
Institute of Computational Linguistics

Bachelorarbeit

zur Erlangung des akademischen Grades

Bachelor of Arts

der Philosophischen Fakultät der Universität Zürich
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Abstract

This work evaluates the Python toolbox for brain data analysis, called MNE-Python.

For this purpose, a functional Near-Infrared Spectroscopy (fNIRS) dataset is used

with the main goal of assessing the neural processing of degraded speech, which is

a highly debated area of research regarding a pathway for intelligible speech. With

more and more Python users and more fNIRS technology applied for inferring brain

activity, it is only natural that more Python toolboxes are available for data analysis.

Many of them, however, are not yet fully developed and still need many adaptations

and feature enhancements. In the results, the capabilities, such as the generation of

nice user-friendly fNIRS response diagrams, and other possibilities offered by MNE-

Python are shown. Since it enables a first-level fNIRS analysis, the results indicates

that the MNE is a good Python toolbox for fNIRS data analysis. Nevertheless, its

current limitations will also be exposed.

Keywords: fNIRS ·MNE-Python ·degraded speech · intelligible speech
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Chapter 1

Introduction

In this thesis the initial idea was to investigate a pathway by assessing the neuronal

processing for degraded speech using functional nearinfrared spectroscopy (fNIRS).

The experimental design and data collection were conducted by Daniel Friedrichs

and Andrew Clark in 2017 at University College London (Friedrichs et al., 2019).

They are performing an enhanced replication of a study which is intended to inves-

tigate neural activity in relation to degraded speech. My work and contribution in

this thesis is primarily concerned with learning and applying fNIRS data analysis

on the data they provided, whilst familiarizing myself with fNIRS and using the

MNE-Python package for the analysis. Hence, to give an evaluation of the potential

and capabilities of MNE-Python.

The data obtained for this project were from three main files per participant,

namely the .csv files containing the recorded fNIRS measurements from two probes

and a positional .pos file containing the coordinate data for the montage. Moreover,

the code that generates all the plots, including the data of this project is accessible on

GitHub via the following link: https://github.com/rfahrn/fNIRS-project.git.

There are several Python scripts in the GitHub repository, including some that are

only for debugging or problem solving purposes. For this project, only three major

Python scripts need to be used, namely ”pos convert.py”, ”manuel montage.py”,

and ”Preprocessing individual.py”. The first two are used for the montage, while

the last one is used for first-level analysis.
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1 Introduction

The secondary underlying research question concerns the assessment of neural

processing of degraded speech. The auditory cortex and its surrounding higher-

level regions have gained increasing attention in recent years. Lately, the focus has

been on how the auditory ventro-temporal information stream is processed along

both hemispheres. At the center of attention is the underlying motive to identify a

pathway for intelligible speech or, conversely, unintelligible, degraded speech, using a

variety of neuroimaging techniques for purposes of verification. In this study, fNIRS

was used for this purpose.

There are multiple personal reasons why I opted for this topic. One being that the

study of the brain, i.e. neuroscience, has fascinated me ever since I was a young child,

got hit by a car and had to learn how to walk again. Over the years, my curiosity

in the human brain grew. For this reason, I enrolled in several courses related

to neurolinguistics/psycholinguistics, neuroscience, and neuroinformatics during my

undergraduate studies. The brain is so incredibly complex that even if we get a

glimpse of the understanding of the core function of some brain areas, we have

only scratched the surface. There is still much to learn about the human brain

and its neural networks. A better understanding of the underlying functions of the

human brain helps us to understand ourselves, others and people with cognitive

impairments. One goal for the future must be to provide even better support and

help for people with cognitive impairments, for example after a stroke. Hence, I was

very eager to learn more about neurophysiological data analysis using fNIRS and

enthusiastic to pursue this project.

Several challenges and issues arose during the implementation of the data anal-

ysis pipeline with MNE-Python. As a result, the scope of the original project had

to be modified. This led to a shift in focus, away from presenting the final re-

sults of the main research question, namely the assessment of neuronal processing

of degraded speech, towards an evaluation of the used MNE-Python data analysis

series. Nevertheless, this work is able to deliver first-level analysis results of each

subject, representing an important first step in the overall analysis of the dataset.

In addition, the reader will gain a broader understanding of fNIRS technology, a
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deeper understanding of the steps and pipeline required for fNIRS data analysis,

along with a subsequent evaluation of the MNE Python as a suitable data analysis

package used for the fNIRS data collected using a ETG-4000 optical tomography

system by Hitachi High-Technologies Corporation, Tokyo, Japan.

This Chapter provides a brief introduction to the topic of the research and my

motivation. In the next Chapter, Background 2, the reader gets a broad overview

of the background on the main research question the experiment was designed to

investigate. This is done by first clarifying terminology and then referring to recent

research and current findings. In addition a brief introduction to the neuroimaging

technique fNIRS which was used for the experiment is provided. Moreover, there is

also a section describing the 2017 experimental design conducted by Daniel Friedrichs

and Andrew Clark.

Next, in Chapter Data Analysis Method 3, the neurophysiological fNIRS data

analysis method is explained, covering the steps that are necessary for the overall

data analysis, where the analysis is currently at, and which specific steps remain

and still need to be implemented.

Later, Chapter Results 4, covers the current results obtained by using MNE-

Python.

Afterwards, in Chapter Discussion and Conclusion 5, the challenges encountered

are explained and an overall evaluation of the toolbox is given.

And finally, in the last Chapter Outlook 6, the reader learns what remains to be

done in the future to definitively assess the neural response with the collected fNIRS

data.
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Chapter 2

Background

For a better comprehension of the data analysis of the data collected by the fNIRS

experiment and to understand the main research question of the experiment, in

Section, Topic of Research 2.1, the reader is guided through the background of the

research topic by first defining the terminology ’intelligible speech’ then referring to

similar research studies and their results.

Secondly, in Section, fNIRS Technology 2.2, a neuroimaging method is introduced

that has recently become increasingly popular, functional near-infrared spectroscopy

(fNIRS). This will be done by presenting the physical and physiological basics and

explain how to obtain neuronal activity by fNIRS.

In Section, Method and Experimental Design 2.3, the utilized methodology for

the investigation of the topic of research is delineated. By answering the question

why functional Near-Infrared Spectroscopy (fNIRS) was the preferred neuroimaging

technology for the task of discovering a pathway for intelligible speech, respectively

assessing the neuronal processing of degraded speech. In addition, I also illustrate

the experimental design conducted by Daniel Friedrichs and Andrew Clark in 2017

for this study.

Finally, in Section, MNE 3.1, background and supplementary information on the

Python toolbox MNE as it is used for the overall data analysis are provided.
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2 Background

2.1 Topic of Research

Before discussing the experimental design some background information about speech

are provided, where first the term ”intelligible speech” is defined. An overview of

the current research addressing the specific brain areas associated with the pathway

for the perception of intelligible speech will be given.

Intelligible Speech

Human language follows a structured form of combining word forms, syntax, and

word/sentence semantics, enabling us to think, relate to the environment, or even

imagine things. It is therefore easy to say that language is more than just speech,

the sounds or signal we produce when we speak. Yet speech must fulfill a certain

criteria in order for people to understand each other perfectly. As early as 1947,

French and Steinberg quantitatively analyzed the basic characteristics of speech,

hearing, and noise in terms of how the ear recognizes speech sounds.

Speech is a complex stimulus, consisting of a succession of sound signals whose

intensity and frequency vary rapidly from moment to moment, with large natural

variations between the acoustic properties of the same sounds spoken by different

people or by the same person at different times. All these acoustic phonetic features

must be processed before becoming intelligible to the listener. Supposing that the

various components of a speech signal are received by the ear in their initial order

and at their temporal spacing, the listener’s success in recognizing and interpreting

these components will depend on the intensity within their ear and the intensity of

unwanted sounds that may be present, both as a function of frequency (French and

Steinberg, 1947).

Consequently, they quantified and evaluated several factors such as loudness,

reduction of hearing sensitivity through masking, which means reducing unwanted

sounds in the listener’s ear and they also computed the effect of noise levels and

hearing loss. Based on the findings they assessed the articulation index (AI), which

is a way to quantify this relationship between acoustic speech cues and intelligibility
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2.1 Topic of Research

(French and Steinberg, 1947). The Articulation index is weighted fraction represen-

tation, for a given speech channel and noise condition, meaning it reflects the degree

of segregation of speech from background or other system noise. This calculated

proportion ranges form 0 to 1 and can subsequently be used to predict the speech

intelligibility (Amlani et al., 2002; French and Steinberg, 1947).

Ultimately, the term speech intelligibility refers to the degree to which speech

signals can be correctly recognized and understood by the listener in a given en-

vironment. Speech intelligibility must therefore encompass multiple properties of

human language, such as word-form recognition, syntax and semantics.

Nevertheless, there is no single specific acoustic cue that is crucial to determine

the intelligibility of speech, since skilled listeners can extract meaning even from de-

graded speech signals (Miller, 1951; Shannon et al., 1995). For example, Shannon et

al., in 1995, observed that despite the conditions with greatly reduced spectral infor-

mation and preserving only temporal cues, listeners are typically able to understand

speech rapidly and accurately even if the speech has been significantly degraded.

This concludes that there is no single acoustic cue essential for correct perception of

speech sounds and leads to the conclusion that the higher-lever regions in the brain

take on a major role in the further processing of more complex stimuli. Indeed,

evidence from functional imaging indicates that the human auditory cortex has a

hierarchical organization, meaning that neurons from specific brain regions respond

more selectively to more complex stimuli (Okada et al., 2010).

Considering that speech can be either produced or perceived, one distinguishes

between two aspects, the perception and the production of intelligible speech. Per-

ception of intelligible speech has already been largely covered, therefore intelligible

speech production will now be commented on. Nevertheless, it is to say that the

presented research topic within this thesis concentrates primarily on the perception

of intelligible speech.

Regarding the uniqueness of humans to produce clearly intelligible speech, de-

spite the fact that other species, such as primates, also have the vocal anatomy to

produce vocalisations, a recent study suggest that this is mainly due to the unique
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2 Background

evolution and structure of the human brain and is not related to vocalization-related

anatomical differences between humans and primates (Fitch et al., 2016). This

means that neural changes and the formation of neural circuits are fundamental for

humans to produce intelligible speech. The researchers used X-ray video to quan-

tify vocal tract dynamics during vocalisations and found that while macaques have

a vocal tract capable of producing intelligible speech, they lack the neural circuits

needed to control and coordinate their vocal production system (Fitch et al., 2016).

The study clearly illustrates the importance of the neuronal circuits and neuronal

pathways in our brains.

All this new scientific knowledge in fields of neuroscience, psycho-linguistics, and

computational neuroscience have led to increased curiosity in further research on

speech production and perception regarding the brain. In the following, the findings

of current research related to the perception of intelligible speech are elaborated

on by highlighting a potential brain pathway for intelligible speech versus degraded

speech.

Neural Pathway for Intelligible Speech Perception

There is consensus between experts that the human auditory cortex is organized in a

tonotopical manner, i.e., haricells that are spatially close to each other on the basilar

membrane in the cochlea are also tuned to tones of adjacent frequency (Purves et al.,

2001). The auditory nerve fibers arising from the spiral ganglion cells forming the

auditory nerve that transmits these action potentials to the brain, are sensitive to a

certain frequency tuning curves, meaning that they have a preferred intensity across

all frequencies for which the the neuron increases its firing rate of an action potential

above its spontaneous firing level (Purves et al., 2001). This order is then maintained

when projected onto the auditory cortex (Talavage et al., 2004).

Researchers observed with functional imaging, namely positron emission tomog-

raphy (PET) and functional magnetic resonance imaging (fMRI) an organization in

the human auditory cortex (Scott et al., 2000; Wessinger et al., 2001), suggesting
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2.1 Topic of Research

Figure 1: ”What” and ”where” pathway. V2, primary visual cortex; A1, primary audi-

tory cortex; IT, inferior temporal region; ST, superior temporal region; PPC,

posterior parietal cortex; VLPFC, ventrolateral prefrontal cortex; DLPFC, dor-

solateral prefrontal cortex (Rauschecker and Scott, 2009).

that the human auditory cortex has a hierarchical structure similar to the hierarchy

identified in the visual system. The primary visual cortex (V1) has specifically tuned

neurons for a receptive field to detect contours. However, downstream, in higher-

level regions of the ventral visual stream, which is also refereed to as the ”What

Pathway”, see Figure 1, and associated to object and form recognition (Mishkin

et al., 1983; Hickok and Poeppel, 2004), the features to which neurons are tuned to

fire become more complex, with neurons responding to complex images in a study

with monkeys (Gross et al., 1969). Quiroga et al. (2005) performed a magnetic res-

onance imaging (MRI) study in humans and came to the same conclusion, finding

that neurons in the human medial temporal lobe (MTL) fire selectively to images

of faces, animals, objects, or scenes.

Now, analogue to this ventral visual pathway leading from the primary visual

cortex (V1) to the temporal lobe, an auditory pathway was discovered. More specif-

ically Scott et al. (2000) and Wessinger et al. (2001) showed that pure tones, having

a simple feature, are sufficient to drive activity in auditory cortex, which is lo-

cated bilaterally in humans in the upper surface of the temporal lobe and includes

9



2 Background

planum temporale, parts of the transverse temporal gyrus and the super temporal

gyrus. However, for a maximal activity in surrounding auditory-responsive cortical

regions, the stimuli presented needs to be more complex, such as band-pass noise or

speech.

Nevertheless, it is more difficult to identify and design stimuli that excite tuned

neurons in surrounding higher-order brain regions along the ventro-lateral stream of

acoustic information to their maximum firing activity. Let me explain the reason.

Firstly, to study brain regions that are most active for intelligible speech, one

cannot simply test the higher-level brain regions for images as in the visual ventral

pathway, intelligible speech at the acoustic level being more complex as there is not

one acoustic cue that determines intelligibility of speech (Blesser, 1972; Scott et al.,

2000).

Secondly, there exists a controversy about the degree of lateralization and the

precise location of responses to intelligible speech. Scott et al. (2000) have demon-

strated using PET that the left superior temporal sulcus (STS) responds to phonetic

information, whereas the anterior superior temporal sulcus (aSTS) preferentially re-

sponds to intelligible speech. However, in another study by Okada et al. (2010),

observed using fMRI that activation was bilateral and claimed that the reason other

studies were unable to show a bilateral effect was simply because they did not use

enough participants. They found that the superior temporal gyrus (STG) is sensi-

tive to auditory features. Whereas in terms of sensitivity differences to intelligibility

they observed higher activation bilaterally in downstream auditory regions in both

the anterior superior temporal sulcus (aSTS) and posterior superior temporal sulcus

(pSTS). Nevertheless, they reported differences in acoustic invariance index between

region of interest (ROI); HG, aSTS pSTS and mSTS in the left and right hemisphere.

The acoustic invariance index is a measure of the size of the intelligibility effect

relative to the size of the acoustic effect using intelligibility classification contrasts

(clear vs. rot + NV vs. rotNV) and subtracting the 2 acoustic classification contrasts

(clear vs. NV + rot vs. rotNV) (Okada et al., 2010; Blesser, 1972). Thus, through

this index they were able to quantify the significance of the sensitivity to intelligible
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2.1 Topic of Research

speech of ROI.

Interestingly, they found for example that pSTS regions have the highest degree

of auditory invariance bilaterally during processing of speech, which led them to

hypothesize that pSTS regions are involved in the recognition of auditory objects of

speech and suggest that pSTS regions of both hemispheres give representations on

phonological level.

Okada et al. (2010) conducted pattern classification in a univariate way. Another

study by Evans et al. (2014) replicated but extended the work of Okada et al. (2010)

by using multivariate pattern analysis. They also identified bilateral activation along

the STS. Furthermore, they observed that the strongest univariate intelligibility

effects were present in the left aSTS with their multivariate pattern analysis backing

to this assessment. Further, they added that there must be a much wider network for

intelligibility involving the inferior parietal and frontal cortex, such as Wernicke’s,

Broca’s, and Geschwind’s areas, also suggested by Abrams et al. (2013).

One commonality that all studies have regarding their approach to show differ-

ences between degraded unintelligible speech and intelligible speech is the recon-

struction of acoustic speech stimuli that are as acoustically complex as speech but

lack phonetic features, making them unintelligible. A well established technique for

destroying comprehensibility while maintaining structural complexity is, for exam-

ple spectral rotation technique, which was introduced by Blesser (1972). More on all

the different types of stimuli for identifying intelligible vs. unintelligible speech and

how the activation of brain areas is identified using the stimuli information is further

discussed in Section Methods and Experimental Design 2.3, where the stimuli and

the neuroimaging technique used are explained more extensively.

Similar to the studies discussed, the goal of this research topic is to identify

a pathway for intelligible speech by assessing the neuronal processing of degraded

speech as a preliminary step. This is done by replicating and extending the study

by Scott et al. (2000). More in Section Methods and Experimental Design 2.3, where

the experimental design of the experiment is described.
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2 Background

2.2 fNIRS Technology

In order to understand the collected data used for this thesis, a background on how

we infer neuronal signals using fNIRS is provided. The term fNIRS is specifically

used in the neuroimaging field to address NIRS applications aiming at mapping and

gaining an understanding of the functioning of the human cerebral cortex.

Functional Near-Infrared Spectroscopy (fNIRS) is a portable and noninvasive op-

tical neuroimaging technique that measures hydrodynamic alterations accompany-

ing brain activation by exploiting changes in light properties, more specifically the

changes in tissue absorbance of light at different wavelengths. A light source, called

optode, sends light waves in the near-infrared range (650-950 nm) through the cortex

and the tissue refracts the scattered light back to a detector (Venclove et al., 2015).

Physical Principles

Currently, there are three modalities of fNIRS spectroscopy: 1.) Continuous wave,

2.) Frequency domain, 3.) Time-domain. Only the first, continous wave modality of

fNIRS will be covered, since an overwhelming majority of commercial devices devel-

oped to date are based on continuous wave technology and because it is the method

used (Scholkmann et al., 2014). Generally, near-infrared spectroscopy (NIRS) relies

on two characteristics of human tissue; The relative transparency of tissue to light in

near-infrared (NIR) spectrum and the oxygenation-dependent light absorbing char-

acteristics of hemoglobin. The principle that biological tissue is relatively permeable

to light in the near-infrared (NIR) range enables the determination of concentration

changes of oxygenated hemoglobin([HbO2]), deoxygenated hemoglobin([HbR]), to-

tal blood volume ([HbO2]+[HbR]= HBtot) and oxygenated cytochrome oxidase1

(Chance, 1991). The reason being that if the absorption of light is know, the

1Cytochrome oxidase (CO), is a valuable endogenous metabolic marker for neurons since the

nervous system strongly depends on aerobic metabolism for its energy supply and cytochrome

oxidase has an intrinsic role in mitochondrial aerobic energy metabolism (Wong-Riley, 1989).

12



2.2 fNIRS Technology

Lambert-Beer law can be used to calculate the chromophore’s2 absorption. The

Lambert-Beer law is given by (Bouguer, 1729; Mayerhöfer et al., 2020; Mäntele and

Deniz, 2017):

ODλ = log(
I0
I
) = A = ελ · c · ℓ

where

A is the amount of light absorbed, which can also be defined via incident intensity

A = log(
I0
I
)

where I0 is the incident light, I the transmitted light

ODλ is the optical density of the medium, a dimensionless factor

ε is the molar absorbance coefficient or also known as chromophore’s extinction

coefficient, which varies with wavelength λ, but not with concentration

c is the concentration of the chromophore

ℓ is distance between light entry and exit point

λ is the wavelength

Note that ODλ is equal to A, which means that the density of a medium is equal to

absorbance of a medium.

However, the Lambert-Beer law is only meant to be used in a non-scattering and

transparent medium however biological tissue is a scattering medium. Therefore

a dimensionless path-length correction factor, which accounts for the increase in

optical pathlength due to scattering in the tissue needs to be incorporated, this factor

is called differential pathlength factor (DPF) (Essenpreis et al., 1993). The equation

for a scattering medium is then known as modified Lambert-Beer law (MBLL) and

is given by (Kocsis et al., 2006; Baker et al., 2014):

2Chromophore is a group of atoms and electrons forming part of an organic molecule that causes

it to be coloured (Muller, 1994, on page 1097)
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∆c =
∆ODλ

ελ · ℓ ·DPF

where

∆ODλ is the change in optical density more specific the oxygen-independent optical

losses due to scattering and absorption in the tissue. ∆ODλ is assumed to be

constant during NIRS measurement.

∆c is the change in concentration of the chromophore

ελ is the molar absorbance coefficient or also known as chromophore’s extinction

coefficient, which varies with wavelength λ, but not with concentration

ℓ is distance between light entry and exit point

DPF is the differential pathlength factor

In summary, the following can be concluded about the fNIRS technology: The deter-

mination of light waves in the NIR range for hemoglobin concentration follows the

MBLL and is the basis for continuous near-infrared tissue spectroscopy (cwNIRS)

(Kocsis et al., 2006). The differential form of MBLL, dMBLL, implies that light at-

tenuation changes are proportional to changes in tissue chromophore concentration,

thus mainly due to oxy- and deo-hemoglobin changes. So, once the attenuation

changes are measured at two or more wavelengths, it is possible to calculate the

concentration changes (Kocsis et al., 2006).

The mechanism of neurovascular coupling is the underlying principle of fNIRS

(Girouard and Iadecola, 2006). The cerebral blood flow needs to be adjusted and

maintained to the level of brain activity and metabolic demand this is done by

feedforward and feedback processes of autoregulation and neurovascular coupling

(Girouard and Iadecola, 2006). When a particular brain region is activated, cerebral

blood flow increases in a temporally and spatially coordinated pattern that is closely

14



2.3 Method and Experimental Design

associated with changes in neuronal activity through a complex sequence of coor-

dinated events involving neurons, glia, arteries/arterioles, and signaling molecules

(Girouard and Iadecola, 2006). As a result, fNIRS enables inferences about changes

in neuronal activity reflected in changes in blood oxygenation in the region of the

activated cortical area Devor et al. (2012). It needs to be said, that the obtained

singal by fNIRS is analogous to the Blood-oxygen-level-dependent imaging (BOLD)

signal measured by fMRI as it is capable of measuring changes both in oxy- and de-

oxyhemoglobin concentration, hence fNIRS research literature often refer to BOLD

measures in their analysis.

Neurovascular coupling is a unique mechanism that controls regional cerebral

blood flow (CBF) and ensures a rapid increase in the rate of CBF to activated brain

structures

2.3 Method and Experimental Design

The method specification and its experimental design, including the choice of the

device, participant selection data generation, and data collection, was carried out

by Daniel Friedrichs and Andrew Clark in 2017 at UCL with the goal to replicate

and extend the study by Scott et al. (2000) using fNIRS.

Neuroimaging Method

Reviewed in the Chapter Background 2 there is a controversy regarding the degree

of lateralization of the neuronal responses on intelligible speech. Scott et al. (2000)

using PET have found activation in the left aSTS. Okada et al. (2010) using fMRI has

however found bilateral activation. Every neuroimaging technique has its advantages

and disadvantages. PET, for example, has the advantage that it directly measures

neural activity and is less sensitive to motion artifacts, while the disadvantage is

that it has low spatial and temporal resolution, whereas fMRI, on the other hand,

offers good spatial resolution but similarly poor temporal resolution, is susceptible

to motion artifacts, only infers neura activity by using the BOLD principle, and is
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2 Background

noisy. Both neuroimaging techniques have long been validated for use in auditory

perception experiments. However, since they are not portable and are expensive,

research has therefore emphasised the use of fNIRS.

Steinmetzger et al. (2020), for example, validated the application of fNIRS in

the context of auditory perception experiments by comparing haemodynamic fNIRS

data with obtained EEG electrophysiological cortical responses. The authors indi-

cate that the spatial correspondence of the results obtained with the two methods

shows that fNIRS is a valid tool for the study of auditory perception. They noted,

however, that interpretation of fNIRS-HbO results is difficult because of changes

in cortical blood flow, known as ”blood stealing”. In conclusion, they shows that

the advantages of combining fNIRS and EEG go far beyond the common notion of

combining the good spatial resolution of blood-based measurements with the good

temporal resolution of electrophysiological data. This year, 2022, Steinmetzger et al.

in a similar study of interrelationship between the hemodynamic and electrophysio-

logical cortical responses evoked by voice pitch changes, found consistent with other

neuroimaging stuides, that there is a right-lateralised activity in secondary auditory

regions using again combined fNIRS and EEG. They reported similar to the Stein-

metzger et al. (2020) study, that the distribution of cortical activity measured by

fNIRS and EEG was largely coherent, with the sensitivity of the EEG data being

higher than that of the fNIRS data.

The decision to use fNRIS neuroimaging was made based on the fact that previ-

ous research has validated the use of fNIRS for auditory perception. Moreover, it

would be interesting if this replication of Scott et al. (2000) who used fMRI shows

similar results when using fNRIS. Beyond that, fNIRS has several advantages: it is

relatively inexpensive, portable, shows low sensitivity to motion artifacts, and has a

relatively high temporal resolution.
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Participants

The experiment was initially performed with 26 participants, 5 of whom were ex-

cluded, due to three of them having too many noisy channels in the end and two

being left-handed. The remaining 21 participants were right-handed English speak-

ers with no known hearing or speech impairments. Among them, 8 were female and

13 were male, all ranging in age from 18 to 54 with an overall mean age of 29.

Stimuli and Procedure

The participants were presented with five different types of auditory stimuli previ-

ously used to identify speech selective regions (Scott et al., 2000). The five stimuli

were:

1. clear speech sentences (Sp)

2. Noise-vocoded speech (NV or VCo)

3. Rotated noise vocoded speech (NV-Rot or RVCo)

4. Rotated speech TS (Rot-TS)

5. Rotated speech Blesser (Rot-Blesser or RSp)

The first two types, clear speech and noise-vocoded speech, are perceived as intel-

ligible and the last three as unintelligible. All five stimuli were based on natural

sentences recorded by a single female speaker. The original unprocessed speech

formed the stimuli in one condition (Sp). The second condition perceived as intelli-

gible is termed ’noise-vocoded speech’ (NV or VCo). This is a form of distortion that

was developed by Bob Shannon (Shannon et al., 1995) to simulate the experience

of hearing speech transduced by a cochlear implant, yielding a stimulus that sounds

’like a harsh whisper’ (Davis et al., 2005). However in order for noise-vocoded speech

to be intelligible, listeners have to be pre-trained.

The three last stimuli conditions, are unintelligible and involve the spectral ro-

tation (or inversion) of a signal.
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2 Background

Pre-training Noise-Vocoded Speech Stimuli for Intelligibility

Prior to participating in the main experiment, participants were trained on the

NV stimuli, since noise-coded speech is generally intelligible after some listening,

although it may be difficult for some subjects to understand on the first hearing.

Subsequently, participants were asked to engage in a task in which a short sentence

or phrase was played through the participant’s headphones ER (Etymotic Research

headphones) and then on a display screen in front of them they had to select two

heard words from a list of 6-8 words. If they chose the correct words, the next

sentence would play. This routine continued for a period of 7 minutes. Finally, after

completing the short task, all participants were asked whether their understanding

of noise-vocoded speech has improved.

fNIRS Recording

The fNIRS signals were recorded with a continuous-wave ETG-4000 system (Hitachi

high-technologies corporation, Tokyo, Japan) with a sampling rate of 10 Hz. Two 15

source optodes and 15 detector optodes in a 3 by 5 configuration were placed sym-

metrically over each hemisphere. The source optodes emitted infrared light with

wavelengths of 695 and 830 nm. The chosen optode layout was devised to opti-

mally cover the auditory cortex and associated areas, resulting in 22 measurement

channels per hemisphere. Note that the Hitachi fNIRS system has a fixed optode

spacing of 3cm therefore there are no short channels. The optode and reference posi-

tions for each individual participant were digitized with a Polhemus Patriot system

(Colchester, Vermont, USA) before the experiment. The Hitachi ETG-4000 device

recorded 10 trials per condition, i.e. 5 times 10 trials, making a total of 50 events.

Between the events there was a recovery period of 12 seconds, because the neuronal

activity must decrease again in order not to falsify the result.
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2.3 Method and Experimental Design

Contrasts

In order to eventually identify, compare and measure specific local activities in the

human auditory cortex, five contrasts are defined, which are used in the later data

analysis. The five contrasts are:

1. Intelligible versus unintelligible speech:

[(Sp + NV) − (Rot-Blesser + Rot NV)]

2. Pitch perception with Blesser’s old rotation technique:

[(Sp + Rot-Blesser) − (NV + Rot-NV)]

↰

Speech with and without pitch (harmonic structure not perserved)

3. Any type of phonetic information:

[(Sp + NV + Rot-Blesser) − (Rot-NV)]

↰

Speech with and without phonetic information

4. Comparing rotation techniques with different harmonic structure:

[(Rot-TS) − (Rot-Blesser)]

↰

Rotated speech with and without preserved harmonic structure

5. Pitch perception new rotation technique of Kurt:

[(Sp + Rot-TS) − (NV + Rot-NV)]

↰

Speech with and without pitch (harmonic structure preserved)

The first three contrasts were presented by Scott et al. (2000). The last two con-

trasts presented by Steinmetzger and Rosen. The contrasts four and five were used

to assess the effect of two different rotation techniques, one with preserved harmonic

structure (Kurt Steinmetzger, unpublished) and one without (Blesser, 1972). These

contrasts are intended to reveal the specific differences in neuronal response of the

regions of interest (ROI) and are applied in one of the final steps of the data analysis

in the group-level glm analysis.
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2 Background

General fNIRS Experiment Workflow

The general workflow from data acquisition to the data plotting is structured in the

following way:

Acquiring fNIRS data

Converting the data

into a data format

supported by toolbox

Pre-processing

of the data

Averaging of

data of interest

Display

Data Analysis

The acquisition of the fNIRS data and the experimental design is one of the most

important steps, since everything further depends on it. Okada et al. (2010), for

example, shared that the reason why they found bilateral activity, unlike Scott et al.

(2000), was due to the fact that Scott et al. (2000) did not have enough participants,

i.e. data. Once the data is acquired, the fNIRS data analysis follows, which consists

of several steps, such as converting the data to the data format supported by the

toolbox used, pre-processing the data, averaging the data, and finally displaying the

results.

This general data analysis workflow should be kept in mind, as the next Chapter

Data Analysis Method 3, provides more detailed information and explanations about

the steps of the data analysis.

20



Chapter 3

Data Analysis Method

This Chapter deals with the fNIRS data analysis method, i.e., the MNE Python

package series used for this data analysis and the subsequent data analysis steps. At

the beginning in Section, MNE Data Analysis Series 3.1, background and supple-

mentary information on the Python toolbox series MNE is provided. In addition,

reasons are given as to why MNE-Python was preferred over other methods. Next,

Section Data Analysis 3.2, lists the specific data analysis steps of preprocessing and

individual analysis that were performed on the dataset, followed by a list of the

group-level GLM analysis steps required to be carried out moving forward.

3.1 MNE Data Analysis Series

The tool of the used data analysis was MNE python. Analysis software chosen for

the implementation of the project is the MNE-Python is an open-source Python

module for processing, analysis, and visualization of functional neuroimaging data,

such as EEG, MEG, sEEG, ECoG, and fNIRS (Gramfort et al., 2013). To improve

the fNIRS data analysis, MNE has provided an additional open-source toolbox in

Python named MNE-NIRS, developed by Robert Luke, Erik Larson, and Alexandre

Gramfort. The toolbox is handled by scripting the processing pipeline, giving users

flexibility and convenience while programming in Python. However, MNE-NIRS

shares common functionality with the MNE-Python toolbox, thus the documenta-
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3 Data Analysis Method

tion is split into the MNE-NIRS API Reference website for specific NIRS function-

alities and for more general functions in the MNE-Python API reference.

For this work and the evaluation of MNE-Python for assessing neural processing

by fNIRS, the various examples available on the MNE-Python1 and MNE-NIRS

2 websites are heavily relied on. For Group-Level analysis the use of MNE-BIDS

(Appelhoff et al., 2019) is proposed. Brain Imaging Data Structure (BIDS) is a

standard describing how to organize neuroimaging and electrophysiological data,

defining; file formats to use, file naming, placement of files withing a directory

structure and also stores additional metadata. The advantage of using MNE-BIDS3

is that it links BIDS and MNE-Python, this should make analysis faster to code and

also supports fNIRS file formats.

One reason I chose the MNE series as the packages to do the data analysis

as opposed to, for example, HOMER2 or HOMER34 which also provides a set of

MATLAB scripts for analyzing fNIRS data to obtain estimates and maps of brain

activation, is that I am more familiar and proficient in the Python programming

language. Another argument for using MNE-Python was that my supervisors were

very interested and motivated about using a tool for fNIRS analysis in Python, as

it is relatively new. I also was very eager and fascinated, when I saw on the MNE

webpage how many analysis possibilities there are.

3.2 Data Analysis

For the data analysis, which at the moment consists of preprocessing and individual

analysis, I tried to follow the various instructions and tutorials that MNE provides

1MNE-Python toolbox webpage: https://mne.tools/stable/index.html and installation of MNE-

Python package: https://pypi.org/project/mne/
2MNE-NIRS toolbox webpage: https://mne.tools/mne-nirs/stable/index.html and installation

of MNE-NIRS toolbox: https://pypi.org/project/mne-nirs/
3MNE-BIDS webpage: https://mne.tools/mne-bids/stable/index.html and installation of MNE-

BIDS: https://pypi.org/project/mne-bids/
4HOMER3 webpage: http://openfnirs.org/software/homer/
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3.2 Data Analysis

on its website. In the following list, called First-Level Analysis, are the specific

analysis steps that were performed, with detail explanation. The next list, namely

Group-Level GLM Analysis covers the steps that are still required to be done for an

overall analysis.

Analysis Steps

First-Level Analysis (Preprocessing and Individual Analysis)

1. Conversion of the data into a data format supported by the MNE toolbox.

1.1. Positional pos. file conversion

1.2. Read and load recorded Hitachi .csv files

2. Plot Montage on the brain

3. Read Events, set annotation and duration of for each stimuli for Hitachi-Raw

object

3.1. Remove double triggering

4. Select channels appropriate for detecting neuronal response

4.1. Remove motion (baseline shift & spike) artifacts by applying temporal

derivative distribution repair (TDDR)

4.2. Remove channels that are too close together, so called short channels

5. Evaluate quality of data using the scalp coupling index (SCI)

5.1. Set for SCI less than 0.5 as bad channel

6. Convert raw intensity to optical density data and then to haemoglobin con-

centration using the modified Beer-Lambert law

7. Filtering

7.1. Remove heart rate from signal
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3 Data Analysis Method

8. View consistency responses across trials

9. Plot standard fNIRS response

10. View how the topographic activity changes throughout the response

11. Plot comparison of conditions

12. Plot individual waveforms that drive to the topographic plot

The preprocessing and individual analysis starts with the conversion of the data

into a data format supported by the MNE toolbox. The digitisation device has

generated a positional .pos file for the specific localization of the channels, however

MNE does not support .pos files yet. In order to set a montage for the channel

positioning, one has to use generate a DigMontage instance. This is done by digging

the specific data out of the .pos file and generating a .csv file containing all the

relevant positional information, such as nasion fiducial point, right/left periauric-

ular fiducial point, coordinates of the channel positions, and then use the method

mne.channels.make dig montage in order to generate the DigMontage instance. The

next step is to read and load the Hitachi raw intensity data and have a first look at

the montage, by visualizing the montage in 2D or 3D.

When reading the Hitachi raw intensity data, a Raw instance gets generated,

to this Raw instance, one can find events and set the according annotations, and

duration for each stimuli. However, by using the module men.find events 100 events

are found, double as much than the initial 50 events, meaning that there is a double

triggering not noticing the rest period, this has to be removed. Next, select specific

channels, remove some channels or define certain channels as bad channels. The

motion artifacts correction need then be applied to the optical density data, thereby

convert the raw intensity to optical density and then apply the temporal derivative

distribution repair on the data (TDDR). The TDDR was introduced by Fishburn

et al. (2019) and is a fNIRS motion correction procedure based on robust regression,

which effectively removes baseline shift and spike artifacts without the need for any
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3.2 Data Analysis

user-supplied parameters. Afterwards, the quality of the data can be evaluated using

the Scalp Coupling Index (SCI). The Scalp Coupling Index determines the quality

by measuring the connection between the optode and the scalp Pollonini et al.

(2014). However, a threshold must be defined for the SCI, for instance 0.5, and then

any channel that has less than 0.5 SCI is considered a bad channel, although it is

important to ensure that the threshold is not too low to preserve the majority of the

data. The acquired fNIRS signals from the optical density data may contain several

types of noise, which can be classified as instrumental noise, experimental error, and

physiological noise, such as heartbeat noise (1-1.5 Hz) or respiration (0.2 0.5 Hz)

(Naseer and Hong, 2015).

There are several methods used to remove them, such as principle component

analysis (PCA), independent component analysis (ICA) and band-pass filtering

(Naseer and Hong, 2015). In this work we remove the heart rate using a band-

pass filtering. In order to remove the heart rate from the signal using a filter is

used with a lower pass-band edge at 0.05 Hz, upper pass-band edge at 0.7, transi-

tion band at the high cut-off frequency at 0.2 Hz and a transition band at the low

cut-off at 0.02 Hz. Having done that, I can now convert the optical density data to

haemoglobin concentration using the modified Beer-Lambert law. After that mul-

tiple plots can be made, one of which is the standard fNIRS response, comparison

of conditions, topographic activity changes throughout the response, or give the in-

dividual waveforms that drive to the topographic plot. This was only a brief rough

run through the data analysis that was made, it can however be better understood

when viewing the code.

Up to this point, the code has been implemented, but a GLM (general linear

model) analysis at the group level is still desired in order to assess the neural re-

sponse over all participants. Therefore, I now present the steps that still need to be

implemented.
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3 Data Analysis Method

Group-Level GLM Analysis

1. Create BIDS

2. Run Individual Analysis from BIDS on all participants

2.1. Create Design matrix using a hemodynamic response function (HRF),

either statistical parametric map (SPM) or glover and run the GLM

2.2. Pick channel pairs manually and compute regions of interest (ROI)

2.3. Define Contrast

2.4. Visualize Results

3. Compute group level results

3.1. Visualize group results

3.2. Topographic visulaisation of each condition

3.3. Contrast visualisation using topographic representation

3.4. Cortical surface projections

The first step of a group-level GLM analysis is to create a BIDS (Brain Imaging

Data Structure), since this is the easiest way to proceed with the group-level GLM

analysis. It is the suggested format by MNE, as they use it in all their group-

level tutorial and the package named MNE-BIDS is being applied. Furthermore, a

design matrix can be created using the hemodynamic response function from SPM

(statistical parametric map) and then the GLM can be performed for all subjects in

the BIDS structure. Next, the aim is to pick the channels regarding the region of

interest ROI, plot the responses according to the conditions and afterwards define

and compute the contrasts and finally visualise the results.
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Chapter 4

Results

This Chapter focuses on reporting the obtained results. In the previous Chapter

Data Analysis 3 in Section Data Analysis Pipeline 3.2, the sequence of steps for the

data analysis, involving, preprocessing and individual analysis, namely the first-level

analysis was outlined. The remaining future steps necessary for the group-level GLM

analysis were discussed. Linking to the previous Chapter, the preliminary results

of this first-level analysis are presented next, which includes preprocessing step and

the individual analysis.

4.1 First-Level Analysis

Montage

There are several methods to view the montage using MNE Python. First, a few

different variations of how the montage can be displayed are demonstrated. When-

ever a 3D sample brain template is shown, it should be noted that it was provided

by FreeSurfer, since MNE obtained the data from FreeSurfer and can be adapted

and modified using FreeSurfer. FreeSurfer1 is a neuroimaging toolkit for visualizing

and analysing human brain MR images, however they also provide a lot of templates

with region of interest (ROI) labels.

1FreeSurfer: https://surfer.nmr.mgh.harvard.edu/
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4 Results

(a)

(b)

(c)

(d)

Figure 2: Tonotopical 2D (a) (b) and 3D map (c) (d) of montage (subject S04).

Figure 2 shows two 2D tonotpoic maps, (a) and (c) and two 3D coordinate

diagram of the montage (b) and (d). The first illustrations (a) and (c) are plotted

before defining or recognizing so called ”bad channels”, while (c) and (d) have a bad

channel marked in red, namely ”S4 D3 hbo”. It should be noted that the naming

of the channels must follow a certain structure, ”S# D# type”, where # is replaced

by the corresponding source and detector numbers and type is either hbo, hbr or the

wavelengt. The sphere in (a) and (c), which represents the head, is automatically

calculated by a fit to the digitization points, such as nasion or periauricular fiducial
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4.1 First-Level Analysis

points. However, the left hemisphere in the tonotopic representation (a) and (c) is

clearly shifted, which is one reason why also a 3D representation is requested.

subject S04 subject S35

Figure 3: Right hemisphere with sensor-decoder pairs and channels of subject S04 & S35.

In the montage illustration, Figure 3, the sensors are represented by source-

detector pairs on the brain surface. The red dots are the source and the black dots

symbolize the position of the detectors. The source-detector pairs are visualized

by a white line whose yellow-colored center is the channel. The illustration shows

the right hemisphere of the brain sample. Also, it can be seen that the montage

is placed across the skull in such a way that it covers the auditory cortex, as it

extends from parts of the occipital lobe through the temporal lobe to the frontal

lobe. However, again the montage is not perfectly adjusted across all participants,

compared to subject S04 the montage of subject S35 is rather skewed.
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4 Results

Figure 4: Sensor-decoder pairs and channels, with region of interest (ROI) of subject S04.

Figure 4 shows in addition to the previous Figure 3 specific regions of interests.

The region colored green is around the broca’s area, the area in the color blue repre-

sents the primary auditory cortex (A1), red marks the parts of the anterior superior

temporal sulcus (aSTS) and the yellow are other regions of superior temporal sulcus

(STS). All these brain regions are able to be colored using FreeSurfer. However,

the labelling of those regions of interest is rather difficult as you need to know the

abbreviations of the specific brain areas. For example, in FreeSurfer I have noticed

that the left superior temporal sulcus is subdivided into multiple different labels;

”L STSdp ROI-lh”, ”L STSva ROI-lh” and ”L STSvp ROI-lh”.
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4.1 First-Level Analysis

Figure 5: Left side, front and right side view of sensors, source-detector pairs with channel

of subject S04.

Finally, Figure 5 shows the front and side view of the montage with selected

channels and their naming. Given that the MNE method used to produce Figure 4

cannot display the channel names on top of the region of interest (ROI), this figure

can demonstrate which channel is located in which brain area. Therefore this plot

helps to find out the specific channel and their channel name in a certain region of

interest.
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Events

Events, or also called conditions, need to be set for the raw data. In our case we have

5 stimuli conditions, namely speech (SP), rotated speech (Rot-TS), rotated speech

by Blesser (Rot-Blesser), rotated noise-vocoded speech (NV-Rot) and noise-vocoded

speech (NV). The duration of each stimuli condition is set to 20s. The experimental

design is conducted in such a way that each stimuli conditions has 10 trials, this

makes a total of 50 events.

Figure 6: Event-time diagram showing all events for each condition of subject S04.

Figure 6 visualizes the event-time diagram, where each event (stimulus condi-

tions) has 10 trials. Each event has its own event identifier and a different color,

also the number of trials is indicated in the legend behind the condition labels.
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4.1 First-Level Analysis

Raw Data

MNE provides a way to interact with the plotted raw data, by for example adding

annotations or selecting certain channels. In this way specific channels can be man-

ually excluded from the later data processing.

Figure 7: Raw intensity plot of subject S04 without applied motion artifact correction

(TDDR) including all channels.

Figure 7 shows the interactive raw intensity plot of MNE-Python. In the nav-

igation bar at the very top of the plot, various adjustments can be made, such as

adding annotations. In addition, all annotated events are displayed, each in a differ-

ent color, and the far left lists the specific channel names from which each channel

intensity originated.
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Figure 8: Optical density plot of subject S04 with applied motion artifact correction

(TDDR) of 15 channels.

Figure 8 shows the optical density plot where the time-derived distribution repair

(TDDR) was previously applied to the data.

Figure 9: Haemoglobin concentrations of all channels of subject S04 with applied motion

artifact correction (TDDR).

The last raw plot in Figure 9, is the haemoglobin concentration plot. To obtain

the hemoglobin concentration, the modified Beer-Lambert law must be applied to

the optical density. Also, recall that a motion correction was prior performed using

TDDR on optical density data, as it is recommended by Naseer and Hong (2015).
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4.1 First-Level Analysis

Data Quality Evaluation

In order to quantify the quality of the coupling between the scalp and the optodes,

the scalp coupling index is used. The scalp coupling index is a quality check to eval-

uate the correlation between two wavelength channels in the cardiac band (Pollonini

et al., 2014).

Figure 10: SCI plot of subject S04.

Figure 10 shows the SCI diagram. The index ranges from 0.0 to 1.0, and it

can be seen that most counts are between SCI 0.8 and SCI 1.0. Depending on the

threshold value set, certain channels that fall below it are removed. For example,

if the threshold is SCI 0.5, only a few channels will be removed, but the larger the

threshold, the more channels will be removed from the data, so one should be careful

not to choose a threshold that is too high.
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4 Results

Filtering

Before converting optical density data to hemoglobin concentration with the mod-

ified Beer-Lambert law, apply a band-pass filter to filter out heart rate, which is

recommended by Naseer and Hong (2015). In MNE-Python such a filter can be

applied to the data. In order to remove the heart rate from the signal 4 parameter

are used, lower pass-band edge, upper pass-band edge, transition band at the high

cut-off frequency and transition band at the low cut-off. The parameters were cho-

sen to match those in the MNE tutorial example, i.e., the lower pass-band cutoff

was set to 0.05 Hz, the upper pass-band cutoff to 0.7 Hz, the transition band at the

high cutoff frequency to 0.2 Hz, and the transition band at the low cutoff frequency

to 0.02 Hz.

Figure 11: Haemodynamic responses and corresponding frequency before filtering of sub-

ject S04.

The hemodynamic response has a frequency component, displayed in Figure

11 and Figure 12. There is a 1 Hz increase in activity in the data which can be

attributed to a person’s heartbeat which is undesirable. Hence, the low-pass filter
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4.1 First-Level Analysis

is applied to remove this and the high pass filter is included in order to remove slow

drifts in the data.

Figure 12: Haemodynamic responses and corresponding frequency after filtering of subject

S04.

After the heartbeat is removed by the filter the haemodynamic responses and

their corresponding frequency should look like the plot in Figure 12.
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fNIRS Response

MNE-Python provides a very interactive way to display the fNIRS responses. The

next illustrated diagrams show the graphs generated by MNE and the features they

provide to the user.

Figure 13: Average oxyhemoglobin concentration across time diagram with 44 channels of

subject S04.

Figure 13 contains a lot of information. First, it shows the oxyhemoglobin con-

centration of 44 channels over the entire session. Second, the channels are color-

coded with the left hemisphere having cooler colors and the right hemisphere having

warmer colors assigned to the channels and within the hemispheres the channels are

again differently colored. Third, you can see tonotopic diagrams above with the oxy-

hemoglobin responses for specific time periods. Finally, this plot is very interactive:

when you click on one of the colored responses, the name of the channel is displayed.

For example, in Figure 13, the blue channel ’S6 D3 hbo’ has been marked, which is

located in the left posterior hemisphere and is shown on the far left of the tonotopic

map. This channel has a positive oxyhemoglobin peak at around 15s and this a very
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4.1 First-Level Analysis

negative oxyhemoglobin response around 7s. This high negativity of the average

oxyhemoglobin concentration at 7s represents the deoxyhemoglobin, which is also

visualized with a blue color in a tonotopic plot on the very top of the diagram.

That is why in the next illustration, Figure 14 the responses for the each conditions

is plotted to further investigate this channel. Another peak of oxyhemoglobin is

shown at around 10s, from a channel on the right anterior hemisphere this is further

illustrated in Figure 15 and Figure 16.

Figure 14: Standard averaged fNIRS response for all conditions for channel S6 D3 of sub-

ject S04.

Figure 14 plots the standard fNIRS response, averaged oxyhemoglobin (HbO)

and deoxyhemoglobin (HbR) for each of the 5 events, also called conditions, over

the time axes. At the top right of the graph is a tonotopic plot showing the location

of the ’S6 D3’ channel. Each condition and its individual Hbo or HbR response are

shown in different colors. Remarkably, the oxyhemoglobin responses (Hbo) of two

intelligible speech responses (SP) the dark blue line and noise-vocoded speech (NV)

the dotted blue line are synchronous with a small shift.
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Figure 15: Oxyhemoglobin concentration across the session with 44 channels of subject

S04.

Another channel, colored orange, exhibits a peak in oxyhemoglobin concentra-

tion at approximately 10s with a negative oxyhemoglobin response at around -1s,

as shown in Figure 15. The channel is located in the anterior right hemisphere and

is called ’S10 D8’. Figure 16 examines the channel by showing the individual con-

ditions with their responses to oxyhemoglobin (HbO) and deoxyhemoglobin (HbR).

Interestingly, oxyhemoglobin concentration of speech (Sp/Hbo) and that of rotated

noise-vocoded speech (NVRot/Hbo) peak at approximately 10s.
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4.1 First-Level Analysis

Figure 16: Standard averaged fNIRS response for all conditions from channel S6 D3 of

subject S04.

In Figure 16, the channel ’S10 D8’ located in the anterior right hemisphere is

illustrated. In additon to the peak of oxyhemoglobin concentration of the condition

speech (Sp/Hbo) and that of rotated noise-vocoded speech (NV/Rot/Hbo) peak at

10s, a sharp decrease in oxyhemoglobin concentration is seen in (Rot/Blesser/Hbo),

colored yellow. Moreover, it shows that the average deoxyhemoglobin concentra-

tion of noise-vocoded speech (NV/Hbr), rotated speech TS (RotTS/Hbr), rotated

noise-vocoded speech (NVRot/Hbr) and speech (Sp/Hbr) is around 0µM with some

deviations.
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Figure 17: Tonotopic plot of the averaged fNIRS response with a condition comparison of

speech (Sp) and rotated speech TS (Rot-TS) of subject S04.

Another possibility is to compare average fNIRS responses of a certain conditions

in tonotopic plot as shown in Figure 17. This option provides the chance to view

the location of activity.
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4.1 First-Level Analysis

Figure 18: Individual waveforms that drive to the topographic plot 17 with blue response

waves representing speech (Sp) and red response waves representing the condi-

tion rotated speech TS (Rot-TS) of subject S04.

The next diagram, Figure 18, is very interactive and offers the user the option

to choose certain channels and display the plots with condition specific average

oxyhemoglobin concentration response across time, shown in Figure 19. Here there

are two individual waveforms, accounting for two conditions, speech (Sp) colored

blue and rotated speech TS (Rot-TS) colored red. These individual waveforms drive

the tonotopic diagram of Figure 17. Moreover, as in Figure 2, where a channel was

marked as red, which means that it is a ”bad channel”, it is also here demonstrated

that there is no data in one of the channel in the left posterior hemisphere.
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(Rot-TS) (Sp)

Figure 19: Averaged oxyhemoglobin response for rotated speech TS (Rot-TS) and speech

(Sp) of subject S04.

When clicking on one specific channel the interactive plot of Figure 18, the

individual average oxyhemoglobin response for the specific condition get displayed.

In this example, Figure 19, the channel ’S2 D2’ was chosen and the two example

conditions are in this case, Sp colored blue and Rot-TS colored red.
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Chapter 5

Discussion and Conclusion

In the previous Chapter Results 4 it was possible to present the first-level analysis

findings using the toolbox MNE-Python. Subsequently, all of the generated diagrams

and figures look fine. An advantage of MNE is the high interactivity of the diagrams.

For example, diagrams of Figure 18, 15 or all diagrams of the raw data, Figure 7,

8 and Figure 9, all have an interactive attribute embedded. Moreover, they follow

a great visual design, with good coloring. Another strength of the MNE toolbox is

that it is handled by scripting the processing pipeline which makes the programming

easy and keeps the code relatively short. When evaluating the application of the

open-source Python toolbox MNE for assessing neural processing of degraded speech

from functional near-infrared spectroscopy, not only the usability of the code and

the generated plots need to be considered, but also the MNE documentation and

overall support. The MNE community made multiple tutorials with sample code

and sample data available, which made the learning experience easier, especially

for people who never have conducted brain data analysis. Also, their source code

which is available on GitHub, is well documented and also their API references on

their website follow a great documentation of code and calculations which provides

a better understanding for the users. With each MNE version new features are

added or old ones are changed, therefore a good documentation is essential. They

for example, add and highlight their notes about additional features in visible green

boxes. Moreover, the MNE community provides great online support in an online
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forum and with bi-weekly live support sessions where users can share their issues with

MNE developers whenever they are having problems using MNE, have questions,

have noticed a bug, or have a feature request.

Let me now move on to discuss my experience with MNE-Python, the imple-

mentation phase was accompanied by multiple challenges. One of which started

with the file conversion and the creation of the DigMontage object from the initial

positional .pos file. Since MNE python does not support the .pos file generated by

the digitisation system ”Polhemus Patriot” to read the channels and their positions,

it was necessary to convert the positional information to a for MNE readable way

by a creation of a DigMontage object. At first I only used the x,y,z coordinates

but this was not sufficient as nasion fiducial and periauricular fiducial points were

also required for a good montage. Later another challenge arose, when trying to

plot the sensors on a brain template, as the unite of measure was too high, when

converting the .pos the mass unit was meters and not millimeters. Consequently, the

sensors were plotted outside the brain template. After visualizing the channels and

sensor-decoder pairs on a brain template, I observed that the sensor-decoder pairs in

the right hemisphere were all incorrectly connected. Leading to the conclusion that

the channel naming must have been wrong. In MNE, when creating an DigMontage

object, one must convert all previous channel names to their channel naming for-

mat. The MNE channel naming needs to be converted in this structure, ”S# D#

type”, where # is replaced by the corresponding source and detector numbers and

type is either hbo, hbr or the wavelength. If the corresponding numbering of source

and detector are wrong, the source-channel pairs will be connected incorrectly, as it

happened in my case.

Another difficulty, was the reading in of the fNIRS Hitachi raw data. The Hitachi

raw data was separated into two probes, where each probe represented the recording

of one hemisphere. The method to read the raw data, namely ”mne.io.read raw hitachi”,

for the first-level analysis was problematic, since there was only the option to read in

one file and no further concatenation option further downstream processing pipeline

of MNE. Hence, I attended a live question session with MNE developers and received
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assistance. After roughly two to three weeks the method was modified to pass in a

list for multiple probes that are acquired simultaneously. This demonstrates their

commitment and desire to further develop the MNE Python toolbox. Regarding the

by MNE-Python generated montage diagrams even though it is able to zoom in to

the montage plot in Figure 4 and in Figure 3, it does not support selecting specific

channels by clicks to get their names, which is a drawback when trying to specify

the region of interest (ROI) and pick certain channels. One more drawback is the

information in the tracebacks of MNE-Python. I had to exclude two participants be-

cause the script did not work for them, while there were no problems with the other

participants. The traceback information was too unclear for me to investigate the

issue, thus I had to exclude participants S15 and S6 from further analysis. Another

challenge arose when trying to start the group-level GLM analysis. Following the

MNE-Python toolbox tutorial provided on the website it is suggested to convert the

data to a BIDS structure using MNE-BIDS. However, there is currently a bug when

trying to create a BIDS data structure using MNE-BIDS. For this reason, this work

is not yet complete, as the main goal is to assess the neural processing of degraded

speech as a whole, and that includes a GLM analysis at the group-level.

In conclusion, reading and converting the data was the most time consuming as-

pect of this project. If, however, the recorded data had been from another fNIRS

system or/and the position file had been supported by an MNE Python method,

such as, ”Polhemus isotrak”, ”Polhemus fastscan”, or another system, the analysis

would have been much faster as promised by MNE-Python. Looking back, I have

learned the importance of the experimental design, as the format in which the data

is stored and whether it can be converted to the toolbox can either facilitate or com-

plicate a toolbox. I am convinced that MNE is a very good analysis toobox choice

if someone who is not very familiar with brain data analysis wants to analyze some

data with fNIRS. The tutorials are great as they are very helpful in the learning

process and with the great support of the MNE team almost any solution can be

found. Therefore in my opinion the assessment of the neural processing of degraded
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speech recorded by fNIRS is feasible when applying the open-source Python toolbox

MNE for its overall data analysis. As Python becomes more popular, data analysis

with Python also becomes more mainstream, which in turn leads to an increasing

interest in toolboxes and Python packages. All in all, many such toolboxes or pack-

ages are not yet fully developed and mature, including MNE-Python, but the MNE

community is very involved in fixing issues and improving the toolbox.
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Chapter 6

Outlook

Looking ahead to the success of MNE-Python, the project, and the improvement

of this evaluation, the use of a different toolbox, such as HOMER3, applied to the

recorded fNIRS data should be taken into consideration, as this will allow for direct

comparison and a more meaningful evaluation. As for the analysis of the fNIRS data

for the assessment neural processing of the degraded speech, the first-level analysis

is complete and the group-level GLM analysis will work once MNE fixes the bug in

creating a BIDS with MNE-BIDS. Therefore, it is concluded that the results of the

assessment of the neural processing of the degraded speech can be presented in the

near future.
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Appendix A

Glossary

The following table provides an overview of all acronyms and terms.
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A Glossary

AI Articulatioon iindex

BIDS Brain Imaging Data Structure

fNIRS fuctional Near-Infrared Spectroscopy

EEG Electroencephalogram

ECoG Electrocorticography

MEG Magnetoencephalography

PET Positronen Emissions Tomographie

sEEG Stereoelectroencephalography

SCI Scalp Coupling Index

STG Superior Temporal Gyrus

STC Superior Temporal Cortex

STS Superior Temporal Sulcus

SPM statistical parametric map

Sp Speech

RSp rotated Speech

RVCo rotated Noise-Vocoded Speech

ROI region of interest

VCo noise-vocoded speech

V1 primary visual cortex

MT middle temporal area

HRF haemodynamic response function

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

GLM General Linear Model

HG Heschl’s gyrus

MTL Medial Temporal Lobe

ventro-lateral ”ventral”; towards the stomach, ”lateral”; on one side, on one hemisphere

bilateral affecting both sides of the hemispheres
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Appendix B

Code

The code, the plots and the data used for this thesis are accessible on GitHub via

the link https://github.com/rfahrn/fNIRS-project.git. However the GitHub

repository also includes Python scripts which have the purpose of testing and de-

bugging code, the three most important scripts however applied for the first-level

analysis in this project are the following:

• pos convert.py

Converts the positional .pos file with its channel names and channel coordi-

nates to a .csv file.

• manuel montage.py

Similar to pos convert.py, this script extracts information from the position file

to create an even better montage, as it also takes into account different digiti-

zation points, such as the left and right ear positions and creates a DigMontage

instance.

• Preprocessing individual.py

This script is used for the first-level analysis and generates all the diagrams

described in the results.
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B Code

1000 # Author : Rebecka Fahrni

# Sc r i p t to convert . pos f i l e i n to csv f i l e

1002

import csv

1004 import pandas as pd

import os

1006

1008 de f c r e a t e c s v ( read f i l ename , o u t f i l e ) :

”””

1010 Creates a . csv f i l e out o f . pos data , output csv : 4 columns

conta in ing ch name , x , y , and z .

: param read f i l ename : input f i l e path that ge t s read

1012 : param o u t f i l e : path to which the output ge t s wr i t t en

: re turn : None ( j u s t c r e a t e s an output− f i l e )

1014 ”””

1016 with open ( read f i l ename , ’ r ’ ) as f i l e :

with open ( o u t f i l e , ’w ’ ) as ou t f :

1018 wr i t e r = csv . wr i t e r ( ou t f )

l i n e s = f i l e . r e a d l i n e s ( )

1020 l i n e s = [ l i n e . r ep l a c e ( ’ \n ’ , ’ ’ ) f o r l i n e in l i n e s ]

header = [ ]

1022 i n d i = [ ]

f o r l in l i n e s :

1024 i f ’ [ ’ and ’ ] ’ in l :

header . append ( l )

1026 f o r i in header :

ind = l i n e s . index ( i )

1028 i n d i . append ( ind )

i n v a l = l i s t ( z ip ( header , i nd i ) )

1030 i n v a l = i n v a l [ 1 0 : 4 0 ]

pre = i n v a l [ 0 : 1 0 ]

1032 h = [ ’ ch name ’ , ’ x ’ , ’ y ’ , ’ z ’ ]

w r i t e r . writerow (h)

1034 f o r i in range ( l en ( i n v a l ) ) :

58



i f i != l en ( i n v a l )−1:

1036 tup = i n v a l [ i ]

tup2 = i n v a l [ i +1]

1038 cont = l i n e s [ tup [ 1 ] : tup2 [ 1 ] ]

ch n = cont [ 0 ]

1040 ch n = ch n . l s t r i p ( ’ [ ’ ) . r s t r i p ( ’ ] ’ )

content = cont [ 1 : : ]

1042 x = content [ 0 ]

x = f l o a t ( x . l s t r i p ( ’X=’ ) ) / 1000

1044 y = content [ 1 ]

y = f l o a t ( y . l s t r i p ( ’Y=’ ) ) / 1000

1046 z = content [ 2 ]

z = f l o a t ( z . l s t r i p ( ’Z=’ ) ) / 1000

1048 l i s t c o n t e n t = [ s t r ( ch n ) , s t r ( x ) , s t r ( y ) , s t r ( z ) ]

w r i t e r . writerow ( l i s t c o n t e n t )

1050 e l s e :

tup = i n v a l [ i ]

1052 cont = l i n e s [ tup [ 1 ] : : ]

content = cont [ 1 : : ]

1054 ch n = cont [ 0 ]

ch n = ch n . l s t r i p ( ’ [ ’ ) . r s t r i p ( ’ ] ’ )

1056 x = content [ 0 ]

x = f l o a t ( x . l s t r i p ( ’X=’ ) ) / 1000

1058 y = content [ 1 ]

y = f l o a t ( y . l s t r i p ( ’Y=’ ) ) / 1000

1060 z = content [ 2 ]

z = f l o a t ( z . l s t r i p ( ’Z=’ ) ) / 1000

1062 l i s t c o n t e n t = [ s t r ( ch n ) , s t r ( x ) , s t r ( y ) , s t r ( z ) ]

w r i t e r . writerow ( l i s t c o n t e n t )

1064

# read . csv o f p o s i t i o n a l . csv f i l e

1066 df = pd . r ead c sv ( o u t f i l e )

df . t o c sv ( o u t f i l e , index=False , sep=’ , ’ ) # r e s t r u c t u r e

1068 re turn

1070

de f c r e a t e 0 0 0 1 ed i t ( number ) :
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1072 ”””

The func t i on c r e a t e s a pos to csv converted f i l e c a l l e d 0001 e d i t .

csv in a l l s ub f o l d e r s

1074 : param number : i n t o f a f i l e number

: r e tu rn s None

1076 ”””

os . makedirs ( ’C: / Users / rebec /fNIRS−p r o j e c t /Data ’ , e x i s t o k=True )

1078

# wr i t e . pos to . csv

1080 f i l e p a t h p o s = ’Data/S ’ + s t r ( number ) + ’ /0001 . pos ’

f i l e p a t h c s v = ’Data/S ’ + s t r (number ) + ’ /0001 . csv ’

1082

c r e a t e c s v ( f i l e p a t h p o s , f i l e p a t h c s v )

1084

# read . csv f i l e with columns : ch name , x , y , z and c r ea t e a dataframe

1086 df = pd . r ead c sv ( f i l e p a t h c s v )

1088 # segmentat ion o f Probe1 and Probe2 to new . csv f i l e s

probe1 = df [ df [ ’ ch name ’ ] . s t r . s t a r t sw i t h ( ’ Probe1 ’ ) ] # l e f t

1090 probe2 = df [ df [ ’ ch name ’ ] . s t r . s t a r t sw i t h ( ’ Probe2 ’ ) ]

1092 # rename

# l e f t hemisphere

1094 new names 1 = ’ S1 D1 S2 D2 S3 D3 S4 D4 S5 D5 S6 D6 S7 D7 S8 ’ . s p l i t

( )

1096 # r i gh t hemisphere

1098 new names 2 = [ ’ S9 ’ , ’D8 ’ , ’ S10 ’ , ’D9 ’ , ’ S11 ’ , ’D10 ’ , ’ S12 ’ , ’D11 ’ ,

’ S13 ’ , ’D12 ’ , ’ S14 ’ , ’D13 ’ , ’ S15 ’ , ’D14 ’ , ’ S16 ’ ]

1100 # new names 2 = ’ S11 D10 S10 D9 S9 D13 S13 D12 S12 D11 S16 D15 S15

D14 S14 ’ . s p l i t ( )

new names = new names 1 + new names 2

1102 df . i n s e r t (0 , ’ ch name ’ , new names )

probe1 . drop ( ’ ch name ’ , ax i s =1, i np l a c e=True )

1104 probe2 . drop ( ’ ch name ’ , ax i s =1, i np l a c e=True )
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probe1 . i n s e r t (0 , ’ ch name ’ , new names 1 )

1106 probe2 . i n s e r t (0 , ’ ch name ’ , new names 2 )

1108 f i l e p a t h 1 = ’Data/S ’ + s t r (number ) + ’ / probe1 channel montage . csv ’

f i l e p a t h 2 = ’Data/S ’ + s t r (number ) + ’ / probe2 channel montage . csv ’

1110 probe1 . t o c sv ( f i l e p a t h 1 , index=False , sep=’ , ’ )

probe2 . t o c sv ( f i l e p a t h 2 , index=False , sep=’ , ’ )

1112

df . t o c sv ( ’Data/S ’ + s t r (number ) + ’ /0001 e d i t . csv ’ , index=False ,

sep=’ , ’ )

1114 re turn

1116

# l i s t o f number o f p a r t i c i p an t s ( a l l e x i s t i n g sub f o l d e r s ) in Data

1118 l i s t f o l d e r s = [ ’ 01 ’ , ’ 04 ’ , ’ 05 ’ , ’ 06 ’ , ’ 07 ’ , ’ 08 ’ , ’ 09 ’ , 11 , 12 , 15 ,

16 , 17 , 18 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 ]

1120 f o r n in l i s t f o l d e r s :

c r e a t e 0 0 0 1 ed i t (n)

pos convert.py

1000

import pandas as pd

1002 import numpy as np

1004 de f c onv e r t t o d i c ( c s v f i l e ) :

””” reuse csv f i l e we got from pos conver t to get channel names and

pos ”””

1006 with open ( c s v f i l e ) as f :

d f = pd . r ead c sv ( f , header=None , i nd ex c o l =0) . i l o c [ 1 : , : ]

1008 df1 = df . agg ( l i s t , ax i s=1) . t o d i c t ( )

d i c = {}

1010 f o r ch name , ch pos in df1 . i tems ( ) :

ch pos = np . asar ray ( [ eva l ( i ) f o r i in ch pos ] ) # ch name

with array o f shape ( 3 , )

1012 d i c [ ch name ] = ch pos

re turn d i c
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1014

# pr in t ( c onv e r t t o d i c ( ’ Data/S01 /0001 . csv ’ ) )

1016

de f read montage ( f i l ename ) :

1018 ”””

: param f i l ename : f i l e o f montage coo rd ina t e s from . pos

1020 we need f o l l ow i ng parameters : ch pos , nasion , lpa , rpa , hsp ( none ) ,

hpi ( none ) , coord frame = MRI ’mri ’

: r e tu rn s r i g h t format f o r func t i on make dig montage ar rays and

matrix

1022 ”””

with open ( f i l ename , ’ r ’ ) as f i l e :

1024 l i n e s = f i l e . r e a d l i n e s ( )

l i n e s = [ l i n e . r ep l a c e ( ’ \n ’ , ’ ’ ) f o r l i n e in l i n e s ]

1026 header = [ ]

i nd i = [ ]

1028 f o r l in l i n e s :

i f ’ [ ’ and ’ ] ’ in l :

1030 header . append ( l )

f o r i in header :

1032 ind = l i n e s . index ( i )

i nd i . append ( ind )

1034 i n v a l = l i s t ( z ip ( header , i nd i ) )

i n f o i nd ex = i n v a l [ 5 : 1 1 ] # l i s t o f tup l e s o f header ( i n f o ) and

index

1036 d i c = {}

f o r i in range ( l en ( i n f o i nd ex ) ) :

1038

i f i != l en ( i n f o i nd ex ) − 1 :

1040 tup = in f o i nd ex [ i ]

tup2 = in f o i nd ex [ i + 1 ]

1042 name = l i n e s [ tup [ 1 ] : tup2 [ 1 ] ] [ 0 ]

content = np . array ( l i n e s [ tup [ 1 ] : tup2 [ 1 ] ] [ 1 : : ] )

1044 name = name . l s t r i p ( ’ [ ’ ) . r s t r i p ( ’ ] ’ )

1046 i f name == ’ LeftEar ’ :

name = ’ lpa ’
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1048 e l i f name == ’ RightEar ’ :

name = ’ rpa ’

1050 e l i f name == ’ Nasion ’ :

name = ’ nas ion ’

1052

x = content [ 0 ]

1054 x = f l o a t ( x . l s t r i p ( ’X=’ ) ) /1000

y = content [ 1 ]

1056 y = f l o a t ( y . l s t r i p ( ’Y=’ ) ) /1000

z = content [ 2 ]

1058 z = f l o a t ( z . l s t r i p ( ’Z=’ ) ) /1000

l i s t c o n t e n t = [ name , [ f l o a t ( x ) , f l o a t ( y ) , f l o a t ( z ) ] ]

1060 d i c [ l i s t c o n t e n t [ 0 ] ] = l i s t c o n t e n t [ 1 ]

1062

hsp = np . matrix ( ( d i c [ ’Back ’ ] , d i c [ ’Top ’ ] ) )

1064 back = np . array ( d i c [ ’Back ’ ] )

top = np . array ( d i c [ ’Top ’ ] )

1066 lpa = np . array ( d i c [ ’ lpa ’ ] )

rpa = np . array ( d i c [ ’ rpa ’ ] )

1068 nas ion = np . array ( d i c [ ’ nas ion ’ ] )

coord frame = ’mri ’ # or ’unknown ’

1070

re turn lpa , rpa , nasion , hsp , coord frame

manuel montage.py

1000

# Author : Rebecka Fahrni , 18−735−522

1002 # Pro j ec t : fNIRS data ana l y s i s

# us ing MNE−python https : //mne . t o o l s / s t ab l e / index . html

1004 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

import sys

1006 sys . path . append ( ’C: / Users / rebec /fNIRS−p r o j e c t /manuel montage . py ’ )

import manuel montage

1008 import numpy as np

import matp lo t l i b . pyplot as p l t

1010 from i t e r t o o l s import compress
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import mne

1012

# Preproce s s ing & Ind i v i dua l a n a l y s i s − Fir s t−Level a n a l y s i s

1014 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1016

# read Hitachi− f i l e s

1018 de f r e ad h i t a ch i ( h i t a ch i pa th ) :

”””

1020 Read Hitachi−csv f i l e

: param h i t a ch i pa th csv f i l e l i s t o f s t r i n g s

1022 : r e tu rn s raw : i n s t anc e o f RawHitachi − raw ob j e c t conta in ing

Hi tach i data

”””

1024 raw = mne . i o . r e ad raw h i t a ch i ( h i t a ch i pa th )

re turn raw

1026

1028 # Dig montage

de f s e l f montage ( f i l e p a t h , c s v f i l e ) :

1030 ”””

: param f i l e p a t h : . pos f i l e with l o c a t i o n o f montage

1032 : param c s v f i l e : ente r csv f i l e with ch names and po s i t i o n

: re turn : montage

1034 ”””

lpa , rpa , nasion , hsp , coord frame = manuel montage . read montage (

f i l e p a t h )

1036 ch pos = manuel montage . c onv e r t t o d i c ( c s v f i l e )

re turn mne . channe l s . make dig montage ( ch pos=ch pos , nas ion=nasion ,

lpa=lpa , rpa=rpa ,

1038 hsp=hsp , hpi=None , coord frame

=’mri ’ )

1040 # clean events − double t r i g g e r s

de f c l e an ev en t s ( events numpy ) :

1042 ”””

removes double t r i g g e r i n g a f t e r found events
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1044 : param events numpy : events array that should be c leaned

: re turn c leaned event array ”””

1046 a = events numpy

id s = [ 0 , ]

1048 con s e cu t i v e s = 0

f o r i in range (1 , l en ( a ) ) :

1050 i f a [ i ,−1]!=a [ i −1 ,−1]:

c on s e cu t i v e s=0

1052 e l s e :

c on s e cu t i v e s+=1

1054 i f c on s e cu t i v e s%2==0:

i d s . append ( i )

1056 re turn a [ i d s ]

1058 de f g e t p l o t s ( l i s t p a r t ) :

””” c r e a t e s f i r s −l e v e l a n a l y s i s p l o t s

1060 : param l i s t p a r t : l i s t with a l l p a r t i c i p an t s

”””

1062 f o r p a r t i c i p an t in l i s t p a r t :

f i l e p a t h = ”C:/ Users / rebec /fNIRS−p r o j e c t /Data/S” + s t r (

pa r t i c i p an t ) +’ /S ’ + s t r ( p a r t i c i p an t ) +’ raw . f i f ’

1064 p o s f i l e p a t h 1 = ’C: / Users / rebec /fNIRS−p ro j e c t /Data/S ’ + s t r (

p a r t i c i p an t ) +’ /S ’ + s t r ( p a r t i c i p an t ) + ’ MES Probe1 . csv ’

p o s f i l e p a t h 2 = ’C: / Users / rebec /fNIRS−p ro j e c t /Data/S ’ + s t r (

p a r t i c i p an t ) +’ /S ’ + s t r ( p a r t i c i p an t ) + ’ MES Probe2 . csv ’

1066 montage path csv = ’C: / Users / rebec /fNIRS−p r o j e c t /Data/S ’ + s t r (

p a r t i c i p an t ) + ’ /0001 e d i t . csv ’

montage path pos = ’C: / Users / rebec /fNIRS−p r o j e c t /Data/S ’ + s t r (

p a r t i c i p an t ) +’ /0001 . pos ’

1068 montage save 3d = ’C:/ Users / rebec /fNIRS−p ro j e c t /Data/S ’ + s t r (

p a r t i c i p an t ) +’ /montage 3d . png ’

montage save = ’C: / Users / rebec /fNIRS−p r o j e c t /Data/S ’ + s t r (

p a r t i c i p an t ) +’ /montage top . png ’

1070 s a v e p l o t s = ’C: / Users / rebec /fNIRS−p ro j e c t / Plot s / s ’ + s t r (

p a r t i c i p an t )

raw = r e ad h i t a ch i ( [ p o s f i l e p a t h 1 , p o s f i l e p a t h 2 ] )

1072 montage = se l f montage ( f i l e p a t h=montage path pos , c s v f i l e=
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montage path csv )

raw . set montage (montage )

1074

# load Data

1076 raw . load data ( )

1078 # read Events from Hitachi−Raw and c r ea t e an annotat ion

events = mne . f i n d ev en t s ( raw )

1080 events = c l e an ev en t s ( events )

1082 e v en t d i c t = { ’ Sp ’ : 1 ,

’Rot−TS ’ : 2 ,

1084 ’Rot−Bl e s s e r ’ : 3 ,

’NV’ : 4 ,

1086 ’NV−Rot ’ : 5}

1088 event de sc = {v : k f o r k , v in ev en t d i c t . i tems ( ) }

1090 # wr i t e and s e t annotat ions

annotat ion = mne . annota t i ons f rom event s ( events=events , s f r e q=

raw . i n f o [ ’ s f r e q ’ ] ,

1092 event de sc=event desc ,

o r i g t ime=raw . i n f o [ ’

meas date ’ ] )

1094 raw . s e t anno t a t i on s ( annotat ion )

# se t stimuus durat ion 20 s − I f o r i g t ime i s None , the

annotat ions are synced

1096 # to the s t a r t o f the data (0 seconds ) .

raw . annotat ions . s e t du r a t i o n s (20)

1098 raw . p l o t ( s t a r t =0.5 , durat ion=2000)

1100

# Se l e c t i n g channe l s appropr ia t e f o r d e t e c t i ng neura l r e sponse s

:

1102 # remove channe l s that are too c l o s e toge the r ( shor t channe l s )

to de t ec t a

# neura l re sponse ( l e s s than 1 cm d i s t anc e between optodes ) .
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1104 p i ck s = mne . p i ck type s ( raw . in fo , meg=False , f n i r s=True )

d i s t s = mne . p r ep ro c e s s i ng . n i r s . s o u r c e d e t e c t o r d i s t a n c e s (

1106 raw . in fo ,

p i ck s=p i ck s )

1108

raw . p ick ( p i ck s [ d i s t s > 0 . 0 1 ] )

1110 raw . p l o t ( n channe l s=len ( raw . ch names ) , durat ion=2000 ,

s h ow s c r o l l b a r s=False )

1112

1114 # Converting raw i n t e n s i t y to o p t i c a l dens i ty

raw od = mne . p r ep ro c e s s i ng . n i r s . o p t i c a l d e n s i t y ( raw )

1116 raw od . p l o t ( n channe l s=len ( raw od . ch names ) ,

durat ion=2000 , s h ow s c r o l l b a r s=False )

1118 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Remove motion a r t i f a c t s us ing TDDR

1120 raw od = mne . p r ep ro c e s s i ng . n i r s .

t empo r a l d e r i v a t i v e d i s t r i b u t i o n r e p a i r ( raw od )

raw od . p l o t ( durat ion=2000 , s how s c r o l l b a r s=False )

1122

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1124 # Evaluat ing the qua l i t y o f the data − Scalp Coupling Index (

SCI )

1126 # SCI : This method looks f o r the presence o f a prominent

synchronous s i g n a l in

# the f requency range o f ca rd i a c s i g n a l s a c r o s s both

photodetected s i g n a l s

1128

s c i = mne . p r ep ro c e s s i ng . n i r s . s c a l p c oup l i n g i nd ex ( raw od )

1130 f i g , ax = p l t . subp lo t s ( )

ax . h i s t ( s c i )

1132 ax . s e t ( x l ab e l=’ Scalp Coupling Index ’ , y l ab e l=’Count ’ , xl im=[0 ,

1 ] )

1134 # se t SCI l e s s than 0 .5 as bad channel !
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raw od . i n f o [ ’ bads ’ ] = l i s t ( compress ( raw od . ch names , s c i < 0 . 5 )

)

1136

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1138 # convert o p t i c a l dens i ty data to haemoglobin concent ra t i on

us ing modi f i ed Beer−Lambert law

1140 raw haemo = mne . p r ep ro c e s s i ng . n i r s . bee r lamber t law ( raw od , ppf

=0.57)

raw haemo . p l o t ( n channe l s=len ( raw haemo . ch names ) ,

1142 durat ion=2000 , s h ow s c r o l l b a r s=False )

1144 tmin , tmax =−8,20

epochs = mne . Epochs ( raw haemo , events , tmin=tmin , tmax=tmax ,

1146 even t i d=event d i c t , p ro j=True , b a s e l i n e=(

tmin , 0 ) ,

pre load=True , verbose=True )

1148

1150 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Removing heart ra t e from s i g n a l

1152

# The haemodynamic response has f requency content predominantly

below 0 .5 Hz .

1154 # An in c r e a s e in a c t i v i t y around 1 Hz can be seen in the data

that i s due to

# the p e r s o n â s heart beat and i s unwanted . So we use a low

pass f i l t e r to

1156 # remove t h i s . A high pass f i l t e r i s a l s o inc luded to remove

slow d r i f t s in the data .

1158 f i g = raw haemo . p l o t p sd ( average=True )

f i g . s u p t i t l e ( ’ Before f i l t e r i n g ’ , weight=’ bold ’ , s i z e=’x−l a r g e ’ )

1160 f i g . s ubp l o t s ad j u s t ( top=0.88)

1162 # f i l t e r out heart ra t e

raw haemo = raw haemo . f i l t e r ( l f r e q =0.05 , h f r e q =0.7 ,
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h trans bandwidth =0.2 ,

1164 l t rans bandwidth =0.02)

1166 f i g = raw haemo . p l o t p sd ( average=True )

f i g . s u p t i t l e ( ’ After f i l t e r i n g ’ , weight=’ bold ’ , s i z e=’x−l a r g e ’ )

1168 f i g . s ubp l o t s ad j u s t ( top=0.88)

1170

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1172 # Extract epochs

1174 # Now that the s i g n a l has been converted to r e l a t i v e

haemoglobin concentrat ion ,

# and the unwanted heart ra t e component has been removed , we

can ex t r a c t epochs

1176 # re l a t e d to each o f the exper imenta l c ond i t i on s .

# F i r s t we ex t r a c t the events o f i n t e r e s t / v i s u a l i s e them to

ensure they are c o r r e c t .

1178

events , e v en t d i c t = mne . event s f r om annota t i ons ( raw haemo )

1180 f i g = mne . v i z . p l o t e v en t s ( events , ev en t i d=event d i c t ,

s f r e q=raw haemo . i n f o [ ’ s f r e q ’ ] )

1182 f i g . s ubp l o t s ad j u s t ( r i g h t =0.7) # make room f o r the legend

1184 # de f i n e range o f epochs , r e j e c t i o n c r i t e r i a , b a s l i n e

c o r r e c t i o n and ex t r a c t epochs .

# V i sua l i z e l og o f which epochs were dropped .

1186

r e j e c t c r i t e r i a = d i c t ( hbo=80e−6) # r e j e c t i o n c r i t e r i a

1188 tmin , tmax = −8, 20

1190 epochs = mne . Epochs ( raw haemo , events , ev en t i d=event d i c t ,

tmin=tmin , tmax=tmax ,

1192 r e j e c t=r e j e c t c r i t e r i a ,

r e j e c t by anno t a t i on=True ,

p ro j=True , b a s e l i n e=(tmin , 0) , pre load=True

,
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1194 detrend=None , verbose=True )

1196 epochs . p l o t d r op l o g ( )

1198 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# View cons i s t ency o f r e sponse s a c r o s s t r i a l s

1200

# haemodynamic re sponse f o r our tapping cond i t i on . We v i s u a l i s e

the re sponse

1202 # fo r both the oxy− and deoxyhaemoglobin , and observe the

expected peak in

# HbO at around 6 seconds c o n s i s t e n t l y a c r o s s t r i a l s , and the

c on s i s t e n t dip in

1204 # HbR that i s s l i g h t l y delayed r e l a t i v e to the HbO peak .

1206 epochs [ ’ Sp ’ ] . p lo t image ( combine=’mean ’ , vmin=−30, vmax=30,

t s a r g s=d i c t ( ylim=d i c t ( hbo=[−15, 15 ] ,

1208 hbr=[−15, 1 5 ] ) ) )

1210 epochs [ ’Rot−TS ’ ] . p lo t image ( combine=’mean ’ , vmin=−30, vmax=30,

t s a r g s=d i c t ( ylim=d i c t ( hbo=[−15,

15 ] ,

1212 hbr=[−15,

1 5 ] ) ) )

1214 epochs [ ’Rot−Bl e s s e r ’ ] . p lo t image ( combine=’mean ’ , vmin=−30, vmax

=30,

t s a r g s=d i c t ( ylim=d i c t ( hbo

=[−15, 15 ] ,

1216 hbr

=[−15, 1 5 ] ) ) )

epochs [ ’NV’ ] . p lo t image ( combine=’mean ’ , vmin=−30, vmax=30,

1218 t s a r g s=d i c t ( ylim=d i c t ( hbo=[−15, 15 ] ,

hbr=[−15, 1 5 ] ) ) )

1220 epochs [ ’NV−Rot ’ ] . p lo t image ( combine=’mean ’ , vmin=−30, vmax=30,

t s a r g s=d i c t ( ylim=d i c t ( hbo=[−15,

15 ] ,
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1222 hbr=[−15,

1 5 ] ) ) )

1224 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Plot standard fNIRS response image

1226

# generate the most common v i s u a l i s a t i o n o f fNIRS data :

p l o t t i n g both the

1228 # HbO and HbR on the same f i g u r e to i l l u s t r a t e the r e l a t i o n

between the two s i g n a l s .

1230

evoked d i c t = { ’ Sp/HbO’ : epochs [ ’ Sp ’ ] . average ( p i ck s=’ hbo ’ ) ,

1232 ’ Sp/HbR ’ : epochs [ ’ Sp ’ ] . average ( p i ck s=’ hbr ’ ) ,

’NV/HbO’ : epochs [ ’NV’ ] . average ( p i ck s=’ hbo ’ ) ,

1234 ’NV/HbR ’ : epochs [ ’NV’ ] . average ( p i ck s=’ hbr ’ ) ,

’RotTS/HbO’ : epochs [ ’Rot−TS ’ ] . average ( p i ck s=’ hbo

’ ) ,

1236 ’RotTS/HbR ’ : epochs [ ’Rot−TS ’ ] . average ( p i ck s=’ hbr

’ ) ,

’ RotBlesser /HbO ’ : epochs [ ’Rot−Bl e s s e r ’ ] . average (

p i ck s=’ hbo ’ ) ,

1238 ’ RotBlesser /HbR ’ : epochs [ ’Rot−Bl e s s e r ’ ] . average (

p i ck s=’ hbr ’ ) ,

’NVRot/HbO’ : epochs [ ’NV−Rot ’ ] . average ( p i ck s=’ hbo

’ ) ,

1240 ’NVRot/HbR ’ : epochs [ ’NV−Rot ’ ] . average ( p i ck s=’ hbr

’ ) ,

}

1242 # Rename channe l s u n t i l the encoding o f f requency in ch name i s

f i x ed

f o r cond i t i on in evoked d i c t :

1244 evoked d i c t [ c ond i t i on ] . rename channels ( lambda x : x [ : −4 ] )

1246 c o l o r d i c t = d i c t (HbO=’#AA3377 ’ , HbR=’b ’ )

s t y l e s d i c t = d i c t (NV= d i c t ( l i n e s t y l e=’ dashed ’ ) ,

1248 RotTS=d i c t ( l i n e s t y l e=’ dotted ’ ) ,
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RotBlesser =d i c t ( l i n e s t y l e=’ dashdot ’ ) ,

1250 NVRot=d i c t ( l i n e s t y l e=’ : ’ )

)

1252 pick = ’ S9 D8 ’

mne . v i z . p lot compare evokeds ( evoked dict , p i ck s=pick , combine=”

mean” , c i =0.95 ,

1254 c o l o r s=None , cmap=’ j e t ’ , s t y l e s=

s t y l e s d i c t , show sensors=True )

1256 #comp [ 0 ] . s a v e f i g ( s a v e p l o t s )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1258 # View topographic r ep r e s en t a t i on o f a c t i v i t y

1260 # view how the topographic a c t i v i t y changes throughout the

response

t imes = np . arange (−3.5 , 2 0 . , 3 . 0 )

1262 topomap args = d i c t ( ex t r apo l a t e=’ l o c a l ’ )

epochs [ ’ Sp ’ ] . average ( p i ck s=’ hbo ’ ) . p l o t j o i n t ( t imes=times ,

1264 topomap args=

topomap args )

1266 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Compare Sp and Rot−TS

1268

t imes = np . arange ( 4 . 0 , 11 . 0 , 1 . 0 )

1270 epochs [ ’ Sp ’ ] . average ( p i ck s=’ hbo ’ ) . plot topomap (

t imes=times , ∗∗ topomap args )

1272 epochs [ ’Rot−TS ’ ] . average ( p i ck s=’ hbo ’ ) . plot topomap (

t imes=times , ∗∗ topomap args )

1274

f i g , axes = p l t . subp lo t s ( nrows=2, nco l s =4, f i g s i z e =(9 , 5) ,

1276 gr idspec kw=d i c t ( w id th r a t i o s =[1 , 1 ,

1 , 0 . 1 ] ) )

vmin , vmax , t s = −8, 8 , 9 . 0

1278

evoked sp = epochs [ ’ Sp ’ ] . average ( )

1280 evok ed r o t t s = epochs [ ’Rot−TS ’ ] . average ( )
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1282 evoked sp . plot topomap ( ch type=’ hbo ’ , t imes=ts , axes=axes [ 0 ,

0 ] ,

vmin=vmin , vmax=vmax , co l o rba r=False ,

1284 ∗∗ topomap args , image inte rp=’ cubic ’ )

evoked sp . plot topomap ( ch type=’ hbr ’ , t imes=ts , axes=axes [ 1 ,

0 ] ,

1286 vmin=vmin , vmax=vmax , co l o rba r=False ,

∗∗ topomap args , image inte rp=’ cubic ’ )

1288 evok ed r o t t s . plot topomap ( ch type=’ hbo ’ , t imes=ts , axes=axes

[ 0 , 1 ] ,

vmin=vmin , vmax=vmax , co l o rba r=False

,

1290 ∗∗ topomap args , image inte rp=’ cubic ’

)

e vok ed r o t t s . plot topomap ( ch type=’ hbr ’ , t imes=ts , axes=axes

[ 1 , 1 ] ,

1292 vmin=vmin , vmax=vmax , co l o rba r=False

,

∗∗ topomap args , image inte rp=’ cubic ’

)

1294

e v ok ed d i f f = mne . combine evoked ( [ evoked sp , e vok ed r o t t s ] ,

we ights =[1 , −1])

1296

e v ok ed d i f f . plot topomap ( ch type=’ hbo ’ , t imes=ts , axes=axes [ 0 ,

2 : ] ,

1298 vmin=vmin , vmax=vmax , co l o rba r=True ,

∗∗ topomap args )

1300 e v ok ed d i f f . plot topomap ( ch type=’ hbr ’ , t imes=ts , axes=axes [ 1 ,

2 : ] ,

vmin=vmin , vmax=vmax , co l o rba r=True ,

1302 ∗∗ topomap args , image inte rp=’ cubic ’ )

1304 f o r column , cond i t i on in enumerate (

[ ’ Sp ’ , ’Rot−TS ’ , ’ Sp/Rot−TS ’ ] ) :

1306 f o r row , chroma in enumerate ( [ ’HbO ’ , ’HbR ’ ] ) :
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axes [ row , column ] . s e t t i t l e ( ’ {} : {} ’ . format ( chroma ,

cond i t i on ) )

1308 f i g . t i g h t l a y ou t ( )

f i g . s a v e f i g ( s a v e p l o t s + ’ hbo hbr ’ )

1310 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# get i nd i v i dua l waveforms that d r i ve topographic p l o t :

1312

f i g , axes = p l t . subp lo t s ( nrows=1, nco l s =1, f i g s i z e =(6 , 4) )

1314 mne . v i z . p l o t evoked topo ( epochs [ ’ Sp ’ ] . average ( p i ck s=’ hbo ’ ) ,

c o l o r=’b ’ ,

axes=axes , l egend=False )

1316 mne . v i z . p l o t evoked topo ( epochs [ ’Rot−TS ’ ] . average ( p i ck s=’ hbo ’ ) ,

c o l o r=’ r ’ ,

axes=axes , l egend=False )

1318

# Tidy the legend :

1320 l e g l i n e s = [ l i n e f o r l i n e in axes . l i n e s i f l i n e . g e t c ( ) == ’b ’

] [ : 1 ]

l e g l i n e s . append ( [ l i n e f o r l i n e in axes . l i n e s i f l i n e . g e t c ( )

== ’ r ’ ] [ 0 ] )

1322 f i g . l egend ( l e g l i n e s , [ ’ Sp ’ , ’Rot−TS ’ ] , l o c=’ lower r i g h t ’ )

f i g . s a v e f i g ( s a v e p l o t s + ’ i n d i v i d u a l wave fo rm sp rot t s ’ )

1324 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1326 e x t r apo l a t i o n s = [ ’ l o c a l ’ , ’ head ’ , ’ box ’ ]

f i g , axes = p l t . subp lo t s ( f i g s i z e =(7.5 , 4 . 5 ) , nrows=2, nco l s=3)

1328

# Here we look at channels , and use a custom head sphere to get

a l l the

1330 # sen so r s to be we l l with in the drawn head su r f a c e

1332

f o r axes row , ch type in z ip ( axes , ( ’ hbo ’ , ’ hbr ’ ) ) :

1334 f o r ax , ex t r in z ip ( axes row , e x t r apo l a t i o n s ) :

evoked sp . plot topomap ( 0 . 1 , ch type=ch type , s i z e =2,

ex t r apo l a t e=extr ,

1336 axes=ax , show=False , c o l o rba r=
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False ,

sphere =(0. , 0 . , 0 . , 0 . 0 9 ) )

1338 ax . s e t t i t l e ( ’%s %s ’ % ( ch type . upper ( ) , ex t r ) ,

f o n t s i z e =14)

f i g . t i g h t l a y ou t ( )

1340

evoked sp . plot topomap (20 . 0 , ch type=’ hbo ’ , show names=True ,

c o l o rba r=True ,

1342 s i z e =6, r e s =128 , t i t l e=’ Speech response ’

,

t ime un i t=’ s ’ )

1344 p l t . s ubp l o t s ad j u s t ( l e f t =0.01 , r i g h t =0.99 , bottom=0.01 , top

=0.88)

1346 mne . v i z . p l o t s e n s o r s ( raw haemo . in fo , kind=’ topomap ’ , ch type=

None , t i t l e=None , show names=True ,

ch groups=None , t o sphe r e=True , axes=None ,

b lock=False , show=True , sphere=’ auto ’ , p o i n t s i z e=None , l i n ew id th=2,

verbose=None )

1348 mne . v i z . p l o t s e n s o r s ( raw haemo . in fo , kind=’ 3d ’ , ch type=None ,

t i t l e=None , show names=True , ch groups=None , t o sphe r e=True , axes=

None , b lock=False , show=True , sphere=None , p o i n t s i z e=None , l i n ew id th

=2, verbose=None )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1350 # Animation

t imes = np . arange ( 0 . 0 5 , 0 . 151 , 0 . 01 )

1352 f i g , anim = evoked sp . animate topomap (

t imes=times , ch type=’ hbr ’ , f r ame rate=2, t ime un i t=’ s ’ ,

b l i t=Fal se )

1354

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1356 # Show montage with bra in template

1358 s u b j e c t s d i r = s t r (mne . da ta s e t s . sample . data path ( ) ) + ’ /

sub j e c t s ’

mne . da ta s e t s . f e t ch hcp mmp parce l l a t i on ( s u b j e c t s d i r=

sub j e c t s d i r , accept=True )

75



B Code

1360 l a b e l s = mne . r e ad l abe l s f r om anno t ( ’ f s av e r ag e ’ , ’HCPMMP1’ , ’ lh

’ , s u b j e c t s d i r=s u b j e c t s d i r )

l abe l s combined = mne . r e ad l abe l s f r om anno t ( ’ f s av e r ag e ’ , ’

HCPMMP1 combined ’ , ’ lh ’ , s u b j e c t s d i r=s u b j e c t s d i r )

1362 bra in = mne . v i z . Brain ( ’ f s av e r ag e ’ , s u b j e c t s d i r=None ,

background=’w ’ , co r t ex=’ 0 .5 ’ )

bra in . add sensor s ( raw . in fo , t rans=’ f s ave rag e ’ , f n i r s =[ ’ channe l s

’ , ’ p a i r s ’ , ’ s ou r c e s ’ , ’ d e t e c t o r s ’ ] )

1364

# sp e c i f y r eg i on o f i n t e r e s t ROI

1366 aud l abe l = [ l a b e l f o r l a b e l in l a b e l s i f l a b e l . name == ’

L A1 ROI−lh ’ ] [ 0 ] #primary audi tory cor t ex ’L A4 ROI−lh ’ ’L A5 ROI−lh

’ ’L AAIC ROI−lh ’ , , ’ L AIP ROI−lh ’

s t g l a b e l = [ l a b e l f o r l a b e l in l a b e l s i f l a b e l . name == ’

L STGa ROI−lh ’ ] [ 0 ] # STG

1368 aud i l a b l e = [ l a b e l f o r l a b e l in l a b e l s i f l a b e l . name == ’

L AAIC ROI−lh ’ ] [ 0 ] #’L STSdp ROI−lh ’ ’ L STSva ROI−lh ’ ’ L STSvp ROI−

lh ’

b o r c a l a b l e = [ l a b e l f o r l a b e l in l a b e l s i f l a b e l . name == ’

L IFSa ROI−lh ’ ] [ 0 ] # ’ L IFSa ROI−lh ’ n f e r i o r f r o n t a l gyrus ’

L IFSp ROI−lh ’ , ’ L IFJp ROI−lh ’ ’ L IFJa ROI−lh ’

1370 aud 2 l ab e l = aud l abe l = [ l a b e l f o r l a b e l in l a b e l s i f l a b e l .

name == ’L A5 ROI−lh ’ ] [ 0 ] # A5

aud labe l = [ l a b e l f o r l a b e l in l a b e l s i f l a b e l . name == ’

L A1 ROI−lh ’ ] [ 0 ]

1372

1374 l = [ l a b e l f o r l a b e l in l a b e l s i f l a b e l . name ] # shows a l l

e x i s t i n g l a b e l s

bra in . add l abe l ( aud labe l , borders=False , c o l o r=’ blue ’ )

1376 bra in . add l abe l ( s t g l a b e l , borders=False , c o l o r=’ red ’ )

bra in . add l abe l ( bo r ca l ab l e , borders=False , c o l o r=’ green ’ )

1378 bra in . add l abe l ( aud 2 labe l , borders=False , c o l o r=’ ye l low ’ )

bra in . add l abe l ( aud i l ab l e , borders=False , c o l o r=’ pink ’ )

1380 bra in . show view ( azimuth=180 , e l e v a t i o n =80, d i s t ance =450)

1382 # l i s t o f a l l p a r t i c i p an t s
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l i s t p a r = [ ’ 01 ’ , ’ 04 ’ , ’ 05 ’ , ’ 07 ’ , ’ 08 ’ , ’ 09 ’ , 11 ,12 ,16 ,17 ,18 ,30 ,31 ,32 ,

33 ,34 ,35 ,36 ,37 ] # problem 15 und 06

1384

# par t i c i p an t S04 i s used as an example in the BA−t h e s i s

1386 l i s t p a r = [ ’ 04 ’ ]

g e t p l o t s ( l i s t p a r )

Preprocessing individual.py
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mad A Yaseen, Krystal Nizar, Payam A Saisan, Peifang Tian, Anders M Dale,

Sergei A Vinogradov, Maria Angela Franceschini, and David A Boas. Frontiers in

optical imaging of cerebral blood flow and metabolism. Journal of Cerebral Blood

Flow Metabolism, 32(7):1259–1276, jul 2012. doi: 10.1038/jcbfm.2011.195. URL

www.jcbfm.com.

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. Van der Zee, and D. T.

Delpy. Wavelength dependence of the differential pathlength factor and the log

slope in time-resolved tissue spectroscopy, 1993. ISSN 0065-2598.

S. Evans, J. S. Kyong, S. Rosen, N. Golestani, J. E. Warren, C. McGettigan,

J. Mourão-Miranda, R. J.S. Wise, and S. K. Scott. The pathways for intelli-

gible speech: Multivariate and univariate perspectives. Cerebral Cortex, 24(9):

2350–2361, 2014. ISSN 14602199. doi: 10.1093/cercor/bht083.

Frank A. Fishburn, Ruth S. Ludlum, Chandan J. Vaidya, and Andrei V. Medvedev.

Temporal Derivative Distribution Repair (TDDR): A motion correction method

80

http://pubs.asha.org/doi/10.1044/jshr.1501.05
http://pubs.asha.org/doi/10.1044/jshr.1501.05
https://www.annualreviews.org/doi/10.1146/annurev.bb.20.060191.000245
https://www.annualreviews.org/doi/10.1146/annurev.bb.20.060191.000245
www.jcbfm.com


Bibliography

for fNIRS. NeuroImage, 184:171–179, jan 2019. ISSN 10959572. doi: 10.1016/j.

neuroimage.2018.09.025.

W Tecumseh Fitch, Bart De Boer, Neil Mathur, and Asif A Ghazanfar. Monkey

vocal tracts are speech-ready. Science advances, 2(12):e1600723, 2016.

N. R. French and J. C. Steinberg. Factors Governing the Intelligibility of Speech

Sounds. Journal of the Acoustical Society of America, 19(1):90–119, jan 1947.

ISSN NA. doi: 10.1121/1.1916407. URL http://asa.scitation.org/doi/10.

1121/1.1916407.

Daniel Friedrichs, Kurt Steinmetzger, Andrew Clark, and Stuart Rosen. Assessing

the cortical processing of spectrally rotated speech using functional near-infrared

spectroscopy. The Journal of the Acoustical Society of America, 146(4):2954–

2954, oct 2019. ISSN 0001-4966. doi: 10.1121/1.5137257. URL http://asa.

scitation.org/doi/10.1121/1.5137257.

Helene Girouard and Costantino Iadecola. Neurovascular coupling in the nor-

mal brain and in hypertension, stroke, and Alzheimer disease, jan 2006. ISSN

87507587.

Alexandre Gramfort, Martin Luessi, Eric Larson, Denis A. Engemann, Daniel

Strohmeier, Christian Brodbeck, Roman Goj, Mainak Jas, Teon Brooks, Lauri
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