely unrelated to reading comprehension, such as search engine
queries (Natural Questions) or live commentary during basketball games (LiveQA). Ev-
idently, these are fundamentally different in quality and in what they are capable of
testing.

In test design, an important distinction is made between high-stakes and low-stakes
tests. A high-stakes test is one where there is a clear line between passing and failing,
and passing or failing the test has real consequences for test-takers, for instance, of fi-
nancial, career-related, or legal nature. Typical examples for high-stakes tests are exit
examinations and language certifications required for admission to a university or ob-
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taining citizenship. Items from these tests are usually not openly available, or only in
small quantities and with little information on the creation and validation process (e.g.,
Entrance Exams (Peñas et al., 2014)).

MRC is generally concerned with assessing the abilities of NLP systems, and are there-
fore low-stakes by definition. In contrast, automatic item generation (AIG) can directly
support test developers as end-users in creating items for high-stakes testing. As a result,
more high-quality items are required for developing and evaluating AIG systems.

3.2 Existing German MCRC datasets

To my knowledge, no originally German MCRC datasets have been published in NLP
literature (excluding automatically or manually translated datasets). As mentioned in
Section 3.1.3, a span-based MRC dataset exists with GermanQuAD, and theoretically,
distractors could be added by automatic or manual means. However, since the key is
always an exact substring of the text, it would be very difficult to write distractors that
are not easily detected by looking for matching substrings in the text.

The two public multilingual datasets including texts and manually written multiple-
choice items in German are Belebele and QA4MRE. Belebele was created based on a
pre-existing multilingual dataset for machine translation FLoRes-200 (NLLB Team et al.,
2022). The texts in QA4MRE are TED talks and manually translated English web pages.
Both datasets are explicitly designed for MRC and not piloted with human test-takers.
Bandarkar et al. (2023) only reported expert performance on a subset of the items in the
English part of Belebele with a response accuracy 97.6%. A more detailed comparison
of the two datasets will be given in Section 3.3.3.

3.3 DWLG: a new German MCRC dataset

As a contribution to the issue of data scarcity in German, I present a new dataset called
DWLG (Deutsche Welle – Learn German) containing human-written German multiple-
choice items designed for human reading comprehension. It is based on texts and items
from online German language courses which, to my knowledge, have not been exploited
for item generation or evaluation to this date.
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3.3.1 Data source

The data originate from the website DW Learn German (Deutsche Welle, 2023), which
offers free online courses in the German language. Deutsche Welle (DW) is a German
state-owned broadcasting company funded by tax revenue. Its main purpose is to of-
fer radio and television broadcasting in German and other languages for audiences in
foreign countries. The law about its statutory mission states that it should “promote
understanding of Germany as an independent nation with its roots in European culture
and as a liberal, democratic, constitutional state based on the rule of law” (Deutsche-
Welle-Gesetz2; translation cited from Deutsche Welle, 2008), and mentions that the Ger-
man language should be promoted in particular. In line with this mission statement, the
courses on DW Learn German are targeted at foreign or second language learners at all
levels and frequently feature cultural topics, as well as German and European news.

The texts and items included in DWLG are taken from the Top-Thema course. In ev-
ery lesson, this course features a short news article (in spoken and written form) about
current events and topics at level B1 according to the Common European Framework of
Reference for Languages (CEFR), and interactive exercises testing comprehension, vo-
cabulary, and grammar. Each text is based on and linked with an original news article
published by DW, summarized and simplified to match the B1 level. The material has
been developed since 2018, with new lessons being added twice per week. Figure 3.1
shows an example of an exercise item on the website.

3.3.2 Scraping and preprocessing

The DW Learn German website uses an undocumented GraphQL application program-
ming interface (API), which can be reverse-engineered to fetch content in a JSON for-
mat. However, the site uses persisted queries, meaning that the full GraphQL queries
are stored server-side and referenced from the client with hashes, which appear to be
invalidated from time to time. Therefore, I used Selenium3 to automatically render a les-
son page in a headless browser and scraped the query hashes from the rendered HTML
elements.

I extracted the article text and the exercises for each lesson from the API responses,
and filtered the exercises to only include multiple-choice items. These items frequently
include questions that do not refer to the content of the text, but test grammar or vo-

2Gesetz über die Rundfunkanstalt des Bundesrechts “Deutsche Welle”, 14 September 2021: https://www.
gesetze-im-internet.de/dwg/BJNR309410997.html

3https://www.selenium.dev/
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Figure 3.1: Screenshot of a multiple-choice comprehension item on DW Learn German.
An audio recording of the text can be played by clicking on the play button,
and the transcript is shownwhen clicking onManuskript. Link to page: https:
//learngerman.dw.com/de/wovon-handelt-der-text/l-52650096/e-61598476
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Feature DWLG Belebele QA4MRE

Text length/linguistic unit Short documents Paragraphs Long documents
Text source/genre/domain News Wiki TED talks, web
Text difficulty B1 — —
Item type

Question type Natural, cloze Natural Natural
Answer type Multiple-choice Multiple-choice Multiple-choice
Answer source Free-form Free-form Free-form

Item source Experts (?) Experts Experts
Item difficulty/skill — — —
Language German Multilingual Multilingual
Purposes L2 learning MRC MRC

Table 3.1: Dataset characteristics of DWLG compared to Belebele and QA4MRE. A dash
(—) indicates that the feature is unspecified or not applicable for that dataset.

cabulary (e.g., Which of the following words means ‘to repair a piece of art’?) and are
not suitable for testing reading comprehension. Manual inspection showed that the first
three multiple-choice items consistently contain questions about the text, therefore I
only included those.

Preprocessing involved removing HTML tags from the texts, inserting double newlines
at paragraph boundaries (keeping the title as a paragraph), and replacing gaps in cloze-
style stems with three underscores.

The scraping and preprocessing scripts are available on GitHub4 and the complete con-
tainerized pipeline on DockerHub5.

3.3.3 Characteristics and statistics

Table 3.1 characterizes the DWLG dataset according to the taxonomy defined in Sec-
tion 3.1, and Table 3.2 compares basic statistics with the German parts of Belebele and
QA4MRE. In terms of size, DWLG is comparable to Belebele, but it contains more items
per text. It also differs in that it was designed for language learning and not for MRC.
This could mean that, although all three were designed for low-stakes testing, DWLG is
less focused on test validity and more on the educational value of the items.

4https://github.com/saeub/dwlg
5https://hub.docker.com/r/saeub/dwlg
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# Texts # Items
# Answers
per item

Text
length

Stem
length

Answer
length

DWLG 454 1361 3 327 8 10
Belebele 488 900 4 88 12 3
QA4MRE 28 280 5 1916 11 4

Table 3.2: Median numbers and lengths for texts, items, and answer options in DWLG
compared to Belebele and QA4MRE. Lengths are the number of tokens. Num-
bers are calculated based on the dataset downloaded on May 10, 2023.

InDWLG, most items have three answer options (only five have more than three), while
Belebele consistently has four answer options per item, and QA4MRE consistently has
five. Another important difference is that in about 66% of theDWLG items, the test-taker
is allowed to select multiple answer options, and in 47% of all items, multiple answer
options are correct. In Belebele,QA4MRE, and most other multiple-choice datasets, only
one answer option is correct. On the one hand, this limits the comparability of MRC
performance metrics between the datasets, on the other hand, this potentially increases
the information per item in DWLG (see Section 2.4), as it essentially turns an item with
three answer options into three items with two answer options (true and false) each.

3.3.3.1 Readability

As mentioned in Section 3.3.1, the DW Learn German website claims that the texts in
DWLG are at CEFR level B1. Figure 3.2 shows how this manifests itself in surface-level
readability metrics. Flesch reading ease is calculated based on the numbers of sentences,
words, and syllables in a text, and a low reading ease corresponds to high difficulty
(Flesch, 1948; Amstad, 1978). The texts in DWLG have an average reading ease of 55.3
(“fairly difficult”), compared to 44.6 for Belebele and 46.1 for QA4MRE (“difficult”).

3.3.3.2 Question types

Question types in DWLG are less consistent than in most existing datasets. As can be
seen from Figure 3.3, the majority of items are cloze-style, where the stem is an incom-
plete sentence with a gap at the end and the answer options are continuations. In this
respect, DWLG is similar to the RACE dataset. Very few examples in this style also exist
in QA4MRE, and none exist in Belebele. A possible reason for this is that it is difficult
to create cloze-style items that are translatable across many languages in multilingually
parallel datasets (see Section 3.1.3).
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Figure 3.2: Readability of texts in DWLG compared to Belebele and QA4MRE. Flesch
reading ease was calculated based on the parameters for German determined
by Amstad (1978) using the Python package textstat.

Excluding items whose stems are not clearly marked as questions with a question mark,
the distribution of question words are also remarkably different across the three datasets
(Figure 3.3). While the question wordwhat (including German pronominal adverbs such
as wofür ‘for what’, worüber ‘about what’, etc.) is by far the most common in DWLG,
question words in QA4MRE are much more evenly distributed. This can be attributed
to the item creation process for QA4MRE, where the authors defined several semantic
question targets such as location (where?), number (how many?), or person (who?), and
aimed for an even distribution of them for each text (Peñas et al., 2012). The annotation
guidelines for Belebele did not include such criteria (Bandarkar et al., 2023).

3.4 Limitations

Although the items in DWLG were specifically designed for a relatively well-defined
population of human test-takers (unlike Belebele and QA4MRE), the test items were
likely not piloted or systematically reviewed, since they are low-stakes and mainly for
educational support. This may negatively impact quality, for example in terms of guess-
ability and answerability. I will investigate this in more detail in Chapter 4.
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Figure 3.3: Distribution of question types in DWLG and of question words (translated
from German) in DWLG, Belebele, and QA4MRE.

In addition, the audio recording is much more prominently presented on the website,
and the transcript is hidden by default (see Figure 3.1). This could mean that the items
are designed to test listening rather than reading comprehension. Previous work has
suggested that if the same item is administered in a listening test instead of a reading
test, it differs mainly in its difficulty (Larsen and Feder, 1940).

Finally, DW as the copyright holder of the material has currently not licensed the dataset
for redistribution. The ability to publish this dataset for research purposes would be
helpful for advancing German NLP, since high-quality human-generated data is still rare
in this language.

3.5 Summary

The first part of this chapter provided an overview of how currently available machine
reading comprehension (MRC) datasets differ from each other, categorizing them by
the types of texts and items in those datasets, as well as in terms of languages and the
purposes for which they were created. These properties can have an effect on the quality
of the test items, and not all MRC datasets would also be suited for testing human reading
comprehension. Compared to English, only little data is available in other languages.
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For multiple-choice reading comprehension (MCRC), I identified two relatively small
multilingual datasets that also contain German items (Belebele and QA4MRE).

The second part introducedDWLG as a newly compiled dataset of GermanMCRC items.
The texts inDWLG are simplified news articles fromDeutscheWelle (DW), and the items
were written for second language learners. Compared to Belebele and QA4MRE, the
texts are more readable, and the multiple-choice items have a slightly different format.
Most importantly, most items only have three answer options, and several answer op-
tions can be correct.
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In this chapter, I will present an experiment to test the ability of state-of-the-art large
language models (LLMs) to generate German multiple-choice reading comprehension
(MCRC) items for texts in theDWLG dataset. The purpose of this experiment was to get
an idea of the baseline performance of both proprietary and open-source LLMs without
additional task-specific training data. This setting is especially relevant for German,
where data scarcity is a problem. To measure performance, I conducted a small-scale
human evaluation study, collecting both subjective quality ratings and item responses
for estimating guessability, answerability, and text informativity (see Sections 2.2.3, 2.2.4
and 2.5).

The research question guiding this experiment is: How good are large language models
at generating German multiple-choice reading comprehension items for given texts in a
zero-shot setting?

4.1 Related work

4.1.1 Zero-shot capabilities of LLMs

In recent years, the ability of pre-trained language models to solve tasks solely based on
a natural language instruction and without having been shown any training examples
was recognized as an emergent capability in LLMs (Wei et al., 2022). Wei et al. (2021)
showed that this capability can be improved by fine-tuning the model on instructions
for a variety of tasks, and Ouyang et al. (2022) further enhanced this approach using
reinforcement learning from human feedback, aligning LLMs with user intents for chat
bot applications. Kojima et al. (2022) found that chain-of-thought prompting can be used
to further improve zero-shot generation for tasks involving complex reasoning.

Recent instruction-tuned LLMs such as GPT-4 (OpenAI, 2023), Llama 2 (Touvron et al.,
2023), and Claude 2 (Anthropic, 2023) have been shown to be highly performant in zero-
shot settings across various language understanding and generation tasks, in some cases
even surpassing task-specifically trained models (Shaham et al., 2023; Zhang et al., 2023;
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Karpinska and Iyyer, 2023).

4.1.2 Automatic item generation

The idea of automatically generating test items has a long history in educational and
psychological assessment (Haladyna, 2013). In these fields, there is a strong interest in
maintaining the validity of generated test items without having to run trials with every
new set of items. As a result, the most commonly applied approaches are rule-based
and make use of manually written templates, which purposefully restrict the diversity
of the generated items (Lai and Gierl, 2013; Circi et al., 2023). Because of these restric-
tions, reading comprehension items generated with these approaches tend to only target
recall and lexical knowledge, rather than higher-level inferential comprehension skills
(Haladyna, 2013; Lai and Gierl, 2013).

In natural language processing (NLP), automatic item generation (AIG) is a less well-
known task, often termed question generation (Das et al., 2021; CH and Saha, 2020) and
considered the counterpart to question answering (QA) or machine reading compre-
hension (MRC). The earliest MCRC item generation systems were pipelines of mostly
rule-based components, typically starting by selecting a sentence from the text to gen-
erate a question for, followed by the generation of the question and correct answer, and
finally a distractor generation step (Mitkov et al., 2006; Aldabe and Maritxalar, 2010;
Papasalouros et al., 2008; Singh Bhatia et al., 2013; Majumder and Saha, 2014, 2015).

The introduction of the SQuAD dataset (Rajpurkar et al., 2016, 2018) has lead to a series
of works on span-based answer-aware question generation, where the text and an an-
swer span is given as input and the goal is to generate a corresponding question. Several
of these approaches rely on recurrent neural networks (Yuan et al., 2017; Du et al., 2017;
Zhou et al., 2017; Gao et al., 2019), and more recently on pre-trained transformer models
(most commonly, T5 (Raffel et al., 2020); Gao et al., 2019; Lopez et al., 2020; Berger et al.,
2022; Rathod et al., 2022; Ghanem et al., 2022; Uto et al., 2023; Fung et al., 2023). Among
these, some have also studied how to enforce certain properties in the generated ques-
tions: Gao et al. (2019), Ghanem et al. (2022), Uto et al. (2023), and Wang et al. (2023a)
focused on controlling the difficulty or required skill of the generated items, Rathod
et al. (2022) generated multiple diverse questions from the same text, and Fei et al. (2022)
investigated controlled generation of multi-hop questions.

For MCRC, most research is based on the RACE dataset (Lai et al., 2017). While some ap-
proaches separate the task into two steps of generating question-answer pairs and gen-
erating distractors (Rodriguez-Torrealba et al., 2022; Maurya and Desarkar, 2020; Shuai
et al., 2021, 2022; Xie et al., 2022), end-to-end approaches also exist (Jia et al., 2020; Raina
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and Gales, 2022; Dijkstra et al., 2022; Kalpakchi and Boye, 2023a,b). Most recent works
apply fine-tuning to language models like T5 or GPT-3 on the RACE dataset (Rodriguez-
Torrealba et al., 2022; Xie et al., 2022; Raina and Gales, 2022; Dijkstra et al., 2022). Some
have also investigated zero-shot and few-shot generation with GPT-3 or ChatGPT with
promising results, also for languages other than English (Attali et al., 2022; Raina and
Gales, 2022; Kalpakchi and Boye, 2023a,b).

For generating reading comprehension questions in German, only very little preliminary
work has been done. Kolditz (2015) used a rule-based approach for generating open-
ended questions, De Kuthy et al. (2020) trained a recurrent encoder-decoder architecture
on the resulting synthetic data, and Michel (2022) experimented with fine-tuning mT5
(Xue et al., 2021) on GermanQuAD (Möller et al., 2021) and machine translated SQuAD.
Gütl et al. (2011) also described a system for generating various types of reading compre-
hension items, but did not specify their methods in detail. Tomy knowledge, this chapter
presents the first evaluation of LLMs generating German reading comprehension items
in a zero-shot setting.

4.1.3 Human evaluation of generated items

In classical (i.e., template-based) AIG, the evaluation of generated items is focused on
two methods: manual review by test developers (also called subject matter experts) and
pilotingwith test-takers (Circi et al., 2023). Expert reviews can include checking the logic
and content of the templates and the plausibility of distractors, and rating the quality
of generated items (Gierl et al., 2021, p. 120–143). Piloting involves collecting item re-
sponses from a sufficiently large sample of representative test-takers (usually between
30 and several hundreds), followed by statistical analyses to determine item characteris-
tics such as difficulty and discrimination through item response theory (IRT) or classical
test theory (CTT) (Green, 2020).

In NLP research, human evaluation mainly focuses on quality ratings by experts or
crowdworkers. The categories evaluated and the type of scale used varies widely be-
tween works. The most commonly included categories are fluency and relevance (Gao
et al., 2019; Uto et al., 2023; Fei et al., 2022; Ghanem et al., 2022; Shuai et al., 2021, 2022;
Xie et al., 2022; Jia et al., 2020), followed by item characteristics like difficulty or answer-
ability (Gao et al., 2019; Uto et al., 2023; Du et al., 2017; Rodriguez-Torrealba et al., 2022;
Ghanem et al., 2022; Jia et al., 2020). Depending on the task, ratings for more specific
requirements like multi-hop complexity (Fei et al., 2022), distractor plausibility (Maurya
and Desarkar, 2020; Shuai et al., 2022) or diversity (Xie et al., 2022) are included. Some
works use a rating scale for general item quality (Zhou et al., 2017; Rodriguez-Torrealba

33



Chapter 4: Zero-shot item generation

et al., 2022).

Attali et al. (2022) is a notable exception where a more elaborate approach was used to
evaluate NLP-based AIG. They conducted expert reviews and a large-scale pilot study,
collecting millions of responses to over 5000 items and using CTT to determine difficulty
and discrimination, as well as analyzing response time. However, this was only possible
because the pilot was administered through Duolingo, a free language learning app with
millions of active users that also offers paid language tests.

4.2 Task description

The item generation task can be framed as follows: Given a text 𝑇 and a language model
𝑀gen, generate 𝑛 MCRC items with 𝑚 answer options each, including a corresponding
label for each answer option indicating whether it is correct or incorrect. Any number
of answer options may be correct.

There are two reasons to generate 𝑛 items at once instead of sampling for a single item
multiple times. First, the items need to be sufficiently different from each other. When
sampling multiple items independently, the model will likely generate items that refer
to the same information in 𝑇 . Second, without sampling, the output is deterministically
conditioned on the input, which simplifies reproducing the results.

In the present experiment, 𝑛 and 𝑚 are both fixed to 3, in order to be comparable to the
human-written items in DWLG.

4.3 Experimental setup

4.3.1 Data

This experiment uses texts and items from DWLG. In order to keep the results compa-
rable between the experiments in Chapters 4 to 6, I randomly sampled 50 lessons (i.e., 50
texts with a total of 150 corresponding items) from the dataset to use as a test set. The
remaining 404 lessons will be used for fine-tuning in Chapter 6.

34



Chapter 4: Zero-shot item generation

4.3.2 Models

I chose two state-of-the-art LLMs for generating items. Both are transformer-based au-
toregressive language models predicting the next token based on unidirectional context
(i.e., generating text from left to right). To facilitate zero-shot prompting, the models are
already instruction-tuned and optimized for a chat environment.

Llama 2 is a family of open-source LLMs developed by Meta (Touvron et al., 2023). I
chose to use the largest model size (70 billion parameters) in the experiments to opti-
mize performance. The models were pre-trained on 2 trillion tokens of publicly available
data. The training data is highly English-centric, with almost 90% English and only 0.17%
German (around 3.4 billion tokens). This limits its German language understanding and
generation capabilities, but my own preliminary tests showed that it is still more promis-
ing than smaller models with larger amounts of German training data such as Falcon
40B (Almazrouei et al., 2023). I used the checkpoint Llama-2-70b-chat-hf on Hug-
ging Face (published in July 2023; pre-training knowledge cutoff September 2022) for all
experiments in this thesis.

GPT-4 is a proprietary LLM developed by OpenAI (OpenAI, 2023). No details on the ar-
chitecture, model size, training data, pre-training and fine-tuning are published. OpenAI
reported human-level performance on academic exams for a wide range of subjects,
showing that it has state-of-the-art natural language understanding capabilities and ex-
tensive world knowledge. The model supports multimodal input, but this experiment
only uses text as input. GPT-4 can only be accessed via a web application programming
interface (API), and the information returned is very limited. For example, at the time of
writing, it is not possible to obtain probability distributions for tokens output by GPT-4.
An additional limitation is reproducibility: The models offered through the OpenAI API
are continuously updated, and older checkpoints become invalidated after a period of
time. I used the snapshot gpt-4-0613 (published in June 2023, pre-training knowledge
cutoff September 2021).

4.3.3 Prompting

To elicit items through zero-shot generation, I manually created a prompt template that
could be used for both Llama 2 and GPT-4 (shown in Table 4.1). The goal was to produce
output in a consistent format and containing all the required information. The prompt
also hints at the guessability criterion, by asking for plausible distractors.

Chat-optimized models are fine-tuned on conversations, where user messages and sys-
tem messages alternate and are separated by special tokens. Both Llama 2 and GPT-4
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German English

Text:
[𝑇 ]

Schreibe [𝑛] Multiple-Choice-
Verständnisfragen zum Text oben, in
deutscher Sprache. Jede Frage soll [𝑚]
Antwortmöglichkeiten haben. Schreibe
hinter jede Antwort in Klammern, ob sie
richtig oder falsch ist. Zwischen 0 und
[𝑚] Antworten können richtig sein.
Die falschen Antworten sollten plausibel
sein, wenn man den Text nicht gelesen
hat.

Text:
[𝑇 ]

Write [𝑛] multiple-choice compre-
hension questions about the text above,
in German language. Each question
should have [𝑚] answer options. After
each answer, write whether it is correct
or incorrect in parentheses. Between 0
and [𝑚] answers can be correct. The
incorrect answers should be plausible,
not having read the text.

Table 4.1: The German prompt template for item generation and a translation into En-
glish. In the text 𝑇 , headings and paragraphs were separated by a newline
character. 𝑛 and 𝑚 were both fixed to 3.

also allow providing a system instruction before the conversation, which can contain
information about the persona the system should take on in its responses. In the present
experiment, the prompt was given to the model as the first user message, without pro-
viding a system instruction. The system response was generated using greedy decoding
(i.e., no sampling and no beam search).

For generating with Llama 2, I loaded the model parameters in 16-bit floating point pre-
cision (torch.float16). Inference was performed on five NVIDIA V100 GPUs with 32
GB of memory each.

4.3.4 Postprocessing

Inspecting the output from both models, several issues became apparent. In general,
GPT-4 generated output in a much more consistent way and followed formatting in-
structions more precisely than Llama 2. As a result, parsing the items took more effort
for the latter.

Llama 2 did not always produce German output and frequently switched to English,
sometimes mid-sentence. Making the desired language explicit in the prompt did not
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fully prevent this behavior. Therefore, I used the Python package lingua1 for language
identification and rejected outputs where fewer than 80% of the lines were identified as
German. In those cases, I regenerated the output with a sampling temperature of 0.5
until a German output was produced.

In cases where Llama 2 generated more than three items (i.e., the end-of-sequence token
was produced too late or not at all), I only kept the first three items. For the number of
answer options, this was not an issue.

4.3.5 Human evaluation

To compare the quality of the generated items, I randomly selected ten texts and cor-
responding human-written and generated items (a total of 90 items) from the test set
for human evaluation. I collected three different types of annotations from six human
annotators:

• Quality ratings: Rating the general quality of the items on a 5-point scale.

• Item responses: Responding to the items in two different settings: (1) while see-
ing the text (as in a typical multiple-choice test), and (2) without seeing the text
(i.e. guessing the correct answers).

• Answer clarity: Marking answer options for which it is unclear whether it is
correct or incorrect.

This allowed me to compare items generated by Llama 2 and GPT-4 to human-written
items in terms of subjective (non-expert) perception of quality and in terms of item char-
acteristics estimated from response behavior. For the latter, I focused on guessability and
answerability.

4.3.5.1 Estimating guessability, answerability, and text informativity

As mentioned in Section 2.6, applying IRT for evaluating item characteristics would re-
quire trials with large numbers of representative test-takers. This is not feasible for
small-scale NLP experiments. For this reason, I propose a shortcut method for estimat-
ing system-level guessability and answerability with fewer annotators, by calculating
response accuracies achieved by highly proficient test-takers with and without looking
at the text.

1https://pypi.org/project/lingua-language-detector/
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As demonstrated in Section 2.2, the item response curve (IRC) flattens out when the pro-
ficiency of the test-taker is much higher than the difficulty of the item. In other words, if
the item is much too easy for the test-taker, their probability of responding correctly ap-
proximates the answerability parameter of that item under the assumptions of the four-
parameter logistic model (4PLM). Using the responses from only six test-takers leads to
an imprecise estimate of item-level answerability, but it should be good enough for esti-
mating system-level answerability by averaging response accuracies across many items
generated by the same model.

In order to apply the same principle to estimate guessability, we can exploit a special
property of reading comprehension items: All of the required evidence for sucessfully
answering questions should come from the text, and the proficiency of the test-takers
corresponds to their ability to extract this evidence from the text. Therefore, by hiding
the text from test-takers and letting them guess solely based on prior world knowledge,
we can essentially reduce their proficiency to a minimum (i.e., negative infinity)2 and
measure their response accuracy to get an estimate of guessability.

After obtaining guessability and answerability estimates, text informativity can simply
be calculated as the difference between the two (see Section 2.5).

4.3.5.2 Annotators

The most important requirement for the approach described in the previous section is
that the test-takers must be highly proficient in comparison to the difficulty of the items.
To achieve this, I recruited six native German speakers from Switzerlandwho are univer-
sity students or recent graduates. Considering that the lessons in DWLG are targeted at
B1-level German speakers, it is safe to assume that the annotators’ proficiency is higher
than the difficulty of the items. All annotators took part on a voluntary basis andwithout
monetary compensation.

4.3.5.3 Design and procedure

Each annotator read all ten texts, and for each text they responded to human-written
and generated comprehension items in two settings: First without seeing the text, and
second while seeing the text. For each text, the two settings were presented immediately
after each other.

2This assumes that guessability is an inherent property of an item, and that the test-taker’s language
proficiency does not help them to respond correctly. For reading comprehension items, this is most
certainly not true, since understanding the stem and answer options themselves already require a
certain level of proficiency. However, I stick to this assumption here due to its prevalence in IRT.
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In the first setting (without text), annotators saw items from only one source (human,
GPT-4, or Llama 2), with the instruction to select the correct answer options without
seeing the text. Annotators were allowed to select multiple answer options for all items.
After submitting their responses, in the second setting (with text), the text was shown
to them, and at the same time the items from all sources (including the items they had
already responded to before). The reason for including items from only a single source
in the first setting is that items from different sources would frequently interfere with
each other. For example, if two systems generated a similar stem (e.g., How many people
were at the event?) but with different sets of answer options (e.g., A: 100, B: 200, C: 500
vs. A: 200, B: 300, C: 400), the correct answer option could be easily guessable by looking
at the intersection of the two sets. In the second setting, I assumed that the evidence
from the text is strong enough that this effect is negligible. Figure 4.1 compares the two
settings in terms of how the annotators were able to gather evidence for their responses.

In addition to responses to the items themselves, annotators marked answer options in
the second setting to which they could not respond with confidence as unclear. Annota-
tors were also asked to rate each item’s quality on a scale from 1 (unusable) to 5 (perfect).
The following criteria were listed for what constitutes a high-quality item:

• The item refers to the content of the text.

• The item is comprehensible and grammatically correct.

• The item is unambiguously answerable.

• The item is answerable without additional world knowledge.

• The item is only answerable after reading the text (not through world knowledge
alone).

After submitting their responses in the second setting, annotators could see how many
items they answered correctly, and a leaderboard showed how they were performing in
comparison to other annotators. The purpose of this gamification was only to motivate
the annotators, and I did not use these results in the analysis. The annotation then
continued with the next text. The order of the texts, the sources of the items in the
first setting, and the order of the items and answer options were randomized across
annotators. The annotators were not informed which items were human-written or
generated.

The user interface for the annotation was a web application implemented using Django3

and Bootstrap4 (refer to Appendix A for screenshots). Annotators were free to use a
desktop or mobile device.
3https://www.djangoproject.com/
4https://getbootstrap.com/
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Setting with text:

ResponsePrior knowledge

Text

Other items from same source

Other items from different source

Other answer options

Setting without text:

ResponsePrior knowledge

Text

Other items from same source

Other items from different source

Other answer options

Figure 4.1: Sources of evidence for responding to comprehension items in the human
evaluation. In the setting with text, when deciding whether a specific answer
option is correct or incorrect, annotators were able to consult the text, their
own prior knowledge, other answer options in the same item, and other items
from the same or different sources. In the setting without the text, only items
from a single source were shown, and the text was hidden.
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Figure 4.2: Statistics on item lengths and the number of correct answers in human-
written and generated items. Numbers are based on the test set of 50 texts
with three items each.

4.4 Results

4.4.1 Surface-level features of generated items

While about 70% of human-written items in DWLG have cloze-style stems (see Fig-
ure 3.3), Llama 2 and GPT-4 exclusively generated items with regular questions as stems.
Statistics on item lengths and the number of correct answer options are shown in Fig-
ure 4.2. The LLMs tended to generate items with longer stems and shorter answer op-
tions, and almost exclusively produced items with a single correct answer option. These
characteristics of the generated items are similar to those of datasets such as Belebele
(Bandarkar et al., 2023) or QA4MRE (Peñas et al., 2011, 2012) (see Section 3.3.3).
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4.4.2 Item responses

The human evaluation resulted in a total of 555 binary responses (one per answer option
and annotator) in the setting without text and 1638 in the setting with text. Average
response accuracies with and without seeing the text are visualized in Figure 4.3 and
reported in Table 4.2. Since each item could have any number of correct answer options,
I calculated response accuracy on the level of answer options. Therefore, an ideal item
would have a response accuracy of 50%without the text and 100%with the text, resulting
in a text informativity of 50%. In Figure 4.3, the two connected points denote guessability
(without text) and answerability (with text), while text informativity is represented by
the length of the line connecting the two points.

Based on the results, the human items in the evaluation were the least guessable, while
items generated by GPT-4 were the most guessable. Llama 2 generated the least answer-
able andGPT-4 themost answerable items. In terms of text informativity, human-written
items performed best, followed by GPT-4.
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Figure 4.3: Mean response accuracy with andwithout text for human-written and gener-
ated items. Accuracies are on the level of answer options, therefore random
guessing is at 50%. Means are based on 10 texts and around 185 responses
without text and around 546 responses with text. Error bars are bootstrapped
95% confidence intervals.
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Item source (𝑀gen) Guessability ↓ Answerability ↑ Text informativity ↑

Human 0.597 0.891 0.294
Llama 2 0.672 0.859 0.187
GPT-4 0.717 0.976 0.259

Table 4.2: Mean response accuracy with and without text for human-written and gener-
ated items, and their difference.
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Figure 4.4: Quality ratings and unclear answer-options in human-written and generated
items.

4.4.3 Quality ratings

All 90 items were rated by all six annotators, resulting in a total of 540 rating responses.
Additionally, in 119 out of 1638 cases, an answer option was marked as unclear. Results
from both are visualized in Figure 4.4 for each item source.

GPT-4 received the highest number of perfect ratings (84/180 = 47%), while Llama 2
received the highest number of unusable ratings (11/180 = 6%). Interestingly, it appears
that items generated by GPT-4 were perceived as being of higher quality than human-
written items. GPT-4 is also by far the best-performing model in terms of the number of
unclear answer options.

To support the interpretation of these results, Figure 4.5 shows how they relate to re-

43



Chapter 4: Zero-shot item generation

1 2 3 4 5
Rating

0.0

0.2

0.4

0.6

0.8

1.0
R

es
po

ns
e 

ac
cu

ra
cy

Without text

With text

(a) Mean response accuracy without and with text
per rating level. Error bars are bootstrapped 95%
confidence intervals.

1 2 3 4 5
Rating

0.0

0.1

0.2

0.3

0.4

U
nc

le
ar

 r
at

io

(b) Ratio of answer options marked as
unclear per rating level. Error bars
are bootstrapped 95% confidence
intervals.

Figure 4.5: Relation of quality ratings with response accuracy and unclear answer op-
tions.

sponse accuracies and the ratio of answer options that were marked as unclear. We can
see from that items with higher ratings also tend to exhibit higher answerability and
fewer unclear answer options. In Figure 4.5a, at rating level 3 and upwards, both an-
swerability and guessability increase, meaning that text informativity remains roughly
constant. This suggests that the annotators prioritized answerability over guessability
when rating the quality of the items.

4.4.4 Qualitative analysis

Figure 4.6 shows examples of human-written and generated items from the test set and
the corresponding response accuracies. We can see that items that ask about definitions
or facts about the real world (H1, G1, L1) tend to be highly guessable, while items that
explicitly refer to the text (H2, G2) have guessing accuracies close to 50%.

Based on a manual error analysis of all items that were answered incorrectly by the ma-
jority of annotators, I identified three common reasons for why items are unanswerable,
listed here in descending order of frequency:

• Wrong label: The model generated the wrong correct/incorrect label for one or
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more answer options. This occurred especially when none of the answer options
are correct, but the model still produced the label correct for one of them.

Example (generated by Llama 2):

Text excerpt:
[...] Die Musikwissenschaftlerin Marina Schwarz meint dazu: „Das ist Teil der immer
noch patriarchalischen Gesellschaft, in der wir leben.“ Offenbar finden auch viele Frau-
en, die in dieser Gesellschaft aufgewachsen sind, solche Texte normal. [...]

Item:
Was ist laut Text Marina Schwarz’ Meinung zu sexistischen Texten im Schlager?

✓ Sie findet sie inakzeptabel. [should be ✗]

✗ Sie findet sie normal, weil es Teil der patriarchalischen Gesellschaft ist.

✗ Sie findet sie nicht sexistisch, sondern nur humorvoll.

• Unclear answer options: The item is phrased in a way that leaves room for inter-
pretation. In particular, some answer options strongly paraphrase the information
from the text, such that not all annotators may agree that they still bear the same
meaning.

Example (human-written):

Text excerpt:
[...] Für viele Deutsche zählt beim Kiosk eher die Atmosphäre – besonders in der war-
men Jahreszeit. [...]

Item:
Viele Menschen kaufen Alkohol am Kiosk, weil ...

✓ er dort billiger ist als in Bars und Kneipen.

✓ sie die schöne Stimmung vor Ort mögen. [unclear if ✓or ✗]

✓ sie auf dem Weg zu einer Party etwas trinken möchten.

• Insufficient evidence: The text does not provide the necessary evidence to decide
whether an answer option is correct or incorrect. Sometimes, these items are still
answerable based on world knowledge. See L2 in Figure 4.6 for an example.
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It appears that Llama 2 is more prone to generate unanswerable questions. However,
examples of all of the issues above can also be found in human-written items. These
observations support the quantitative results.

4.5 Discussion

4.5.1 Item quality

Overall, the quality ratings from the human evaluation suggest that off-the-shelf instruc-
tion-tuned language models are capable of producing good MCRC items in a zero-shot
setting: For both models, more than half of the generated items were rated 4 (good) or 5
perfect, and less than 10% of the answer options were marked as unclear (see Figure 4.4).
Notably, GPT-4 received better ratings than the human-written items, and the response
accuracies as well as the qualitative error analysis confirm that items generated by GPT-
4 contain fewer issues regarding answerability than those in the originalDWLG dataset.
However, we can see from Figure 4.3 that GPT-4 trades answerability for guessability,
generating more items that can be answered solely based on world knowledge. The text
informativity metric reflects this trade-off and shows that GPT-4 does not outperform
humans in this respect.

Llama 2 performs significantly worse based on ratings, answerability and guessability.
Reasons for this may be the (supposedly) smaller number of model parameters, the low
proportion of German in the training data, and less effective instruction tuning, which
also manifested itself in the lack of consistency in the output format.

Another important finding is that the data quality in DWLG appears to be suboptimal,
with a relatively large number of unanswerable questions. This can certainly be at-
tributed to the fact that the itemswere not developed for high- or even low-stakes testing
but as educational material for language learners. Nevertheless, it is still a competitive
human baseline dataset in terms of text informativity.

4.5.2 Evaluation methodology

From a methodological point of view, measuring guessability in the here proposed way
is perhaps the less controversial part of the evaluation protocol. While previous work
has used responses from humans or machine learning models to evaluate guessability
(Berzak et al., 2020; Raina et al., 2023a), directly measuring answerability in a similar
way is not commonly done, and to my knowledge, this is the first study proposing the
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Karneval – ein Fest mit langer Tradition
Jedes Jahr feiern Millionen Menschen auf der Welt in bunten Kostümen Karneval. An den „tollen Tagen“

ist fast alles erlaubt, was Spaßmacht. Die geschichtlichen Ursprünge des Fests haben dagegen viel mit Religion
zu tun.

Im Februar fangen sie wieder an, die „tollen Tage“ im Karneval. Besonders im Rheinland sind die Straßen
voll mit kostümierten Menschen, die tanzen, singen und feiern – auch und gerade dann, wenn es in der Welt
Krieg, Krankheiten und Krisen gibt. Für Christoph Kuckelkorn, den Präsidenten des Festkomitees Kölner Kar-
neval, ist der Karneval „eine Stütze in schwierigen Zeiten, eine Auszeit von den Problemen des Alltags“. Aber
seit wann wird der Karneval eigentlich gefeiert?

Zwar sind die genauen Ursprünge nicht klar. Man weiß aber, dass es zum Beispiel in Köln schon vor 2000
Jahren ein Fest gab, das dem heutigen Karneval ähnelte: In der damals römischen Stadt feierte man imWinter
die sogenannten „Saturnalien“, um den Gott Saturn zu ehren. Wie heute wurde viel getrunken und getanzt,
und die Reichen tauschten mit den Sklavinnen und Sklaven die Kleider und bedienten sie sogar. Auch die
Herrscher wurden während der Saturnalien humorvoll kritisiert.

Dass man sich über die Mächtigen lustig macht, ist im Karneval bis heute so. Die Karnevalshochburgen
am Rhein sind für ihre „Büttenreden“ bekannt, bei denen ein Redner auf die Bühne kommt und Witze zum
Beispiel über Politiker macht. Auch die Wagen auf den Karnevalsumzügen sind oft so geschmückt, dass sie
politische Botschaften – oder eben Kritik – enthalten. In Köln übernimmt sogar das sogenannte Dreigestirn
für die Karnevalszeit die Regierung über die Jecken.

Karneval in seiner heutigen Form ist aber wahrscheinlich eine Erfindung des frühen Christentums. Für die
Kirche war das närrische Treiben ein Sinnbild der Sünde. Ein paar Tage lang durfte man ausgelassen feiern
und (fast) alles war erlaubt. Doch nach dem Ende des Karnevals begann eine 40-tägige Fastenzeit, in der die
Menschen weniger essen und mehr beten mussten. Daher hat der Karneval wohl seinen Namen – wenn man
das Wort aus dem Lateinischen übersetzt, heißt es: „Fleisch, leb wohl.“

Human-written items:(H1) (H2)
Die Saturnalien ...
✗ wurden an den längsten Tagen im Jahr

gefeiert. (100/100%)
✓ waren ein Fest, bei dem unfreie Menschen mit

den Herrschern die Rollen wechselten.
(50/100%)

✓ fanden unter anderem in der römischen Stadt
Köln statt. (100/83%)

In dem Text geht es um ...
✗ einen Ort in Deutschland, in dem der

Karneval anders gefeiert wird als anderswo.
(50/100%)

✗ einen Kölner Karnevalsverein, den es schon
sehr lange gibt. (0/100%)

✓ die Frage, wie und wann der Karneval
entstanden ist. (50/100%)

Items generated by GPT-4:(G1) (G2)

Was bedeutet der Name „Karneval“ aus dem
Lateinischen übersetzt?
✗ „Fest der Freude“ (100/100%)
✓ „Fleisch, leb wohl“ (100/100%)
✗ „Tanz der Narren“ (100/100%)

Was passiert nach dem Ende des Karnevals laut
dem Text?
✓ Es beginnt eine 40-tägige Fastenzeit. (0/100%)
✗ Es beginnt eine Zeit der Feierlichkeiten und

des Essens. (0/100%)
✗ Es gibt keine besonderen Ereignisse oder

Traditionen. (100/100%)

Items generated by Llama 2:(L1) (L2)
Wieviel Tage dauert die Fastenzeit, die direkt
nach dem Karneval beginnt?
✓ 40 Tage (100/100%)
✗ 20 Tage (100/100%)
✗ 10 Tage (100/100%)

Wo finden die meisten Karnevalsumzüge und
-feiern statt?
✓ In Köln (50/33%)
✗ In Rom (100/100%)
✗ In Berlin (100/100%)

Figure 4.6: Examples of generated items and human response accuracies in parenthe-
ses without/with text for each answer option (𝑛without text = 2, 𝑛with text = 6).
Both models and humans produce items which are highly guessable based on
world knowledge (H1, G1, L1). In addition, L1 contains a grammatical error
(Wieviel[e] Tage), and L2 is not answerable based on evidence from the text.
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text informativity metric. Therefore, additional rigor should be imposed on validating
this part of the protocol beyond the theoretical justification given in Section 4.3.5.1.

The item response results for GPT-4 confirm that the low answerability estimates for the
other item sources are not due to careless response behavior. Theoretically, considering
the IRC in the 4PLM as presented in Section 2.3, a low response accuracy with text could
also be due to low discrimination or high difficulty instead of low answerability. How-
ever, low discrimination would still be a sign of poor item quality, and high difficulty is
unlikely, since the texts are at level B1 according to the Common European Framework
of Reference for Languages (CEFR), and the items should not be any less comprehen-
sible than the text (see Section 3.1.1.3). Evaluating difficulty would require collecting
responses from a larger and more diverse sample of test-takers.

Overall, the results in this chapter provide initial evidence for the validity of the text
informativity metric through triangulation with human judgments and qualitative anal-
ysis. Although more data should be collected in future work, I consider it to be reliable
enough in order to apply and explore it further in the experiments in Chapters 5 and 6.

4.5.3 Limitations

The evaluation methodology used in this experiment has several limitations. As already
mentioned in Section 4.3.5.1, due to the small number of annotators, reliably detecting
problems on the level of items or answer options is not plausible. In addition, it was not
possible to prevent items generated by different systems from influencing each other
(see Figure 4.1), as this would further reduce the number of responses. Here, I assumed
that this effect is negligible in the setting with text. In an ideal scenario, a large number
of annotators would respond to single answer options, without seeing the other answer
options or other items, in order to avoid any confounding effects. However, this would
explode the number of texts each annotator would need to read, making this unfeasible
for human evaluation. In Chapter 5, I will show that this limitation can be circumvented
in the automatic evaluation approach.

Another important restriction of the evaluation protocol is that the annotators must be
over-proficient compared to the item difficulty. This is only possible here because of
the justified assumption that the items are designed for language learners and therefore
relatively easy. If this is not the case, a possible approach to overcome this would be to
use majority voting among a group of annotators in order to artificially increase their
proficiency. This approach was also used to estimate human performance in the Super-
GLUE benchmark (Wang et al., 2019, Appendix C). On the other hand, this also reduces
the sample size, leading to less precise answerability estimates.
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There are also limitations due to the nature of the DWLG dataset. First, since the news
texts are publicly available, some of them (or at least texts about the same topics) are
likely to be part of the training data of the LLMs. As a result, the models may be able to
generate higher-quality items for these texts compared to unseen topics. This test-train
leakage could be avoided by including only recent articles published after the knowledge
cutoff of the LLMs, but then the human evaluation would suffer from biases in turn,
because the annotators are more likely to be familiar with recent events, leading to an
over-estimate of guessability (see Section 3.1.1.2).

Finally, because I used zero-shot generation with a simple instruction prompt, the gen-
erated items deviate quite a bit from the format of the human-written items, limiting
comparability. In particular, Llama 2 and GPT-4 never generated cloze-style items, as
shown in Figure 4.6, and rarely generated items with more than one correct answer op-
tion (about 5%). The latter might mean that it is often obvious from the question that
there can only be one correct answer, which essentially increases random guessing from
50% to 67%. This could explain the high guessibility of items generated by GPT-4 in the
human evaluation. This problem can also be alleviated by only showing a single answer
option at a time.

4.6 Summary

The aim of the experiment in this chapter was to determine the quality of German
multiple-choice reading comprehension items generated by Llama 2 and GPT-4 using
zero-shot prompting. I conducted a human evaluation with six annotators who rated
the items on a general quality scale, marked unclear answer options, and provided item
responses without seeing the text (i.e., guessing) and while seeing the text. System-level
text informativity was estimated by calculating the difference between the response ac-
curacies with and without text.

Overall, the majority of items generated by both models are of acceptable quality. GPT-4
received better ratings than both Llama 2 and human-written items, most likely because
it generatedmore answerable items. GPT-4 achieved a text informativity of 0.259, clearly
outperforming Llama 2 (0.187), but did not reach human performance (0.294). A quali-
tative error analysis confirmed these results.
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5 Automatic item evaluation

Automatic item generation (AIG) is in dire need of standardized automatic evaluation
metrics that actually reflect item quality. In contrast to the majority of previous work,
Chapter 4 presented an evaluation protocol that does not only take into account the an-
notators’ subjective perception of item quality but also estimates objective guessability
and answerability. In this chapter, I will attempt to automate this procedure by letting
large language models (LLMs) assume the role of annotators, resulting in a protocol for
automatic and reference-free evaluation of (one aspect of) item quality. I will compare
the response behavior between humans and LLMs and show that this approach can be
used to evaluate the quality of human and generated items without the need of reference
items.

The primary research question here is: Can responses by large languagemodels tomultiple-
choice reading comprehension items be used to automatically evaluate item quality?

5.1 Related work

5.1.1 Automatic evaluation of generated items

Previous works on AIG and question generation have adopted a variety of metrics for
automatically evaluating output quality. Most commonly, reference-based metrics orig-
inally developed for machine translation or text summarization such as BLEU (Papineni
et al., 2001), ROUGE (Lin, 2004), METEOR (Banerjee and Lavie, 2005), or BLEURT (Sellam
et al., 2020) are used (Amidei et al., 2018; Circi et al., 2023; Mulla and Gharpure, 2023).
These compare the generated items to one or several human-written references, which
is problematic if the AIG system is free to decide which part of the text it should gener-
ate items for. Therefore, these metrics are mostly applied in answer-aware span-based
question generation (Yuan et al., 2017; Du et al., 2017; Zhou et al., 2017; Gao et al., 2019;
Lopez et al., 2020; Berger et al., 2022; Ghanem et al., 2022). Nema and Khapra (2018) ex-
tended BLEUwith an term calculated based on the recall and precision of content words,
function words, question words, and named entities, which they argue correlate with an-
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swerability. Wang et al. (2023a) applied this metric for evaluating open-ended question
generation. In addition to measuring the similarity to reference items, Gierl et al. (2021,
p. 138–141) and Rathod et al. (2022) also described evaluation metrics to measure lexical
diversity between items, which is desirable when generating multiple items based on
the same context.

Generating multiple-choice items entails the additional challenge of evaluating distrac-
tor quality. For answer-unaware generation of multiple-choice reading comprehension
(MCRC) items, generic reference-based text generation metrics are not suitable, as Mau-
rya and Desarkar (2020) and Shuai et al. (2022) mention. Still, most authors report BLEU,
ROUGE, and METEOR as automatic evaluation metrics (Maurya and Desarkar, 2020;
Shuai et al., 2021, 2022; Xie et al., 2022; Dijkstra et al., 2022). Rodriguez-Torrealba et al.
(2022) use cosine similarity to measure distractor diversity. Raina and Gales (2022) pro-
pose a rather elaborate suite of quality assessments, including rule-based and trained
metrics for grammaticality, answerability, diversity and difficulty. Although they did not
rely on similarity to human-written references, they require several models to be trained
on relatively large amounts of data, and evaluation reliability is likely to be highly de-
pendent on the performance of those models.

5.1.2 Simulating test-takers

Analyzing how human test-takers respond to items plays an essential role in evaluating
item quality (Green, 2020). Therefore, a natural step towards automatic evaluation is the
automated generation of human-like responses from artificial models.

Several authors have suggested measuring the performance of machine reading com-
prehension (MRC) models when responding to the generated items, equating high MRC
performance with high answerability (Yuan et al., 2017; Klein and Nabi, 2019; Shuai et al.,
2021; Rathod et al., 2022; Raina and Gales, 2022; Uto et al., 2023). Yuan et al. (2017) and
Klein and Nabi (2019) have even integrated such MRC-based metrics directly into the
training process of AIG models, as a reward for reinforcement learning or in the loss
function for supervised learning. The underlying assumption in these approaches is
that an item is answerable if a MRC model can answer it. However, none of the works
above compare the MRC models to human performance or discuss the limitations that
come with this assumption, for example, that it may favor very easy or highly guessable
items.

In a more differentiated approach, Lalor et al. (2019) used a large ensemble of neural net-
works to generate responses to natural language inference and sentiment classification
items and fitted item response theory (IRT) models to estimate the difficulty parame-
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ters of each item. Their results show that the difficulty estimates correlate moderately
between humans and machines. Byrd and Srivastava (2022) used a similar procedure
to estimate difficulty and discrimination parameters for items in the HotpotQA dataset
(Yang et al., 2018). Raina and Gales (2022) proposed the entropy of MRC model response
probabilities across the answer options of multiple-choice items as a measure of the
uncertainty or unanswerability. Raina et al. (2023b) additionally evaluated distractor
plausibility based on the MRC confidence scores on the distractors.

While the approaches in the previous paragraph always provide the full item context as
input to the MRCmodels, Berzak et al. (2020), Liusie et al. (2023), and Raina et al. (2023a)
also considered the response accuracy without showing the text, letting the model an-
swer based on world knowledge alone. Results showed that many items in popular
benchmark datasets such as RACE (Lai et al., 2017) are highly guessable. All three works
used pre-trained language models specifically fine-tuned on multiple-choice items, and
Liusie et al. (2023) demonstrated that the results of the guessability evaluation strongly
depends on which dataset the model was trained on. In Berzak et al. (2020), the mod-
els even consistently outperformed humans in guessing without seeing the text. This
suggests that there are dataset-specific clues (e.g., different lengths or word choices in
the distractors) that allow the models to learn to guess the correct answer options with
relative ease if they are trained on the same dataset, but these clues may not necessarily
be detectable by human test-takers who were not exposed to the dataset before.

The evaluation protocol I will present in this chapter builds on and extends the ideas
above in two main ways:

1. I use generative LLMswith zero-shot prompting instead of fine-tuning task-specific
MRCmodels, removing the need for training data and reducing dataset-specific bi-
ases.

2. I combine guessability and answerability estimates to evaluate text informativity.

5.2 Evaluation protocol

I implement the following protocol for automatically evaluating MCRC item quality: An
evaluator model 𝑀eval is asked to respond to an item in two settings, with and without
the text. In the setting with text, it is given a text 𝑇 , a stem 𝑞 and a single answer option
𝑎 and is tasked with generating a label true or false indicating whether 𝑎 is correct or
incorrect. In the setting without text, 𝑇 is not included in the input (see Table 5.1).

Based on the responses by𝑀eval to all answer options in a (human-written or generated)

52



Chapter 5: Automatic item evaluation

item dataset 𝐷, we can calculate the average response accuracy in the setting with text,
serving as an estimate of the answerability of 𝐷, and in the setting without text, serv-
ing as an estimate of the guessability of 𝐷. Computing the difference between the two
estimates yields the text informativity, which I use as the main metric for item quality.

In principle, 𝑀eval can be any kind of model, as long as it can make binary true/false
decisions. However, in order for the answerability and guessability estimates to be rep-
resentative of human response behavior,𝑀eval must have strong enough comprehension
skills and a similar level of world knowledge to human test-takers. The experiment in
this chapter will test two LLMs for this assumption.

5.3 Experimental setup

5.3.1 Data

I applied the protocol described above to evaluate the same manually-written and gen-
eratedDWLG items used in Chapter 4, with the same test split of 50 lessons as described
in Section 4.3.1. I will compare these to the results from the human evaluation in Chap-
ter 4. In addition, I will also report results on the complete German part of Belebele
(Bandarkar et al., 2023) for comparison, even if it was not part of the human evaluation
in Chapter 4.

5.3.2 Models

In the role of 𝑀eval, I used the same instruction-tuned LLMs as in Chapter 4, namely
Llama 2 and GPT-4. By adding the results from the previous experiment, I effectively
added the human as a third 𝑀eval for comparison. This means that items generated by
all three 𝑀gen models are evaluated by all three 𝑀eval models.

This setup also allows us to check for interactions between𝑀gen and𝑀eval. For example,
it is plausible that the evaluation could lead to an over-estimation of answerability and
guessability in cases where 𝑀gen = 𝑀eval (i.e., when a model evaluates items that it had
generated itself).
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German English

W
ith

text

Text:
[𝑇 ]

Frage: [𝑞]

Antwort: [𝑎]

Gemäß dem Text oben, ist diese
Antwort richtig (R) oder falsch (F)?
Gib nur den Buchstaben R oder F an.

Text:
[𝑇 ]

Question: [𝑞]

Answer: [𝑎]

Based on the text above, is this
answer correct (C) or incorrect (I)?
Indicate only the letter C or I.

W
ithouttext

Die folgende Frage und Antwort
stammen aus einer Multiple-Choice-
Verständnisaufgabe zu einem un-
bekannten Text.

Frage: [𝑞]

Antwort: [𝑎]

Ohne den Text zu kennen, nur
basierend auf Allgemeinwissen, ist es
plausibler, dass die Antwort richtig
(R) oder falsch (F) ist? Gib nur den
Buchstaben R oder F an.

The following question and answer
are from a multiple-choice compre-
hension task about an unknown text.

Question: [𝑞]

Answer: [𝑎]

Without knowing the text, only
based on general knowledge, is this
answer more likely to be correct (C)
or incorrect (I)? Indicate only the
letter C or I.

Table 5.1: The German prompt templates for item evaluation and a translation into En-
glish. In the text 𝑇 , headings and paragraphs were separated by a newline
character.

5.3.3 Prompting

Similarly to Chapter 4, I manually engineered a zero-shot prompt for each setting, shown
in Table 5.1, and applied greedy decoding for generation. The prompt instructs the mod-
els to generate the true/false responses as single character labels to make sure that they
are tokenized as a single subword.

Responding to every answer option separately avoids the influence of other items and
other answer options, as discussed in Section 4.5.3. From Figure 5.1, we can see that this
setup is cleaner than in the human evaluation in that it only measures the effect of the
models’ prior knowledge and their reading comprehension ability.

While GPT-4 consistently produced output in the specified format, Llama 2 tended to
formulate its response as a complete sentence or, in the setting without text, preface
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Setting with text:

ResponsePrior knowledge

Text

Other items from same source

Other items from different source

Other answer options

Setting without text:

ResponsePrior knowledge

Text

Other items from same source

Other items from different source

Other answer options

Figure 5.1: Sources of evidence for responding to comprehension items in the automatic
evaluation (solid black lines) compared to the human evaluation (dashed gray
lines). In the setting with text, when deciding whether a specific answer op-
tion is correct or incorrect, the LLM is able to consult the text and its own
prior knowledge. In the setting without the text, only prior knowledge is ac-
cessible. Only a single answer option from a single item was included in each
prompt.
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it with a disclaimer like “Without looking at the text, it is difficult to say whether this
answer is correct or not” without producing a label at all. I was unable to prevent this
behavior through prompt engineering and instead used the predicted log-probabilities
to decide which of the two labels was more likely to be generated as the first token in
the generated response.

5.3.4 Threshold optimization

After some initial tests, it became clear that Llama 2 had a strong bias towards generating
the true label, resulting in response accuracies close to random guessing. To counter-
act this bias, I adapted the classification threshold for positive responses. Specifically, I
considered a response to be positive if

𝑃(true)
𝑃(true) + 𝑃(false)

≥ 𝜏,

where 𝑃(𝑥) is the probability Llama 2 assigns to 𝑥 as the first token of its response. This is
equivalent to sampling from the predicted probability distribution of the first generated
token, discarding tokens that are not one of the true or false labels, and then checking if
the true label was produced with a relative frequency of at least 𝜏.

To get the optimal threshold 𝜏∗, I let Llama 2 respond to human-written items in a sepa-
rate development split of 50 lessons inDWLG and selected the value for 𝜏 that maximizes
response accuracy. I did this separately for the settings with and without text, resulting
in two optimized thresholds 𝜏∗with text = 0.9952 and 𝜏∗without text = 0.9849. These optimized
thresholds resulted in response accuracies of 0.880 with text and 0.657 without text on
the development split. I used the same two thresholds for evaluating all items, no matter
if they were human-written or generated or which dataset they originated from.

For GPT-4, I did not apply threshold optimization, because its application programming
interface (API) did not return any token probabilities at the time of writing this thesis,
but also because it did not appear to have a strong bias towards any of the labels.

The code I used for generating and parsing LLM responses and optimizing the threshold
is available on GitHub1.

1https://github.com/saeub/item-evaluation
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Figure 5.2: Mean human and LLM response accuracies on human-written and generated
items. Accuracies are on the level of answer options, therefore random guess-
ing is at 50%. For human evaluators, means are based on 10 texts and around
185 responses without text and around 546 responses with text. For LLM
evaluators, means are based on 50 texts and around 451 responses in each
setting for DWLG and 488 texts and 3600 responses for Belebele. Error bars
are bootstrapped 95% confidence intervals.

5.4 Results

5.4.1 System-level guessability, answerability, and text
informativity

Figure 5.2 shows system-level guessability and answerability estimates for all available
combinations of𝑀gen and𝑀eval. For comparability, all response accuracies are calculated
on the level of answer options, even if Belebele does not allow multiple correct answer
options in the same item2. The data for the human evaluators in this figure is the same
as in Figure 4.3.

We can see that GPT-4 consistently achieved higher response accuracies than both hu-

2This also means that the response accuracies achieved by Llama 2 are not comparable to the 69.4%
accuracy on German Belebele as reported by Bandarkar et al. (2023).
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Evaluator (𝑀eval)
Human Llama 2 GPT-4

Item source (𝑀gen)
Human 0.294 0.216 0.267
Llama 2 0.187 0.160 0.129
GPT-4 0.259 0.253 0.227

Table 5.2: Text informativity estimates (↑) for all combinations of 𝑀gen and 𝑀eval for
DWLG. The best text informativity estimates according to each 𝑀eval are
marked in bold.

mans and Llama 2, with or without seeing the text. This shows that GPT-4 has very
strong MRC capabilities as well as rich prior world knowledge that may exceed that of
the human annotators. Llama 2 appeared to perform slightly worse or equal to humans
in the setting with text, and slightly better or equal in the setting without text. However,
most of these differences are not significant given the confidence intervals.

In general, the three evaluators mostly agreed on the observations already reported in
Section 4.4.2. They all showed that the items generated by Llama 2 are the worst in
terms of text informativity, and items generated by GPT-4 exhibit better answerability
and worse guessability than human-written items. Humans and GPT-4 agreed that the
human-written items are best in terms of text informativity, while evaluating with Llama
2 lead to a higher text informativity for items generated by GPT-4. Refer to Table 5.2 for
a complete comparison of text informativity estimates for all combinations of 𝑀gen and
𝑀eval.

5.4.2 Response-level inter-annotator agreement

In order to compare the response behavior of Llama 2 and GPT-4 to that of human an-
notators, I report Cohen’s coefficient 𝜅 (Cohen, 1960) as a measure of inter-annotator
agreement (IAA). Specifically, for each of the two LLMs, I computed response-level 𝜅
between the model and each human annotator separately and then calculated the mean
of those values. Since the interpretation of Cohen’s 𝜅 is highly dependent on the use
case (McHugh, 2012), I also provide the same mean 𝜅 values for each human annotator,
to measure the average agreement between humans. All results are shown in Table 5.3.

Unsurprisingly, IAA is much higher in the setting with text than without. In both set-
tings, agreement between GPT-4 and humans is comparable to or exceeds agreement
between humans. Llama 2 has lower agreement overall, but still well within the range
of inter-human agreements.
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Mean IAA with (other) humans
Evaluator (𝑀eval) without text with text
Human 1 0.185 0.712
Human 2 0.015 0.679
Human 3 0.000 0.677
Human 4 0.400 0.669
Human 5 0.000 0.634
Human 6 0.216 0.729
Human mean 0.136 0.683
Llama 2 0.051 0.651
GPT-4 0.185 0.724

Table 5.3: Mean IAA (Cohen’s 𝜅) between evaluators and (other) humans with and with-
out text. Only human-written and generated DWLG items are included. Hu-
man mean is the mean of all six human annotators. The values in the setting
without text are less reliable because each human only annotated a third of all
items in this setting.

5.5 Discussion

5.5.1 Validity of the item evaluation protocol

As mentioned in Section 5.2, two main assumptions about 𝑀eval are required for the
evaluation protocol to be considered valid:

1. 𝑀eval has similar reading comprehension skills to overly proficient humans (i.e.,
proficiency should exceed item difficulty by a large margin).

2. 𝑀eval has similar world knowledge to humans.

We can test these assumptions for Llama 2 and GPT-4 by comparing their response be-
haviors to human annotators.

Although GPT-4 consistently outperformed humans in terms of response accuracy, its
system-level guessability, answerability, and text informativity estimates were compara-
ble to humans. The ranking of the different 𝑀gen systems is mostly the same, no matter
whether they were evaluated by humans or GPT-4 (see Table 5.2). Llama 2 was less
reliable in this respect.

In terms of response-level behavior, both GPT-4 and Llama 2 performed similarly to
humans, with IAA values well within the range of human variability (see Table 5.3).
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This means that both Llama 2 and GPT-4 could be used to represent or substitute a single
human annotator. However, it is important to note that the binary responses produced
by the LLMs do not give us any information about label variation or confidence, which
are essential aspects in human evaluation (Plank, 2022). Therefore, neither of the two
models can be used to represent an entire ensemble of human annotators.

An additional concern mentioned in Section 5.3.2 was that using the same LLMs for both
generation and evaluation may lead to biases when 𝑀gen = 𝑀eval. Based on Figure 5.2, it
is possible that such a bias is present in Llama 2, since it only manages to outperform
humans in terms of response accuracy (with text) when responding to items generated
by Llama 2. However, compared to the results reported by Liusie et al. (2023) on language
models fine-tuned on different MRC datasets, the effect here is rather small, if present
at all.

Interestingly, applying the automatic evaluation to Belebele reveals that its text informa-
tivity is very low, which is unexpected given that the dataset was created with a rigorous
review process to ensure quality. Compared to human-written items inDWLG, Belebele
has both higher guessability and lower answerability. The higher guessability may be
explained by the fact that items in Belebele always have one correct and three incorrect
answer options. Because of this, there is less pressure on the item writers to make ev-
ery single distractor unguessable, since there are always two other distractors. On the
other hand, there should be more pressure to make the correct answer option answer-
able (i.e., unambiguously correct), since not doing so would immediately render the item
useless. It is likely, however, that the answerability estimate of 0.895 for Belebele in Fig-
ure 5.2 do not represent human performance well. Belebele was created specifically as a
challenge for MRC, and as a result, the assumption that item difficulty is much smaller
than the test-taker’s proficiency (see Section 4.3.5.1) does not hold even for the highest-
performing LLMs. Bandarkar et al. (2023) reported a human response accuracy of 97.6%
on Belebele, but this value is not comparable because it was obtained in a conventional
multiple-choice setting (i.e., seeing all answer options while selecting the correct one,
with random guessing at 25%).

Overall, it appears that text informativity can be a reliable metric for automatic evalua-
tion, if the evaluating LLM has a sufficiently high MRC performance. A consequence of
this is that the metric is more suitable for use cases such as second language education,
rather than challenge sets for MRC benchmarks. It also means that the evaluating LLM
needs to be chosen in accordance with the difficulty of the items. GPT-4 generally seems
to be a good choice for estimating answerability and for ranking text informativity, but
its world knowledge may be too strong, leading to an over-estimation of guessability.
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5.5.2 The case for LLM-based simulation of test-takers

Instruction-tuned LLMs are not designed to behave like humans – they are designed to
follow instructions and give useful answers. This raises the question about the justifica-
tion for using these models to simulate test-takers and evaluate item quality. There are
several advantages to using zero-shot LLMs over fine-tuning task-specific models:

• Zero-shotting LLMs does not require additional training data, making them more
easily usable for low-resource languages and small datasets.

• The model is dataset-agnostic, meaning that the same model can be used for com-
paring different datasets with a smaller risk of being biased towards one of them.

• Avoiding training simplifies implementation and reproducibility, especially com-
pared to approaches involving large model ensembles like the one proposed by
Byrd and Srivastava (2022).

The main disadvantages of using LLMs are their computational inefficiency and, cur-
rently, the dependency on commercial APIs for accessing state-of-the-art models such
as GPT-4. While the high MRC performance required by the evaluation protocol is still a
limiting factor, proprietary LLMs are inching closer towards both fine-tuned and human
performance (Qin et al., 2023), and we can eventually also expect open-source models to
become more feasible for item evaluation.

5.5.3 Limitations

While the automatic evaluation protocol has overcome some limitations of the human
evaluation conducted in Chapter 4, such as the influence of other items and answer op-
tions on the responses (see Section 5.3.3), the experiment in this chapter also comes
with its own limitations. First, the threshold optimization required for Llama 2 (see
Section 5.3.4) means that it cannot be considered truly zero-shot anymore. Second, the
number of items I used to compare human and LLM responses is still relatively low,
leading to large confidence intervals in Figure 5.2 and limiting statistical power. A solu-
tion to this could be to extract multiple responses per answer option from each model
by using several prompts paraphrased in different ways (see Portillo Wightman et al.,
2023). Third, the generalizability to datasets other than DWLG needs further investi-
gation. Especially for more challenging datasets such as Belebele, it is possible that the
assumption of overly proficient evaluators does not hold anymore (even for GPT-4), and
comparable human responses would need to be collected to test this.
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5.6 Summary

The goal in this chapter was to develop a protocol for reference-free automatic eval-
uation of multiple-choice reading comprehension items. The approach I proposed es-
timates average guessability, answerability, and text informativity of a set of items by
letting a highly performant large language model (LLM) respond (zero-shot) to each an-
swer option and measuring response accuracy without the text (guessability) and with
the text (answerability). I tested this approach with GPT-4 and Llama 2 and compared
the results to the human evaluation from Chapter 4.

Evaluating with GPT-4 gave the most similar results to human annotators, both at the
system level and the response level. In fact, inter-annotator agreement (IAA) between
GPT-4 and humans exceeded IAA between humans (meanCohen’s 𝜅 = 0.724 vs. 0.683 for
responseswith text). Results fromLlama 2were also promising, but only after optimizing
the classification threshold due to a strong bias towards positive responses. Using LLMs
for evaluating generated items could be particularly useful for low-resource scenarios.
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6 Improving item generation
through fine-tuning

The results presented in Chapter 4 have shown that Llama 2 is capable of generating
useful multiple-choice reading comprehension (MCRC) items in a zero-shot setting, but
it clearly underperforms in comparison to the larger, closed-source GPT-4. In this chap-
ter, I will investigate whether this performance gap can be reduced by fine-tuning Llama
2 on task-specific data. I will consider both items designed by humans and items auto-
matically generated by GPT-4 as training data.

In accordance with the previous experiments, the evaluation will focus on guessability,
answerability, and text informativity as indicators of item quality. The essential question
is whether large language models (LLMs) are capable of identifying and learning these
requirements implicitly from training examples. Chapter 5 has shown that very large
models are necessary to even evaluate these metrics, giving reason to believe that learn-
ing to optimize them in generated items is difficult. Given the high level of abstraction
at play and insights from benchmarks in previous work (Maynez et al., 2023), supervised
fine-tuning is more promising than few-shot learning for this application.

Based on both the theoretical and practical motivations, two research questions guide
the experiment in this chapter:

1. Can large language models learn and implement the meaning of item guessability
and answerability implicitly from training examples?

2. Can supervised fine-tuning on human- or LLM-generated data improve item gener-
ation performance in Llama 2?
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6.1 Background and related work

6.1.1 Efficient LLM fine-tuning

While fine-tuning pre-trained language models on task-specific data has been a very
successful approach in many applications, the increasingly large number of parameters
presents several efficiency-related challenges when applying the same approach to mod-
ern LLMs (Liu et al., 2022; Pfeiffer et al., 2023). In particular, updating the complete set of
model parameters during training is computationally expensive. As a result, the research
area of parameter-efficient fine-tuning has gained more attention in recent years.

One of the themost commonly usedmethods for parameter-efficient fine-tuning of LLMs
is low-rank adaptation (LoRA) (Hu et al., 2021). In this approach, the pre-trained model
weights are frozen and a subset of the matrix multiplications in the model are reparam-
eterized with a small number of additional weights. Specifically, given a pre-trained
weight matrix 𝑊 ∈ ℝ𝑑×𝑘 and an input vector 𝑥 ∈ ℝ𝑑 , the forward pass 𝑦 = 𝑊𝑥 is repa-
rameterized as

𝑦 = 𝑊𝑥 + 𝐵𝐴𝑥,

where 𝐵 ∈ ℝ𝑑×𝑟 and 𝐴 ∈ ℝ𝑟×𝑘 are added weight matrices learned during fine-tuning. By
choosing a low number for the rank 𝑟 (much smaller than 𝑑 and 𝑘), the total number
of trainable parameters is kept to a minimum. Hu et al. (2021) applied this reparam-
eterization to the attention weights in the transformer model and demonstrated that
the approach is effective on a variety of downstream tasks including natural language
generation while reducing the number of trainable parameters to 0.1% of the full model.

LoRA is effective at reducing the required computational resources compared to fine-
tuning all parameters in the model, but in comparison to in-context (zero-shot or few-
shot) learning, memory usage remains high, since the entire frozen base model still has
to be stored in memory. Dettmers et al. (2023) presented QLoRA as a solution to this
problem, where they applied a lower-precision quantization (e.g., 8-bit or 4-bit floating
point precision) to the pre-trained parameters, while keeping the LoRA parameters at
a higher precision (16-bit). As a result, fine-tuning a large model requires comparable
amounts of memory to running inference with the same model, making experiments
with LLM more feasible.

64



Chapter 6: Improving item generation through fine-tuning

6.1.2 Training on LLM-generated data

Instruction-tuned LLMs have the remarkable ability to perform competitively in a wide
range of natural language generation tasks without any training data (see Section 4.1.1),
but they are computationally inefficient and potentially over-parameterized for simpler
tasks. In response to this, recent research has attempted to prompt LLMs to generate
training data for specific tasks and fine-tune smaller language models on that synthetic
data. This is essentially a form of knowledge distillation, with the goal of creating a
task-specific, more efficient, and possibly better-performing model (Meng et al., 2022).

Meng et al. (2022), Claveau et al. (2022), and Ye et al. (2022a) used GPT-style generative
language models to generate training data for various classification tasks and fine-tuned
smaller BERT-style masked language models on that data to perform the classification.
Ye et al. (2022b) presented a framework where the prompt for generating training sam-
ples is iteratively updated in order to optimize data quality. Wang et al. (2023b) showed
that instruction-tuning can be done by fine-tuning on filtered generated data, even when
the same model is used for generating and fine-tuning. Whitehouse et al. (2023) used
LLMs to augment multilingual datasets with low-resource languages.

Overall, these works show that training on LLM-generated data can be beneficial in sce-
narios where human-generated data is scarce, as long as it is of sufficiently high quality.

6.2 Experimental setup

6.2.1 Training data

I used two target datasets for fine-tuning:

1. Human target: The DWLG training set consisting of 354 human-written texts
and items (see Section 3.3).

2. GPT-4 target: The texts from the DWLG training set with three items per text
generated by GPT-4 using the zero-shot method described in Section 4.3.3.

For evaluation, I used the same test set of 50 texts as in Chapters 4 and 5. An addi-
tional split of 50 human-written texts and items served as a development set for testing
hyperparameters and detecting overfitting during training.

Each training sample contained the same prompt as in Section 4.3.3. The specific for-
mat of the items roughly corresponds to the format produced somewhat consistently by
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Llama 2 in the zero-shot setting. The full template is shown in Appendix B.1.

6.2.2 Fine-tuning

I used the instruction-tuned checkpoint Llama-2-70b-chat-hf as a starting point for
fine-tuning. QLoRA fine-tuning was implemented using the transformers (Wolf et al.,
2020), peft (Mangrulkar et al., 2022), and bitsandbytes1 libraries. I loaded the original
model parameters in 4-bit (NF4) precision and applied double quantization, while LoRA
parameters are kept in 16-bit precision (Dettmers et al., 2023). I used rank 𝑟 = 64 for
LoRA.

Training was done on six NVIDIA V100 GPUs with 32 GB of memory each. Both models
were trained for two epochs (after which the validation loss did not decrease any further)
with a batch size of one, accumulating gradients over four steps. Refer to Appendix B.2
for the complete set of hyperparameters.

6.2.3 Inference and postprocessing

To generate items for texts in the test set, I used the same setup as in Section 4.3.3,
with the exception of applying random sampling with a temperature of 0.5 instead of
greedy decoding. The reason for this is that the fine-tuned models had a strong tendency
to generate very repetitive items, sometimes with duplicate or near-duplicate answer
options. Increasing the temperature prevented this behavior to some degree.

The previously observed issue that Llama 2 sometimes abruptly switches to English
while generating German text (see Section 4.3.4) did not occur anymore after the first 40
fine-tuning steps, therefore language detection was not necessary.

6.2.4 Evaluation

I applied the automatic evaluation protocol presented in Section 5.2, using both GPT-
4 and Llama 2 with zero-shot prompting in the role of 𝑀eval to estimate system-level
guessability, answerability, and text informativity. If the fine-tuned 𝑀gen does in fact
learn to imitate the desired characteristics of the items in the target dataset, we should
expect those three metrics to shift towards the metrics of the target (human or GPT-4)
dataset. To get more insights into the learning process, I evaluated the models at regular
intervals during training.

1https://github.com/TimDettmers/bitsandbytes
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6.3 Results

6.3.1 Surface-level features of generated items

As mentioned in Section 4.4.1, the items generated by GPT-4 and Llama 2 in the zero-
shot setting differ from the human-written items in DWLG at the surface level. Most
importantly, the generated items did not contain any cloze-style stems and mostly only
contained a single correct answer option. This means that fine-tuning Llama 2 on the hu-
man target involves a larger data shift compared to the GPT-4 target. From Figure 6.1, we
can see that features like the average number of correct answer options or the percentage
of cloze-style items approach the values of the target dataset after about 80 fine-tuning
steps, meaning that these surface-level features were effectively learned after about one
epoch.

6.3.2 Guessability, answerability, and text informativity

Figure 6.2 shows how guessability, answerability, and text informativity estimates of
generated items changed as fine-tuning progressed. When fine-tuning on human-written
items, we can see a clear decrease in both guessability and answerability within the
first 120 update steps (about 1.5 epochs). Text informativity appears to have decreased
slightly. When fine-tuning on GPT-4, all metrics remained relatively stable. The ex-
pected trend that the metrics of the generated items should approach the metrics of the
target dataset is not visible in these results.

Overall, the two 𝑀eval models (GPT-4 and Llama 2) largely agreed on these results, as
shown by the large overlap between the green and blue areas in Figure 6.2. This can be
considered additional evidence of the reliability of the automatic evaluation protocol.

6.3.3 Qualitative analysis

A closer look at the generated items confirms that the models mainly learned to imitate
surface-level features. The issues that had already negatively impacted answerability
in the zero-shot setting and require a deeper semantic understanding (see Section 4.4.4)
remained present in the fine-tuned models. Both models also still exhibited occasional
grammatical errors after fine-tuning.
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Figure 6.1: Changes in surface-level characteristics of generated items while fine-tuning
Llama 2 on human-written and GPT-4-generated items. The y-axes repre-
sent the average stem length, the average answer option length, the average
number of correct answer options per item, and the percentage of cloze-style
items in the output generated by Llama 2. Target refers to the dataset the
model is trained on. All values are calculated based on the test split of 50
texts.
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Fine-tuning on the human target dataset additionally introduced new types of errors:

• Cloze gap in inappropriate location: The model generated a cloze-style stem,
but the answer options do not syntactically fit in that location. In some cases, the
answer options are also semantically incoherent.

Examples:

Item: (generated after 80 fine-tuning steps on human target)
Der Karneval hat ___ Ursprünge.

✗ im Christentum

✓ im alten Rom

✓ in der Zeit der Saturnalien

Item: (generated after 80 fine-tuning steps on human target)
Warum tragen auch Hollywood-Stars jetzt Sandalen und Socken ___

✗ weil sie sonst nicht so bequem sind.

✗ weil sie sonst nicht so schön sind.

✗ weil sie sonst nicht so praktisch sind.

• Contradictory labels: Themodel generated answer optionswhose correct/incorrect
labels contradict each other. This sometimes occurred when the model generated
highly repetitive answer options with similar meanings.

Examples:

Item: (generated after 40 fine-tuning steps on human target)
Wie lang hat der Karneval in Köln Tradition?

✗ 2000 Jahre [same as the third option, should be ✓]

✗ 40 Tage

✓ 2000 Jahre

Item: (generated after 80 fine-tuning steps on human target)
Andrea Liekweg ___

✗ ist eine Apothekerin [entailed by the third option, should be ✓]

✗ ist eine Krankenschwester

✓ ist eine Apothekerin, die eine eigene Medikamentenliste führt
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In the model fine-tuned on the GPT-4 target dataset, I was unable to locate similar se-
mantic issues, and there were generally fewer noticeable changes as training progressed.

6.4 Discussion

6.4.1 Learning item quality from data

The first research question in this chapter concerned whether it is possible for an LLM
to recognize and replicate what makes items answerable or unguessable implicitly by
fine-tuning on items that exhibit these features. To find an answer to this question, I
fine-tuned Llama 2 on two different sets of items, both of which had a higher average text
informativity metric than the ones generated by Llama 2 before fine-tuning. I found that
neither model converged towards the guessability, answerability, or text informativity
metrics of the target dataset, as shown in Figure 6.2.

While the model fine-tuned on the GPT-4 target did not appear to experience signifi-
cant changes in item quality, the human target resulted in a noticeable degradation in
answerability and introduced several semantic issues in the generated items. A possi-
ble explanation for this is the smaller data shift when fine-tuning on items generated
by GPT-4, since those are much more similar to the items generated by Llama 2 before
fine-tuning. It seems that the model prioritizes surface-level features, which are learned
very quickly (as shown in Figure 6.1), sacrificing semantic integrity in return.

Assuming that these interpretations are accurate, there are two practical implications:

1. Fine-tuning should be done on items that have similar surface-level characteristics
to the items generated by the model before fine-tuning. A solution could be to first
engineer the prompt (e.g., by providing examples) to elicit items that look similar
to the target dataset first, and then fine-tuning using that prompt.

2. Improving abstract features such as anwerability and guessability through super-
vised fine-tuning may require larger-scale datasets than DWLG.

Given that there are no large MCRC datasets for most languages except English, alter-
native training approaches such as reinforcement learning from AI feedback (Bai et al.,
2022) or reward ranked fine-tuning (Dong et al., 2023) may be more promising. In these
approaches, items are sampled from𝑀gen, a reward quantifying item quality (e.g., text in-
formativity) is calculated using𝑀eval, and𝑀gen is updated to maximize that reward. Such
reward-based methods have the potential to solve both of the issues listed above, since
sampling items from the model automatically eliminates the surface-level data shift and
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removes the need for high-quality training data. However, a prerequisite for applying
this would be a rewardmodel that is able to evaluate guessability and answerability at the
item level. In this thesis, I relied on binary responses from a small number of humans or
zero-shot LLMs in the role of𝑀eval, which means that guessability and answerability can
only be estimated reliably on the system-level (see Sections 4.3.5.1 and 5.2). Therefore, a
next step would be to develop a method for obtaining human-like response probabilities
at the level of single items, for example, by estimating confidence in LLM responses (see,
e.g., Portillo Wightman et al., 2023).

6.4.2 Is Llama 2 a lost cause?

The second research question asked specifically whether supervised fine-tuning can im-
prove Llama 2 as an open-source model beyond its zero-shot MCRC item generation
performance. Based on the results in this chapter, this question cannot be answered
conclusively. In addition to the size of the training dataset, there are two model-specific
factors that could have limited the success of my fine-tuning experiments:

1. Model size: Although the number of parameters in GPT-4 is not public, it is safe
to assume that it is significantly larger than Llama 2. It is possible that the level of
abstraction involved in complex semantic features like guessability and answer-
ability requires larger models.

2. Model pre-training: Llama 2 is English-centric with only a small fraction of pre-
training data in German (see Section 4.3.2). This undoubtedly manifested itself
in my experiments, for instance, whenever the model produced English or un-
grammatical German output (see Sections 4.3.4 and 6.3.3). It may also mean that
the language modeling capabilities for German are insufficient for automatic item
generation and continued pre-training on German datamay alleviate this problem.
Preliminary results on LeoLM (Plüster, 2023) have shownmoderate improvements,
but German performance is still low compared to English.

Overall, Llama 2 with 70B parameters is still likely to be among the most competitive
open-source LLMs currently available for this task, and it is plausible that improvements
in item quality can be achieved by pre-training or fine-tuning on more data.

6.4.3 Limitations

There are several aspects limiting the interpretation of the results presented in this chap-
ter. First, the experiment fully relied on automatic evaluation metrics. Although the
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informal qualitative analysis gave a similar impression, a quantitative evaluation with
human annotators should ideally be conducted to confirm the results. Second, the fine-
tuning experiments were restricted to the DWLG dataset. In order to generalize the
discussion to other datasets, further experiments would be required. Experiments with
Belebele (Bandarkar et al., 2023) could be a good starting point for future work. Third,
I did not systematically investigate the effect of hyperparameters on training, and there
is a possibility that some improvement can still be achieved through hyperparameter
optimization.

6.5 Summary

As a follow-up to Chapter 4, this chapter presented a fine-tuning experiment with Llama
2 in an attempt to improve its ability to generate multiple-choice reading comprehension
items. I used low-rank adaptation (LoRA) to fine-tune a model on human-written items
and another on GPT-4-generated items and evaluated the quality of the output using the
automatic evaluation protocol developed in Chapter 5.

Although the models did learn to reproduce surface-level features such as item type
or the number of correct answer options, they failed to produce items with a higher
text informativity. When fine-tuning on human-written items, item quality deteriorated,
while fine-tuning on GPT-4-generated items did not substantially affect item quality.
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7 Conclusion and outlook

The aim of this thesis was to explore different ways of integrating large language mod-
els (LLMs) into the process of developing reading comprehension test items, focusing
on automatic item generation (AIG) and evaluation. To this end, I compiled DWLG, a
dataset of German multiple-choice reading comprehension (MCRC) items, I introduced
text informativity as an evaluation metric motivated by item response theory (IRT), and
I conducted experiments to test the performance of LLMs in generating and evaluating
items. These contributions also represent first steps towards closing the three major
research gaps presented in Section 1.4: the lack of non-English data, the lack of valid
automatic evaluation metrics, and the lack of interdisciplinarity.

7.1 Answers to research questions

In this section, I will revisit the research questions asked in the experiment chapters and
summarize the main findings to answer them. For more detailed summaries, refer to the
sections at the end of each respective chapter.

How good are large language models at generating German multiple-choice
reading comprehension items for given texts in a zero-shot setting? (Chapter 4)

To answer this question, I conducted a human evaluation of Llama 2 and GPT-4, collect-
ing quality ratings and item responses from six annotators. GPT-4 outperformed Llama
2 in terms of text informativity, but did not reach the level of human-written items. On
average, GPT-4 received higher quality ratings than human-written items, which is owed
to better answerability. However, GPT-4 produced more guessable items.

Can responses by large language models to multiple-choice reading compre-
hension items be used to automatically evaluate item quality? (Chapter 5)

I compared item responses by Llama 2 and GPT-4 to human responses to answer this
question. The experiment showed that guessability, answerability, and text informativity
estimates by both models are similar to those by humans when evaluating generated or
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human-written items – GPT-4 more so than Llama 2. On the response-level, GPT-4
showed stronger agreement with human annotators than Llama 2, but both were within
the range of human variability. In summary, Llama 2 or GPT-4 can be representative of
a single human annotator, but cannot replace a larger sample of annotators.

Can large language models learn and implement the meaning of item guess-
ability and answerability implicitly from training examples? (Chapter 6)

To answer this question, I experimented with fine-tuning Llama 2 on human-written and
GPT-4-generated items. While the model quickly learned surface-level features such as
the item type or length, the guessability and answerability of the generated items did
not improve. This suggests that learning guessability and answerability implicitly from
examples requires more data.

Can supervised fine-tuning on human- or LLM-generated data improve item
generation performance in Llama 2? (Chapter 6)

The quality of generated items did not improve in either case. When fine-tuning on
human-written items, quality even deteriorated, possibly because these items have very
different surface-level features. It is also possible that more German pre-training data is
necessary.

Overall, these results show that LLMs have some potential to make item development
more efficient through AIG and item evaluation, but open-source models like Llama 2
still have a long way to go in order to catch up with commercial products like GPT-4.

7.2 Open questions and future work

For AIG, the question remains whether and how the quality of items generated by LLMs
can be improved, for example, throughmore systematic prompt engineering. As the fine-
tuning experiments in this thesis were rather limited, future work could study larger or
more German-centric open source models or experiment with different learning objec-
tives or paradigms. Another line of research could be controlling the difficulty of gen-
erated items (Gao et al., 2019; Uto et al., 2023), since I deliberately excluded this aspect
from my experiments. Kalpakchi and Boye (2023a) have done some preliminary work
on difficulty-controlled generation with GPT-3 in Swedish, with limited success.

The experiments involving the automatic item evaluation protocol also left some ques-
tions open. For instance, it is unclear how well the evaluation works for datasets other
than DWLG, and specifically for more difficult items. Moreover, there may be better
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choices for open-source evaluator models than Llama 2, which gave poorly calibrated
responses and required threshold optimization. Future work could also focus on en-
abling guessability and answerability evaluation of single items (as opposed to system-
level evaluation) by modeling uncertainty and label variation at the response-level. This
would also unlock learning paradigms such as reinforcement learning, where text in-
formativity estimates could be used as a reward, similarly to what Yuan et al. (2017)
proposed.

The amount of data available for German and other non-English languages remains a
problem, and future work should focus on creating more high-quality datasets of test
items. Building multilingually parallel datasets in the spirit of Belebele (Bandarkar et al.,
2023) or QA4MRE (Peñas et al., 2011, 2012) may be the most efficient way of reducing
data scarcity in low-resource languages. For non-English AIG, data scarcity may also be
circumventable to some degree by automatically translating texts to English and trans-
lating the generated items back into the target language.

76



References

I. Aldabe and M. Maritxalar. Automatic Distractor Generation for Domain Specific Texts,
pages 27–38. Springer Berlin Heidelberg, 2010. ISBN 9783642147708.
doi:10.1007/978-3-642-14770-8_5.

E. Almazrouei, H. Alobeidli, A. Alshamsi, A. Cappelli, R. Cojocaru, M. Debbah,
É. Goffinet, D. Hesslow, J. Launay, Q. Malartic, D. Mazzotta, B. Noune, B. Pannier,
and G. Penedo. The Falcon series of open language models. Nov. 2023.
doi:10.48550/arXiv.2311.16867.

J. Amidei, P. Piwek, and A. Willis. Evaluation methodologies in automatic question
generation 2013-2018. In Proceedings of the 11th International Conference on Natural
Language Generation. Association for Computational Linguistics, 2018.
doi:10.18653/v1/w18-6537.

T. Amstad. Wie verständlich sind unsere Zeitungen? PhD thesis, University of Zurich,
Zürich, 1978.

Anthropic. Model card and evaluations for Claude models, 2023. URL
https://efficient-manatee.files.svdcdn.com/production/images/Model-Card-Claude-2.
pdf?dm=1689034733. Accessed: 25 Dec 2023.

Y. Attali, A. Runge, G. T. LaFlair, K. Yancey, S. Goodwin, Y. Park, and A. A. von Davier.
The interactive reading task: Transformer-based automatic item generation.
Frontiers in Artificial Intelligence, 5, July 2022. doi:10.3389/frai.2022.903077.

Y. Bai, S. Kadavath, S. Kundu, A. Askell, J. Kernion, A. Jones, A. Chen, A. Goldie,
A. Mirhoseini, C. McKinnon, C. Chen, C. Olsson, C. Olah, D. Hernandez, D. Drain,
D. Ganguli, D. Li, E. Tran-Johnson, E. Perez, J. Kerr, J. Mueller, J. Ladish, J. Landau,
K. Ndousse, K. Lukosuite, L. Lovitt, M. Sellitto, N. Elhage, N. Schiefer, N. Mercado,
N. DasSarma, R. Lasenby, R. Larson, S. Ringer, S. Johnston, S. Kravec, S. E. Showk,
S. Fort, T. Lanham, T. Telleen-Lawton, T. Conerly, T. Henighan, T. Hume, S. R.
Bowman, Z. Hatfield-Dodds, B. Mann, D. Amodei, N. Joseph, S. McCandlish,
T. Brown, and J. Kaplan. Constitutional ai: Harmlessness from ai feedback. Dec.
2022. doi:10.48550/arXiv.2212.08073.

77

https://doi.org/10.1007/978-3-642-14770-8_5
https://doi.org/10.48550/arXiv.2311.16867
https://doi.org/10.18653/v1/w18-6537
https://efficient-manatee.files.svdcdn.com/production/images/Model-Card-Claude-2.pdf?dm=1689034733
https://efficient-manatee.files.svdcdn.com/production/images/Model-Card-Claude-2.pdf?dm=1689034733
https://doi.org/10.3389/frai.2022.903077
https://doi.org/10.48550/arXiv.2212.08073


References

O. Bajgar, R. Kadlec, and J. Kleindienst. Embracing Data Abundance. Feb. 2017. URL
https://openreview.net/forum?id=H1U4mhVFe.

L. Bandarkar, D. Liang, B. Muller, M. Artetxe, S. N. Shukla, D. Husa, N. Goyal,
A. Krishnan, L. Zettlemoyer, and M. Khabsa. The Belebele benchmark: a parallel
reading comprehension dataset in 122 language variants. Aug. 2023.
doi:10.48550/arXiv.2308.16884.

S. Banerjee and A. Lavie. METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments. In J. Goldstein, A. Lavie, C.-Y. Lin, and
C. Voss, editors, Proceedings of the ACL Workshop on Intrinsic and Extrinsic
Evaluation Measures for Machine Translation and/or Summarization, pages 65–72,
Ann Arbor, Michigan, June 2005. Association for Computational Linguistics. URL
https://aclanthology.org/W05-0909.

M. A. Barton and F. M. Lord. An upper asymptote for the three-parameter logistic
item-response model. ETS Research Report Series, 1981(1):i–8, 1981. ISSN 2330-8516.
doi:10.1002/j.2333-8504.1981.tb01255.x.

G. Berger, T. Rischewski, L. Chiruzzo, and A. Rosá. Generation of English question
answer exercises from texts using transformers based models. 2022 IEEE Latin
American Conference on Computational Intelligence (LA-CCI), pages 1–5, 2022.

Y. Berzak, J. Malmaud, and R. Levy. STARC: Structured annotations for reading
comprehension. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, 2020.
doi:10.18653/v1/2020.acl-main.507.

M. Byrd and S. Srivastava. Predicting difficulty and discrimination of natural language
questions. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). Association for Computational
Linguistics, 2022. doi:10.18653/v1/2022.acl-short.15.

D. R. CH and S. K. Saha. Automatic multiple choice question generation from text: A
survey. IEEE Transactions on Learning Technologies, 13(1):14–25, Jan. 2020. ISSN
2372-0050. doi:10.1109/tlt.2018.2889100.

R. Circi, J. Hicks, and E. Sikali. Automatic item generation: foundations and machine
learning-based approaches for assessments. Frontiers in Education, 8, May 2023.
doi:10.3389/feduc.2023.858273.

V. Claveau, A. Chaffin, and E. Kijak. Generating artificial texts as substitution or
complement of training data. In N. Calzolari, F. Béchet, P. Blache, K. Choukri,

78

https://openreview.net/forum?id=H1U4mhVFe
https://doi.org/10.48550/arXiv.2308.16884
https://aclanthology.org/W05-0909
https://doi.org/10.1002/j.2333-8504.1981.tb01255.x
https://doi.org/10.18653/v1/2020.acl-main.507
https://doi.org/10.18653/v1/2022.acl-short.15
https://doi.org/10.1109/tlt.2018.2889100
https://doi.org/10.3389/feduc.2023.858273


References

C. Cieri, T. Declerck, S. Goggi, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, J. Odijk,
and S. Piperidis, editors, Proceedings of the Thirteenth Language Resources and
Evaluation Conference, pages 4260–4269, Marseille, France, June 2022. European
Language Resources Association. URL https://aclanthology.org/2022.lrec-1.453.

J. Cohen. A coefficient of agreement for nominal scales. Educational and Psychological
Measurement, 20(1):37–46, Apr. 1960. ISSN 1552-3888.
doi:10.1177/001316446002000104.

Council of Europe. Common European Framework of Reference for Languages: Learning,
teaching, assessment – Companion volume. Council of Europe Publishing, Strasbourg,
2020. ISBN 978-92-871-8621-8. URL https://www.coe.int/lang-cefr.

I. Cuhadar. Sample size requirements for parameter recovery in the 4-parameter
logistic model. Measurement: Interdisciplinary Research and Perspectives, 20(2):57–72,
Apr. 2022. doi:10.1080/15366367.2021.1934805.

B. Das, M. Majumder, S. Phadikar, and A. A. Sekh. Automatic question generation and
answer assessment: a survey. Research and Practice in Technology Enhanced Learning,
16:1–15, 2021.

K. De Kuthy, M. Kannan, H. Santhi Ponnusamy, and D. Meurers. Towards
automatically generating questions under discussion to link information and
discourse structure. In Proceedings of the 28th International Conference on
Computational Linguistics. International Committee on Computational Linguistics,
2020. doi:10.18653/v1/2020.coling-main.509.

T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. QLoRA: Efficient Finetuning
of Quantized LLMs. Technical report, May 2023. arXiv:2305.14314 [cs] type: article.

Deutsche Welle. From the heart of Europe, 2008. URL https://p.dw.com/p/E6K3.
Accessed: 25 Dec 2023.

Deutsche Welle. DW Learn German, 2023. URL https://learngerman.dw.com.
Accessed: 11 Oct 2023.

R. Dijkstra, Z. Genç, S. Kayal, and J. Kamps. Reading comprehension quiz generation
using generative pre-trained transformers. In iTextbooks@AIED, 2022.

B. Dillon, A. Mishler, S. Sloggett, and C. Phillips. Contrasting intrusion profiles for
agreement and anaphora: Experimental and modeling evidence. Journal of Memory
and Language, 69(2):85–103, Aug. 2013. doi:10.1016/j.jml.2013.04.003.

79

https://aclanthology.org/2022.lrec-1.453
https://doi.org/10.1177/001316446002000104
https://www.coe.int/lang-cefr
https://doi.org/10.1080/15366367.2021.1934805
https://doi.org/10.18653/v1/2020.coling-main.509
https://p.dw.com/p/E6K3
https://learngerman.dw.com
https://doi.org/10.1016/j.jml.2013.04.003


References

H. Dong, W. Xiong, D. Goyal, R. Pan, S. Diao, J. Zhang, K. Shum, and T. Zhang. RAFT:
Reward ranked finetuning for generative foundation model alignment. Technical
report, May 2023.

X. Du, J. Shao, and C. Cardie. Learning to ask: Neural question generation for reading
comprehension. In Annual Meeting of the Association for Computational Linguistics,
2017. doi:10.18653/v1/P17-1123.

J. Dunietz, G. Burnham, A. Bharadwaj, O. Rambow, J. Chu-Carroll, and D. Ferrucci. To
test machine comprehension, start by defining comprehension. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, 2020. doi:10.18653/v1/2020.acl-main.701.

D. Dzendzik, J. Foster, and C. Vogel. English machine reading comprehension datasets:
A survey. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 2021.
doi:10.18653/v1/2021.emnlp-main.693.

B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman and Hall/CRC,
May 1994. ISBN 9780429246593. doi:10.1201/9780429246593.

Z. Fei, Q. Zhang, T. Gui, D. Liang, S. Wang, W. Wu, and X. Huang. CQG: A simple and
effective controlled generation framework for multi-hop question generation. In
Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, 2022.
doi:10.18653/v1/2022.acl-long.475.

R. Flesch. A new readability yardstick. Journal of Applied Psychology, 32(3):221–233,
1948. doi:10.1037/h0057532.

Y.-C. Fung, L.-K. Lee, and K. T. Chui. An automatic question generator for Chinese
comprehension. Inventions, 2023.

Y. Gao, L. Bing, W. Chen, M. Lyu, and I. King. Difficulty controllable generation of
reading comprehension questions. In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-2019. International Joint Conferences
on Artificial Intelligence Organization, Aug. 2019. doi:10.24963/ijcai.2019/690.

B. Ghanem, L. L. Coleman, J. R. Dexter, S. M. von der Ohe, and A. Fyshe. Question
generation for reading comprehension assessment by modeling how and what to
ask. Apr. 2022. doi:10.48550/arXiv.2204.02908.

80

https://doi.org/10.18653/v1/P17-1123
https://doi.org/10.18653/v1/2020.acl-main.701
https://doi.org/10.18653/v1/2021.emnlp-main.693
https://doi.org/10.1201/9780429246593
https://doi.org/10.18653/v1/2022.acl-long.475
https://doi.org/10.1037/h0057532
https://doi.org/10.24963/ijcai.2019/690
https://doi.org/10.48550/arXiv.2204.02908


References

M. J. Gierl and T. M. Haladyna. Automatic item generation: An introduction. In M. J.
Gierl and T. M. Haladyna, editors, Automatic Item Generation: Theory and Practice,
chapter 1, pages 3–12. Routledge, New York, 2013. ISBN 9780415897501.

M. J. Gierl, H. Lai, and V. Tanygin. Advanced Methods in Automatic Item Generation.
Routledge, Apr. 2021. doi:10.4324/9781003025634.

T. Glushkova, A. Machnev, A. Fenogenova, T. Shavrina, E. Artemova, and D. I. Ignatov.
DaNetQA: A yes/no question answering dataset for the Russian language. In Lecture
Notes in Computer Science, pages 57–68. Springer International Publishing, 2021.
doi:10.1007/978-3-030-72610-2_4.

Q. Grail and J. Perez. ReviewQA: A relational aspect-based opinion reading dataset.
Oct. 2018. doi:10.48550/arXiv.1810.12196.

R. Green. Pilot testing: Why and how we trial. In The Routledge Handbook of Second
Language Acquisition and Language Testing, chapter 11, pages 115–124. Routledge,
2020. ISBN 9781351034784.

C. Gütl, K. Lankmayr, J. Weinhofer, and M. Höfler. Enhanced automatic question
creator–EAQC: Concept, development and evaluation of an automatic test item
creation tool to foster modern e-education. Electronic Journal of e-Learning, 9(1):
23–38, 2011. ISSN 1479-4403.

T. M. Haladyna. Automatic item generation: A historical perspective. In M. J. Gierl and
T. M. Haladyna, editors, Automatic Item Generation: Theory and Practice, chapter 2,
pages 13–25. Routledge, New York, 2013. ISBN 9780415897501.

W. He, K. Liu, J. Liu, Y. Lyu, S. Zhao, X. Xiao, Y. Liu, Y. Wang, H. Wu, Q. She, X. Liu,
T. Wu, and H. Wang. DuReader: A Chinese machine reading comprehension dataset
from real-world applications. In Proceedings of the Workshop on Machine Reading for
Question Answering. Association for Computational Linguistics, 2018.
doi:10.18653/v1/w18-2605.

K. M. Hermann, T. Kočiský, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, and
P. Blunsom. Teaching machines to read and comprehend. In Proceedings of the 28th
International Conference on Neural Information Processing Systems - Volume 1,
NIPS’15, pages 1693–1701, Cambridge, MA, USA, Dec. 2015. MIT Press.

D. Hewlett, A. Lacoste, L. Jones, I. Polosukhin, A. Fandrianto, J. Han, M. Kelcey, and
D. Berthelot. WikiReading: A novel large-scale language understanding task over
Wikipedia. In Proceedings of the 54th Annual Meeting of the Association for

81

https://doi.org/10.4324/9781003025634
https://doi.org/10.1007/978-3-030-72610-2_4
https://doi.org/10.48550/arXiv.1810.12196
https://doi.org/10.18653/v1/w18-2605


References

Computational Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, 2016. doi:10.18653/v1/p16-1145.

L. Hirschman, M. Light, E. Breck, and J. D. Burger. Deep read. In Proceedings of the 37th
annual meeting of the Association for Computational Linguistics on Computational
Linguistics -. Association for Computational Linguistics, 1999.
doi:10.3115/1034678.1034731.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. Lora:
Low-rank adaptation of large language models. June 2021.
doi:10.48550/arXiv.2106.09685.

E. H. Jeon and J. Yamashita. Measuring L2 reading. In The Routledge Handbook of
Second Language Acquisition and Language Testing, chapter 25, pages 265–274.
Routledge, 2020. ISBN 9781351034784.

X. Jia, W. Zhou, X. Sun, and Y. Wu. EQG-RACE: Examination-type question
generation. Dec. 2020. doi:10.48550/arXiv.2012.06106.

G. Jones. Designing multiple-choice test items. In The Routledge Handbook of Second
Language Acquisition and Language Testing, chapter 9, pages 90–101. Routledge,
2020. ISBN 9781351034784.

D. Kalpakchi and J. Boye. Quasi: a synthetic question-answering dataset in Swedish
using GPT-3 and zero-shot learning. In T. Alumäe and M. Fishel, editors, Proceedings
of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pages
477–491, Tórshavn, Faroe Islands, May 2023a. University of Tartu Library. URL
https://aclanthology.org/2023.nodalida-1.48.

D. Kalpakchi and J. Boye. Generation and evaluation of multiple-choice reading
comprehension questions for Swedish. 2023b. URL
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-329400.

M. Karpinska and M. Iyyer. Large language models effectively leverage document-level
context for literary translation, but critical errors persist. Apr. 2023.
doi:10.48550/arXiv.2304.03245.

A. Kembhavi, M. Seo, D. Schwenk, J. Choi, A. Farhadi, and H. Hajishirzi. Are you
smarter than a sixth grader? Textbook question answering for multimodal machine
comprehension. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, July 2017. doi:10.1109/cvpr.2017.571.

82

https://doi.org/10.18653/v1/p16-1145
https://doi.org/10.3115/1034678.1034731
https://doi.org/10.48550/arXiv.2106.09685
https://doi.org/10.48550/arXiv.2012.06106
https://aclanthology.org/2023.nodalida-1.48
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-329400
https://doi.org/10.48550/arXiv.2304.03245
https://doi.org/10.1109/cvpr.2017.571


References

D. Khashabi, S. Chaturvedi, M. Roth, S. Upadhyay, and D. Roth. Looking beyond the
surface: A challenge set for reading comprehension over multiple sentences. In
Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers).
Association for Computational Linguistics, 2018. doi:10.18653/v1/n18-1023.

T. Klein and M. Nabi. Learning to answer by learning to ask: Getting the best of GPT-2
and BERT worlds. Nov. 2019. doi:10.48550/arXiv.1911.02365.

T. Kočiský, J. Schwarz, P. Blunsom, C. Dyer, K. M. Hermann, G. Melis, and
E. Grefenstette. The NarrativeQA reading comprehension challenge. Transactions of
the Association for Computational Linguistics, 6:317–328, Dec. 2018.
doi:10.1162/tacl_a_00023.

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa. Large language models are
zero-shot reasoners. May 2022. doi:10.48550/arXiv.2205.11916.

T. Kolditz. Generating questions for German text. Master’s thesis, University of
Tübingen, 2015.

T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein,
I. Polosukhin, J. Devlin, K. Lee, K. Toutanova, L. Jones, M. Kelcey, M.-W. Chang,
A. M. Dai, J. Uszkoreit, Q. Le, and S. Petrov. Natural Questions: A benchmark for
question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, Nov. 2019. doi:10.1162/tacl_a_00276.

G. Lai, Q. Xie, H. Liu, Y. Yang, and E. Hovy. RACE: Large-scale reading comprehension
dataset from examinations. Apr. 2017. doi:10.48550/arXiv.1704.04683.

H. Lai and M. J. Gierl. Generating items under the assessment engineering framework.
In M. J. Gierl and T. M. Haladyna, editors, Automatic Item Generation: Theory and
Practice, chapter 6, pages 77–101. Routledge, New York, 2013. ISBN 9780415897501.

J. P. Lalor, H. Wu, and H. Yu. Learning latent parameters without human response
patterns: Item response theory with artificial crowds. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
Association for Computational Linguistics, 2019. doi:10.18653/v1/d19-1434.

R. P. Larsen and D. D. Feder. Common and differential factors in reading and hearing
comprehension. Journal of Educational Psychology, 31(4):241–252, Apr. 1940.
doi:10.1037/h0060424.

83

https://doi.org/10.18653/v1/n18-1023
https://doi.org/10.48550/arXiv.1911.02365
https://doi.org/10.1162/tacl_a_00023
https://doi.org/10.48550/arXiv.2205.11916
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.48550/arXiv.1704.04683
https://doi.org/10.18653/v1/d19-1434
https://doi.org/10.1037/h0060424


References

W. G. Lehnert. The Process of Question Answering. PhD thesis, Yale University, New
Haven, CT, 1977. URL https://eric.ed.gov/?id=ED150955.

Y. Liang, J. Li, and J. Yin. A new multi-choice reading comprehension dataset for
curriculum learning. In W. S. Lee and T. Suzuki, editors, Proceedings of The Eleventh
Asian Conference on Machine Learning, volume 101 of Proceedings of Machine
Learning Research, pages 742–757. PMLR, 17–19 Nov 2019. URL
https://proceedings.mlr.press/v101/liang19a.html.

C.-Y. Lin. ROUGE: A package for automatic evaluation of summaries. In Text
Summarization Branches Out, pages 74–81, Barcelona, Spain, July 2004. Association
for Computational Linguistics. URL https://aclanthology.org/W04-1013.

H. Liu, D. Tam, M. Muqeeth, J. Mohta, T. Huang, M. Bansal, and C. Raffel. Few-shot
parameter-efficient fine-tuning is better and cheaper than in-context learning. May
2022. doi:10.48550/arXiv.2205.05638.

Q. Liu, S. Jiang, Y. Wang, and S. Li. LiveQA: A question answering dataset over sports
live. In Proceedings of the 19th Chinese National Conference on Computational
Linguistics, pages 1057–1067, Haikou, China, Oct. 2020. Chinese Information
Processing Society of China. URL https://aclanthology.org/2020.ccl-1.98.

A. Liusie, V. Raina, and M. Gales. “World knowledge” in multiple choice reading
comprehension. In Proceedings of the Sixth Fact Extraction and VERification Workshop
(FEVER). Association for Computational Linguistics, 2023.
doi:10.18653/v1/2023.fever-1.5.

L. E. Lopez, D. K. Cruz, J. C. B. Cruz, and C. Cheng. Simplifying paragraph-level
question generation via transformer language models. May 2020.
doi:10.48550/arXiv.2005.01107.

F. M. Lord. Applications of Item Response Theory to Practical Testing Problems. Lawrence
Erlbaum Associates, 1980. doi:https://doi.org/10.4324/9780203056615.

S. T. Luu, K. T. Hoang, T. Q. Pham, K. Van Nguyen, and N. L.-T. Nguyen. A multiple
choices reading comprehension corpus for Vietnamese language education. Mar.
2023. doi:10.48550/arXiv.2303.18162.

D. Magis. A note on the item information function of the four-parameter logistic
model. Applied Psychological Measurement, 37(4):304–315, Feb. 2013.
doi:10.1177/0146621613475471.

84

https://eric.ed.gov/?id=ED150955
https://proceedings.mlr.press/v101/liang19a.html
https://aclanthology.org/W04-1013
https://doi.org/10.48550/arXiv.2205.05638
https://aclanthology.org/2020.ccl-1.98
https://doi.org/10.18653/v1/2023.fever-1.5
https://doi.org/10.48550/arXiv.2005.01107
https://doi.org/https://doi.org/10.4324/9780203056615
https://doi.org/10.48550/arXiv.2303.18162
https://doi.org/10.1177/0146621613475471


References

M. Majumder and S. K. Saha. Automatic selection of informative sentences: The
sentences that can generate multiple choice questions. Knowledge Management &
E-Learning: An International Journal, pages 377–391, Dec. 2014. ISSN 2073-7904.
doi:10.34105/j.kmel.2014.06.025.

M. Majumder and S. K. Saha. A system for generating multiple choice questions: With
a novel approach for sentence selection. In Proceedings of the 2nd Workshop on
Natural Language Processing Techniques for Educational Applications. Association for
Computational Linguistics, 2015. doi:10.18653/v1/w15-4410.

P. Manakul, A. Liusie, and M. Gales. MQAG: Multiple-choice question answering and
generation for assessing information consistency in summarization. In J. C. Park,
Y. Arase, B. Hu, W. Lu, D. Wijaya, A. Purwarianti, and A. A. Krisnadhi, editors,
Proceedings of the 13th International Joint Conference on Natural Language Processing
and the 3rd Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 39–53, Nusa Dua, Bali, Nov.
2023. Association for Computational Linguistics. URL
https://aclanthology.org/2023.ijcnlp-main.4.

S. Mangrulkar, S. Gugger, L. Debut, Y. Belkada, S. Paul, and B. Bossan. PEFT:
State-of-the-art parameter-efficient fine-tuning methods.
https://github.com/huggingface/peft, 2022.

K. K. Maurya and M. S. Desarkar. Learning to distract: A hierarchical multi-decoder
network for automated generation of long distractors for multiple-choice questions
for reading comprehension. Proceedings of the 29th ACM International Conference on
Information & Knowledge Management, 2020. doi:10.1145/3340531.3411997.

J. Maynez, P. Agrawal, and S. Gehrmann. Benchmarking large language model
capabilities for conditional generation. June 2023. doi:10.48550/arXiv.2306.16793.

M. L. McHugh. Interrater reliability: the kappa statistic. Biochemia Medica, 22(3):
276–282, Oct. 2012. ISSN 1330-0962. URL
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052/.

Y. Meng, J. Huang, Y. Zhang, and J. Han. Generating training data with language
models: Towards zero-shot language understanding. Feb. 2022.
doi:10.48550/arXiv.2202.04538.

T. W. Michel. Wissensgenerierung für deutschprachige Chatbots. Master’s thesis,
Hochschule Darmstadt, 2022.

85

https://doi.org/10.34105/j.kmel.2014.06.025
https://doi.org/10.18653/v1/w15-4410
https://aclanthology.org/2023.ijcnlp-main.4
https://github.com/huggingface/peft
https://doi.org/10.1145/3340531.3411997
https://doi.org/10.48550/arXiv.2306.16793
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052/
https://doi.org/10.48550/arXiv.2202.04538


References

R. Mitkov, L. An Ha, and N. Karamanis. A computer-aided environment for generating
multiple-choice test items. Natural Language Engineering, 12(2):177–194, May 2006.
ISSN 1469-8110. doi:10.1017/s1351324906004177.

T. Möller, J. Risch, and M. Pietsch. Germanquad and germandpr: Improving
non-english question answering and passage retrieval. In Proceedings of the 3rd
Workshop on Machine Reading for Question Answering. Association for
Computational Linguistics, 2021. doi:10.18653/v1/2021.mrqa-1.4.

N. Mulla and P. Gharpure. Automatic question generation: A review of methodologies,
datasets, evaluation metrics, and applications. Progress in Artificial Intelligence, pages
1–32, 2023. doi:10.1007/s13748-023-00295-9.

P. Nema and M. M. Khapra. Towards a better metric for evaluating question generation
systems. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 2018.
doi:10.18653/v1/d18-1429.

K. V. Nguyen, K. V. Tran, S. T. Luu, A. G.-T. Nguyen, and N. L.-T. Nguyen. Enhancing
lexical-based approach with external knowledge for Vietnamese multiple-choice
machine reading comprehension. IEEE Access, 8:201404–201417, 2020.
doi:10.1109/access.2020.3035701.

NLLB Team, M. R. Costa-jussà, J. Cross, O. Çelebi, M. Elbayad, K. Heafield,
K. Heffernan, E. Kalbassi, J. Lam, D. Licht, J. Maillard, A. Sun, S. Wang, G. Wenzek,
A. Youngblood, B. Akula, L. Barrault, G. M. Gonzalez, P. Hansanti, J. Hoffman,
S. Jarrett, K. R. Sadagopan, D. Rowe, S. Spruit, C. Tran, P. Andrews, N. F. Ayan,
S. Bhosale, S. Edunov, A. Fan, C. Gao, V. Goswami, F. Guzmán, P. Koehn,
A. Mourachko, C. Ropers, S. Saleem, H. Schwenk, and J. Wang. No language left
behind: Scaling human-centered machine translation. July 2022.
doi:10.48550/arXiv.2207.04672.

OpenAI. GPT-4 technical report. Mar. 2023. doi:10.48550/arXiv.2303.08774.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang,
S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens,
A. Askell, P. Welinder, P. Christiano, J. Leike, and R. Lowe. Training language models
to follow instructions with human feedback. Mar. 2022.
doi:10.48550/arXiv.2203.02155.

S. Papageorgiou, L. Davis, J. M. Norris, P. Garcia Gomez, V. F. Manna, and L. Monfils.
Design Framework for the TOEFL® Essentials™ Test 2021. Educational Testing Service,
2021. URL https://www.ets.org/Media/Research/pdf/RM-21-03.pdf.

86

https://doi.org/10.1017/s1351324906004177
https://doi.org/10.18653/v1/2021.mrqa-1.4
https://doi.org/10.1007/s13748-023-00295-9
https://doi.org/10.18653/v1/d18-1429
https://doi.org/10.1109/access.2020.3035701
https://doi.org/10.48550/arXiv.2207.04672
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2203.02155
https://www.ets.org/Media/Research/pdf/RM-21-03.pdf


References

A. Papasalouros, K. Kanaris, and K. Kotis. Automatic generation of multiple choice
questions from domain ontologies. In Proceedings of e-Learning 2008, pages 427–434,
Amsterdam, Netherlands, 2008. IADIS. ISBN 9789728924584. URL
https://www.iadisportal.org/digital-library/
automatic-generation-of-multiple-choice-questions-from-domain-ontologies.

D. Paperno, G. Kruszewski, A. Lazaridou, N. Q. Pham, R. Bernardi, S. Pezzelle,
M. Baroni, G. Boleda, and R. Fernandez. The LAMBADA dataset: Word prediction
requiring a broad discourse context. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Association for
Computational Linguistics, 2016. doi:10.18653/v1/p16-1144.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. BLEU: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics - ACL ’02, ACL ’02. Association for
Computational Linguistics, 2001. doi:10.3115/1073083.1073135.

A. F. A. Paschoal, P. Pirozelli, V. Freire, K. V. Delgado, S. M. Peres, M. M. José,
F. Nakasato, A. S. Oliveira, A. A. F. Brandão, A. H. R. Costa, and F. G. Cozman. Pirá:
A bilingual Portuguese-English dataset for question-answering about the ocean. In
Proceedings of the 30th ACM International Conference on Information & Knowledge
Management. ACM, Oct. 2021. doi:10.1145/3459637.3482012.

A. Peñas, E. Hovy, P. Forner, Á. Rodrigo, R. Sutcliffe, C. Forascu, and C. Sporleder.
Overview of QA4MRE at CLEF 2011: Question answering for machine reading
evaluation. volume 1177 of CEUR Workshop Proceedings, Amsterdam, The
Netherlands, Sept. 2011. CEUR. URL
https://ceur-ws.org/Vol-1177/#CLEF2011wn-QA4MRE-PenasEt2011.

A. Peñas, E. Hovy, P. Forner, Á. Rodrigo, R. Sutcliffe, C. Sporleder, C. Forăscu,
Y. Benajiba, and P. Osenova. Overview of QA4MRE at CLEF 2012: Question
answering for machine reading evaluation. volume 1178 of CEUR Workshop
Proceedings, Amsterdam, The Netherlands, Sept. 2012. CEUR. URL
https://ceur-ws.org/Vol-1178/#CLEF2012wn-QA4MRE-PenasEt2012.

A. Peñas, Y. Miyao, A. Rodrigo, E. Hovy, and N. Kando. Overview of CLEF QA
Entrance Exams Task 2014. volume 1180 of CEUR Workshop Proceedings, pages
1194–1200, Sheffield, UK, Sept. 2014. CEUR. URL
https://ceur-ws.org/Vol-1180/#CLEF2014wn-QA-PenasEt2014.

J. Pfeiffer, S. Ruder, I. Vulić, and E. M. Ponti. Modular deep learning. Feb. 2023.
doi:10.48550/arXiv.2302.11529.

87

https://www.iadisportal.org/digital-library/automatic-generation-of-multiple-choice-questions-from-domain-ontologies
https://www.iadisportal.org/digital-library/automatic-generation-of-multiple-choice-questions-from-domain-ontologies
https://doi.org/10.18653/v1/p16-1144
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1145/3459637.3482012
https://ceur-ws.org/Vol-1177/#CLEF2011wn-QA4MRE-PenasEt2011
https://ceur-ws.org/Vol-1178/#CLEF2012wn-QA4MRE-PenasEt2012
https://ceur-ws.org/Vol-1180/#CLEF2014wn-QA-PenasEt2014
https://doi.org/10.48550/arXiv.2302.11529


References

P. Pirozelli, M. M. José, I. Silveira, F. Nakasato, S. M. Peres, A. A. F. Brandão, A. H. R.
Costa, and F. G. Cozman. Benchmarks for Pirá 2.0, a reading comprehension dataset
about the ocean, the Brazilian coast, and climate change. Sept. 2023.
doi:10.48550/arXiv.2309.10945.

B. Plank. The “problem” of human label variation: On ground truth in data, modeling
and evaluation. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 2022.
doi:10.18653/v1/2022.emnlp-main.731.

B. Plüster. LeoLM: Igniting German-language LLM research, 2023. URL
https://laion.ai/blog/leo-lm/. Accessed: 25 Dec 2023.

G. Portillo Wightman, A. Delucia, and M. Dredze. Strength in numbers: Estimating
confidence of large language models by prompt agreement. In Proceedings of the 3rd
Workshop on Trustworthy Natural Language Processing (TrustNLP 2023), pages
326–362, Toronto, Canada, July 2023. Association for Computational Linguistics.
doi:10.18653/v1/2023.trustnlp-1.28.

C. Qin, A. Zhang, Z. Zhang, J. Chen, M. Yasunaga, and D. Yang. Is ChatGPT a
general-purpose natural language processing task solver? Feb. 2023.
doi:10.48550/arXiv.2302.06476.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

V. Raina and M. Gales. Multiple-choice question generation: Towards an automated
assessment framework. Sept. 2022. doi:10.48550/arXiv.2209.11830.

V. Raina, A. Liusie, and M. Gales. Analyzing multiple-choice reading and listening
comprehension tests. July 2023a. doi:10.48550/arXiv.2307.01076.

V. Raina, A. Liusie, and M. Gales. Assessing distractors in multiple-choice tests. Nov.
2023b. doi:10.48550/arXiv.2311.04554.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguistics,
2016. doi:10.18653/v1/d16-1264.

88

https://doi.org/10.48550/arXiv.2309.10945
https://doi.org/10.18653/v1/2022.emnlp-main.731
https://laion.ai/blog/leo-lm/
https://doi.org/10.18653/v1/2023.trustnlp-1.28
https://doi.org/10.48550/arXiv.2302.06476
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.48550/arXiv.2209.11830
https://doi.org/10.48550/arXiv.2307.01076
https://doi.org/10.48550/arXiv.2311.04554
https://doi.org/10.18653/v1/d16-1264


References

P. Rajpurkar, R. Jia, and P. Liang. Know what you don’t know: Unanswerable questions
for SQuAD. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). Association for Computational
Linguistics, 2018. doi:10.18653/v1/p18-2124.

G. Rasch. Probabilistic models for some intelligence and attainment tests. Number 1 in
Studies in mathematical psychology. Danmarks Paedagogiske Institut, Oxford,
England, 1960.

M. Rathod, T. Tu, and K. Stasaski. Educational multi-question generation for reading
comprehension. Proceedings of the 17th Workshop on Innovative Use of NLP for
Building Educational Applications (BEA 2022), 2022.

P. Rodriguez, J. Barrow, A. M. Hoyle, J. P. Lalor, R. Jia, and J. Boyd-Graber. Evaluation
examples are not equally informative: How should that change NLP leaderboards?
In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Association for Computational Linguistics, 2021.
doi:10.18653/v1/2021.acl-long.346.

P. Rodriguez, P. M. Htut, J. Lalor, and J. Sedoc. Clustering examples in multi-dataset
benchmarks with item response theory. In Proceedings of the Third Workshop on
Insights from Negative Results in NLP. Association for Computational Linguistics,
2022. doi:10.18653/v1/2022.insights-1.14.

R. Rodriguez-Torrealba, E. Garcia-Lopez, and A. Garcia-Cabot. End-to-end generation
of multiple-choice questions using text-to-text transfer transformer models. Expert
Systems with Applications, 208:118258, Dec. 2022. doi:10.1016/j.eswa.2022.118258.

A. Rogers, O. Kovaleva, M. Downey, and A. Rumshisky. Getting closer to AI complete
question answering: A set of prerequisite real tasks. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(05):8722–8731, Apr. 2020.
doi:10.1609/aaai.v34i05.6398.

A. Rogers, M. Gardner, and I. Augenstein. QA dataset explosion: A taxonomy of NLP
resources for question answering and reading comprehension. ACM Computing
Surveys, 55(10):1–45, Feb. 2023. doi:10.1145/3560260.

A. Säuberli, S. Hansen-Schirra, F. Holzknecht, S. Gutermuth, S. Deilen, L. Schiffl, and
S. Ebling. Enabling text comprehensibility assessment for people with intellectual
disabilities using a mobile application. Frontiers in Communication, 8, Aug. 2023.
ISSN 2297-900X. doi:10.3389/fcomm.2023.1175625.

89

https://doi.org/10.18653/v1/p18-2124
https://doi.org/10.18653/v1/2021.acl-long.346
https://doi.org/10.18653/v1/2022.insights-1.14
https://doi.org/10.1016/j.eswa.2022.118258
https://doi.org/10.1609/aaai.v34i05.6398
https://doi.org/10.1145/3560260
https://doi.org/10.3389/fcomm.2023.1175625


References

T. Sellam, D. Das, and A. Parikh. Bleurt: Learning robust metrics for text generation. In
Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, 2020.
doi:10.18653/v1/2020.acl-main.704.

U. Shaham, M. Ivgi, A. Efrat, J. Berant, and O. Levy. ZeroSCROLLS: A zero-shot
benchmark for long text understanding. May 2023. doi:10.48550/arXiv.2305.14196.

P. Shuai, Z. Wei, S. Liu, X. Xu, and L. Li. Topic enhanced multi-head co-attention:
Generating distractors for reading comprehension. 2021 International Joint
Conference on Neural Networks (IJCNN), pages 1–8, 2021.

P. Shuai, L. Li, S. Liu, and J. Shen. QDG: A unified model for automatic
question-distractor pairs generation. Applied Intelligence, 53:8275–8285, 2022.

A. Singh Bhatia, M. Kirti, and S. K. Saha. Automatic Generation of Multiple Choice
Questions Using Wikipedia, pages 733–738. Springer Berlin Heidelberg, 2013. ISBN
9783642450624. doi:10.1007/978-3-642-45062-4_104.

S. Sinharay and M. S. Johnson. Statistical modeling of automatically generated items.
In M. J. Gierl and T. M. Haladyna, editors, Automatic Item Generation: Theory and
Practice, chapter 11, pages 183–195. Routledge, New York, 2013. ISBN 9780415897501.

R. Smith, P. Snow, T. Serry, and L. Hammond. The role of background knowledge in
reading comprehension: A critical review. Reading Psychology, 42(3):214–240, Feb.
2021. doi:10.1080/02702711.2021.1888348.

R. Soricut and N. Ding. Building large machine reading-comprehension datasets using
paragraph vectors. Dec. 2016. doi:10.48550/arXiv.1612.04342.

J. H. Spyridakis and M. J. Wenger. An empirical method of assessing topic familiarity in
reading comprehension research. British Educational Research Journal, 17(4):
353–360, 1991. ISSN 0141-1926. URL https://www.jstor.org/stable/1500645.

K. Sun, D. Yu, J. Chen, D. Yu, Y. Choi, and C. Cardie. DREAM: A challenge data set and
models for dialogue-based reading comprehension. Transactions of the Association
for Computational Linguistics, 7:217–231, Nov. 2019. doi:10.1162/tacl_a_00264.

K. Sun, D. Yu, D. Yu, and C. Cardie. Investigating prior knowledge for challenging
chinese machine reading comprehension. Transactions of the Association for
Computational Linguistics, 8:141–155, Dec. 2020. doi:10.1162/tacl_a_00305.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov,
S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen,

90

https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.48550/arXiv.2305.14196
https://doi.org/10.1007/978-3-642-45062-4_104
https://doi.org/10.1080/02702711.2021.1888348
https://doi.org/10.48550/arXiv.1612.04342
https://www.jstor.org/stable/1500645
https://doi.org/10.1162/tacl_a_00264
https://doi.org/10.1162/tacl_a_00305


References

G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami,
N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez,
M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee,
D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie,
A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith,
R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan,
I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic,
S. Edunov, and T. Scialom. Llama 2: Open foundation and fine-tuned chat models.
July 2023. doi:10.48550/arXiv.2307.09288.

A. Trischler, T. Wang, X. Yuan, J. Harris, A. Sordoni, P. Bachman, and K. Suleman.
NewsQA: A machine comprehension dataset. In Proceedings of the 2nd Workshop on
Representation Learning for NLP. Association for Computational Linguistics, 2017.
doi:10.18653/v1/w17-2623.

M. Uto, Y. Tomikawa, and A. Suzuki. Difficulty-controllable neural question generation
for reading comprehension using item response theory. In Proceedings of the 18th
Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023).
Association for Computational Linguistics, 2023. doi:10.18653/v1/2023.bea-1.10.

S. Vajjala and I. Lucic. OneStopEnglish corpus: A new corpus for automatic readability
assessment and text simplification. In Proceedings of the Thirteenth Workshop on
Innovative Use of NLP for Building Educational Applications. Association for
Computational Linguistics, 2018. doi:10.18653/v1/w18-0535.

C. Vania, P. M. Htut, W. Huang, D. Mungra, R. Y. Pang, J. Phang, H. Liu, K. Cho, and
S. R. Bowman. Comparing test sets with item response theory. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long
Papers). Association for Computational Linguistics, 2021.
doi:10.18653/v1/2021.acl-long.92.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J.
Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, A. Vijaykumar, A. P. Bardelli, A. Rothberg,
A. Hilboll, A. Kloeckner, A. Scopatz, A. Lee, A. Rokem, C. N. Woods, C. Fulton,
C. Masson, C. Häggström, C. Fitzgerald, D. A. Nicholson, D. R. Hagen, D. V.
Pasechnik, E. Olivetti, E. Martin, E. Wieser, F. Silva, F. Lenders, F. Wilhelm, G. Young,

91

https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.18653/v1/w17-2623
https://doi.org/10.18653/v1/2023.bea-1.10
https://doi.org/10.18653/v1/w18-0535
https://doi.org/10.18653/v1/2021.acl-long.92


References

G. A. Price, G.-L. Ingold, G. E. Allen, G. R. Lee, H. Audren, I. Probst, J. P. Dietrich,
J. Silterra, J. T. Webber, J. Slavič, J. Nothman, J. Buchner, J. Kulick, J. L. Schönberger,
J. V. de Miranda Cardoso, J. Reimer, J. Harrington, J. L. C. Rodríguez,
J. Nunez-Iglesias, J. Kuczynski, K. Tritz, M. Thoma, M. Newville, M. Kümmerer,
M. Bolingbroke, M. Tartre, M. Pak, N. J. Smith, N. Nowaczyk, N. Shebanov, O. Pavlyk,
P. A. Brodtkorb, P. Lee, R. T. McGibbon, R. Feldbauer, S. Lewis, S. Tygier, S. Sievert,
S. Vigna, S. Peterson, S. More, T. Pudlik, T. Oshima, T. J. Pingel, T. P. Robitaille,
T. Spura, T. R. Jones, T. Cera, T. Leslie, T. Zito, T. Krauss, U. Upadhyay, Y. O.
Halchenko, and Y. Vázquez-Baeza. SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nature Methods, 17(3):261–272, Feb. 2020. ISSN 1548-7105.
doi:10.1038/s41592-019-0686-2.

A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, and
S. Bowman. SuperGLUE: A stickier benchmark for general-purpose language
understanding systems. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf.

B. Wang, T. Yao, Q. Zhang, J. Xu, and X. Wang. ReCO: A large scale chinese reading
comprehension dataset on opinion. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(05):9146–9153, Apr. 2020. doi:10.1609/aaai.v34i05.6450.

X. Wang, B. Liu, S. Tang, and L. Wu. SkillQG: Learning to generate question for
reading comprehension assessment. May 2023a. doi:10.48550/arXiv.2305.04737.

Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi, and H. Hajishirzi.
Self-Instruct: Aligning language models with self-generated instructions. In
Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,
2023b. doi:10.18653/v1/2023.acl-long.754.

J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, and Q. V. Le.
Finetuned language models are zero-shot learners. Sept. 2021.
doi:10.48550/arXiv.2109.01652.

J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma,
D. Zhou, D. Metzler, E. H. Chi, T. Hashimoto, O. Vinyals, P. Liang, J. Dean, and
W. Fedus. Emergent abilities of large language models. June 2022.
doi:10.48550/arXiv.2206.07682.

92

https://doi.org/10.1038/s41592-019-0686-2
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://doi.org/10.1609/aaai.v34i05.6450
https://doi.org/10.48550/arXiv.2305.04737
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.48550/arXiv.2109.01652
https://doi.org/10.48550/arXiv.2206.07682


References

C. Whitehouse, M. Choudhury, and A. Aji. LLM-powered data augmentation for
enhanced cross-lingual performance. In H. Bouamor, J. Pino, and K. Bali, editors,
Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pages 671–686, Singapore, Dec. 2023. Association for Computational
Linguistics. URL https://aclanthology.org/2023.emnlp-main.44.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault,
R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu,
C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush. Transformers:
State-of-the-art natural language processing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pages
38–45, Online, Oct. 2020. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/2020.emnlp-demos.6.

B. Wright and M. Stone. Best test design. Measurement and statistics, Jan. 1979. URL
https://research.acer.edu.au/measurement/1.

J. Xie, N. Peng, Y. Cai, T. Wang, and Q. Huang. Diverse distractor generation for
constructing high-quality multiple choice questions. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 30:280–291, 2022.
doi:10.1109/taslp.2021.3138706.

Y. Xu, D. Wang, M. Yu, D. Ritchie, B. Yao, T. Wu, Z. Zhang, T. Li, N. Bradford, B. Sun,
T. Hoang, Y. Sang, Y. Hou, X. Ma, D. Yang, N. Peng, Z. Yu, and M. Warschauer.
Fantastic questions and where to find them: FairytaleQA – an authentic dataset for
narrative comprehension. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Association for
Computational Linguistics, 2022. doi:10.18653/v1/2022.acl-long.34.

L. Xue, N. Constant, A. Roberts, M. Kale, R. Al-Rfou, A. Siddhant, A. Barua, and
C. Raffel. mT5: A massively multilingual pre-trained text-to-text transformer. In
Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. Association for
Computational Linguistics, 2021. doi:10.18653/v1/2021.naacl-main.41.

S. Yagcioglu, A. Erdem, E. Erdem, and N. Ikizler-Cinbis. RecipeQA: A challenge dataset
for multimodal comprehension of cooking recipes. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 2018. doi:10.18653/v1/d18-1166.

Y. Yang, W. tau Yih, and C. Meek. WikiQA: A challenge dataset for open-domain
question answering. In Proceedings of the 2015 Conference on Empirical Methods in

93

https://aclanthology.org/2023.emnlp-main.44
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://research.acer.edu.au/measurement/1
https://doi.org/10.1109/taslp.2021.3138706
https://doi.org/10.18653/v1/2022.acl-long.34
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/d18-1166


References

Natural Language Processing. Association for Computational Linguistics, 2015.
doi:10.18653/v1/d15-1237.

Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. Cohen, R. Salakhutdinov, and C. D. Manning.
HotpotQA: A dataset for diverse, explainable multi-hop question answering. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2018.
doi:10.18653/v1/d18-1259.

J. Ye, J. Gao, Q. Li, H. Xu, J. Feng, Z. Wu, T. Yu, and L. Kong. Zerogen: Efficient
zero-shot learning via dataset generation. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, 2022a. doi:10.18653/v1/2022.emnlp-main.801.

J. Ye, J. Gao, Z. Wu, J. Feng, T. Yu, and L. Kong. Progen: Progressive zero-shot dataset
generation via in-context feedback. In Findings of the Association for Computational
Linguistics: EMNLP 2022. Association for Computational Linguistics, 2022b.
doi:10.18653/v1/2022.findings-emnlp.269.

W. Yu, Z. Jiang, Y. Dong, and J. Feng. ReClor: A reading comprehension dataset
requiring logical reasoning. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=HJgJtT4tvB.

X. Yuan, T. Wang, C. Gulcehre, A. Sordoni, P. Bachman, S. Zhang, S. Subramanian, and
A. Trischler. Machine comprehension by text-to-text neural question generation. In
Proceedings of the 2nd Workshop on Representation Learning for NLP. Association for
Computational Linguistics, 2017. doi:10.18653/v1/w17-2603.

C. Zeng, S. Li, Q. Li, J. Hu, and J. Hu. A survey on machine reading
comprehension—tasks, evaluation metrics and benchmark datasets. Applied Sciences,
10(21):7640, Oct. 2020. doi:10.3390/app10217640.

T. Zhang, F. Ladhak, E. Durmus, P. Liang, K. McKeown, and T. B. Hashimoto.
Benchmarking large language models for news summarization. Jan. 2023.
doi:10.48550/arXiv.2301.13848.

Q. Zhou, N. Yang, F. Wei, C. Tan, H. Bao, and M. Zhou. Neural question generation
from text: A preliminary study. Apr. 2017. doi:10.48550/arXiv.1704.01792.

94

https://doi.org/10.18653/v1/d15-1237
https://doi.org/10.18653/v1/d18-1259
https://doi.org/10.18653/v1/2022.emnlp-main.801
https://doi.org/10.18653/v1/2022.findings-emnlp.269
https://openreview.net/forum?id=HJgJtT4tvB
https://doi.org/10.18653/v1/w17-2603
https://doi.org/10.3390/app10217640
https://doi.org/10.48550/arXiv.2301.13848
https://doi.org/10.48550/arXiv.1704.01792


A User interface for human
evaluation

Figure A.1: Screenshot of the user interface for the human evaluation, without text.
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Appendix A: User interface for human evaluation

Figure A.2: Screenshot of the user interface for the human evaluation, with text and
quality ratings.
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B Fine-tuning details

B.1 Training sample format

<s> [INST] Text:
[𝑇 ]

Schreibe 3 Multiple-Choice-Verständnisfragen zum Text oben, in deutscher
Sprache. Jede Frage soll 3 Antwortmöglichkeiten haben. Schreibe hinter jede
Antwort in Klammern, ob sie richtig oder falsch ist. Zwischen 0 und 3 Antworten
können richtig sein. Die falschen Antworten sollten plausibel sein, wenn man den
Text nicht gelesen hat. [/INST] Frage 1:
[𝑞1]

A) [𝑎1,1] ( [richtig/falsch] )

B) [𝑎1,2] ( [richtig/falsch] )

C) [𝑎1,2] ( [richtig/falsch] )

Frage 2:
[𝑞2]

A) [𝑎2,1] ( [richtig/falsch] )

B) [𝑎2,2] ( [richtig/falsch] )

C) [𝑎2,2] ( [richtig/falsch] )

Frage 3:
[𝑞3]

A) [𝑎3,1] ( [richtig/falsch] )

B) [𝑎3,2] ( [richtig/falsch] )

C) [𝑎3,2] ( [richtig/falsch] ) </s>
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Appendix B: Fine-tuning details

𝑇 is a placeholder for the text, 𝑞𝑖 for item stems, and 𝑎𝑖,𝑗 for answer options. <s>, </s>,
[INST], [/INST] are tokens used as message separators in the instruction-tuned Llama
2 model. Note that in the human target dataset, there is a small number of items with
more than three answer options (see Section 3.3.3).

B.2 QLoRA configuration

bnb_config = BitsAndBytesConfig(

load_in_4bit=True,

bnb_4bit_use_double_quant=True,

bnb_4bit_quant_type="nf4",

bnb_4bit_compute_dtype=torch.float16,

)

peft_config = LoraConfig(

lora_alpha=16,

lora_dropout=0.1,

r=64,

bias="none",

task_type="CAUSAL_LM",

)

training_args = TrainingArguments(

per_device_train_batch_size=1,

gradient_accumulation_steps=4,

learning_rate=1e-4,

logging_steps=10,

num_train_epochs=2,

evaluation_strategy="steps",

eval_steps=20,

save_strategy="steps",

save_steps=20,

)
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