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Zürich

Referent: J. Brasser

Verfasserin:

Jana Mara Hofmann

Matrikelnummer 17-709-361

Malzstrasse 26

8400 Winterthur

December 1, 2023



Abstract

Numerous studies have demonstrated that eye-tracking data can provide valuable

insights into an individual’s reading abilities. The patterns of fixations, saccades

and regressions offer valuable information on comprehension, fluency and overall

reading proficiency. In addition, visual search tasks, which involve scanning a visual

field for a target, have been extensively studied in relation to attentional processes

and visual cognition. Despite recent advances, the lack of research that integrates

eye-tracking data from visual search tasks is a significant limitation to our under-

standing of how visual search behaviour holistically affects reading ability. This

thesis presents the successful implementation of an LSTM-based neural network

architecture that achieves superior accuracy in classifying visual search-based eye-

tracking compared to a baseline model. However, the performance variations vary

widely across different settings, highlighting the need for further investigation and

refinement.

Zusammenfassung

Zahlreiche Studien haben gezeigt, welche Einblicke Eye-Tracking-Daten in die Le-

sefähigkeiten einer Person geben können. Die Muster von Fixationen, Sakkaden und

Regressionen liefern wertvolle Informationen über das Verständnis, den Lesefluss und

die allgemeine Lesekompetenz. Auch visuelle Suchaufgaben, bei denen ein Gesichts-

feld nach einem Ziel durchsucht wird, sind in Bezug auf Aufmerksamkeitsprozesse

und visuelle Kognition eingehend untersucht worden. Trotz dieser Fortschritte stellt

das Fehlen von Forschungsarbeiten, die Eye-Tracking-Daten aus einer visuellen Such-

aufgabe mit Lesefähigkeiten kombiniert untersuchen, eine kritische Einschränkung

in unserem Verständnis darüber dar, wie das visuelle Suchverhalten zu den allgemei-

nen Lesefähigkeiten beiträgt. In dieser Arbeit wird die erfolgreiche Implementierung

einer LSTM-basierten neuronalen Netzwerkarchitektur vorgestellt, die im Vergleich

zu einem Vergleichsmodel eine höhere Genauigkeit bei der Klassifizierung von Blick-

verfolgungsdaten für die visuelle Suche aufweist. Allerdings variiert die Leistung

in den verschiedenen Konfigurationen beträchltlich, was die Notwendigkeit weiterer

Untersuchungen und Optimierungen unterstreicht.
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1 Introduction

1.1 Motivation

Eye-tracking research has significantly contributed to our understanding of cogni-

tive processes during reading tasks, shedding light on the relationship between eye

movements and reading skills. Similarly, investigations into visual search tasks have

shed light on the mechanisms involved in searching for specific visual stimuli. How-

ever, a noticeable gap exists in the current literature concerning the exploration

of eye-tracking data specifically within the context of visual search tasks. While

extensive research has delved into eye movements during reading and visual search

tasks separately, the intersection of these two domains remains largely unexplored.

Understanding how eye-tracking patterns in a visual search task correlate with read-

ing skills has practical implications. This knowledge can inform the development of

tailored interventions for individuals with specific reading difficulties, contributing

to the fields of education and cognitive rehabilitation. Furthermore, insights from

this research may have implications for the design of educational materials, user

interfaces, and accessibility features, enhancing the overall learning experience for

individuals with diverse reading abilities.

1.2 Research Questions

To explore the correlation between gazing patterns during Visual Search tasks and

the reading proficiencies of children, diverse neural network architectures are em-

ployed in this thesis. The primary research inquiries guiding this investigation are:

Can a neural network architecture based on Long Short-Term Memory (LSTM)

effectively predict reading fluency scores measured by the ’Weiterentwicklung des

Salzburger Lese-und Rechtschreibtest’ (SRTL-II) based on eye-tracking data from

visual search tasks? What is the structure of such an architecture, and how accu-

rately can it perform?

1



Chapter 1. Introduction

To address these questions, I:

• constructed a dataset

• preprocessed the data

• designed different neural network configurations

• implemented the architectures

• implemented hyperparameter tuning, training, and validation procedures

• compared the performance of the different architectures

• and evaluated the best performing models

The dataset comprises data obtained from the ongoing study ’Lesen im Blick’ con-

ducted by the Digital Linguistics group at the Department of Computational Lin-

guistics at the University of Zurich as of the date of thesis submission. It encom-

passes eye-tracking data from a Visual Search task and SRTL-II scores from first

and second-grade school children. Various machine learning architectures are con-

structed, trained, and tested using this dataset. This process involves not only the

creation of the architectures but also fine-tuning their hyperparameters, training,

and subsequent performance evaluation.

1.3 Thesis Structure

This opening chapter delineates the motivation, research questions, and overall thesis

structure. Chapter 2 offers a comprehensive survey of existing research, elucidat-

ing the role of eye-tracking and the interrelation between visual search tasks and

skills associated with reading. Chapter 3 focuses on the data used in this thesis.

It includes a section about its collection, its characteristics, and any preprocessing

steps applied to ensure its suitability for analysis. In Chapter 4 the problem setting

is formalized, providing a foundation for the subsequent sections that detail the

methodological approach and results. The methodology chapter 5 is dedicated to

explaining the neural model architectures chosen. It details how the architecture is

designed to capture the sequential nature of eye-tracking data during visual search

tasks. Additionally, the evaluation procedure is outlined, encompassing the metrics

used, training methods, and validation strategies employed to assess the model’s

performance. Chapter 6 presents the results. The best-performing model configu-

rations are showcased and a comprehensive evaluation of the results is presented.

The thesis culminates in the conclusion in Chapter 7, where the key contributions of

2



Chapter 1. Introduction

this research are summarized. The initial research questions are revisited and it is

reflected on the insights gained throughout the thesis. Additionally, future research

is suggested, and problems are analyzed.

3



2 Related Work

Predicting reading scores using eye-tracking patterns in the context of a visual search

task combines insights from eye-tracking research, cognitive psychology, and machine

learning techniques. This chapter tries to acknowledge this wide field of research

in an appropriate scope for the thesis. Section 2.1 gives a broad overview of the

history of eye-tracking research with a deeper insight into the use of eye-tracking

data based on reading tasks and machine learning in subsection 2.1.1. Section 2.2

looks at reading-related skills and in particular visual search as a potential predictor

of reading abilities.

2.1 Eye-Tracking

Eye-tracking technology has applications in various fields, including cognitive science

and education. It is used to study cognitive processes, and eye-movement disorders,

and inform educational practices, such as understanding reading difficulties and

developing reading interventions.

In the mid-20th century, researchers like Yarbus explored eye movements during

reading and found that they provided insights into cognitive processes. This laid

the groundwork for understanding reading behavior through eye-tracking. In read-

ing research, studies by Rayner; Just and Carpenter and others advanced our un-

derstanding of eye movements during reading. Their work profoundly shaped and

influenced the field, by establishing the concepts of fixations and saccades, which

are still used today. Their focus on the relationship between eye movements and

comprehension introduced eye-tracking as a valuable methodology for researching

psycho-linguistic questions. Since then Eye-tracking technology has found applica-

tions in various fields, including cognitive science and education. My thesis centers

around reading related eye-tracking data, therefore the following passages focus on

literature relevant to this:

Hutzler and Wimmer [2004] for example showed more fixations, longer first fixations,

and gaze duration for short and long German words and more fixations and longer

4



Chapter 2. Related Work

gaze duration in pseudowords for German dyslexic readers.

2.1.1 Eye-Tracking and Prediction of Reading related Abilities

Recent developments involve the use of eye-tracking data for predictive modeling.

Researchers have explored the potential of machine learning techniques, including

LSTMs and other deep learning approaches, to predict cognitive and reading-related

outcomes. They can broadly be categorized into three types:

• predicting general reading abilities [Strandberg et al., 2022]

• predicting text comprehension or reader confusion [Reich et al., 2022; Sims

and Conati, 2020]

• predicting neurodevelopmental disorders like ADHD and Dyslexia [Haller et al.,

2022; Deng et al., 2023; Szalma and Weiss, 2020; Benfatto Nilsson et al., 2016]

All the referenced studies presented encouraging outcomes. Nevertheless, it is note-

worthy that these studies predominantly rely on eye-tracking data acquired during

participants’ reading activities. The objective of the ’Lesen im Blick’ study, within

which our eye-tracking data was procured, is to forecast prospective reading chal-

lenges in children before they attain reading proficiency. This aim is geared towards

facilitating interventions at an earlier stage than conventional standardized diagnos-

tic and testing procedures currently permit.

In light of this overarching goal, the design of the eye-tracking experiment within

the ’Lesen im Blick’ study necessitates careful consideration. Tasks incorporated

into the experiment are tailored to measure prereading skills or skills closely linked

to reading. This deliberate selection is made to align with the overarching objective

of predicting reading difficulties at an early stage, emphasizing the importance of

assessing foundational skills that precede the formal acquisition of reading abilities.

2.2 Visual Search and Reading related Skills

Frequently investigated prereading skills encompass a range of cognitive abilities

such as rapid automated naming, phonological awareness, working memory, speech

production, visual attention, and efficient visual search. For an overview of the

influence of sensorimotor and cognitive abilities on reading abilities, see for example:

Carroll et al. [2016].

5



Chapter 2. Related Work

The eye-tracking data utilized in this thesis comes from a visual search task. Existing

research underscores that children encountering reading difficulties often manifest

distinctive outcomes when engaging in visual search tasks in comparison to their

peers. For instance, Ferretti et al. [2008] observed that dyslexic children exhibited

prolonged reaction times (RT) in visual search tasks where the target appeared on

the right side, distinguishing them from their control group. Moreover, while the

control group demonstrated a linear increase in RTs corresponding to a progressively

rightward placement of the target, dyslexic children did not exhibit such distinctions.

Notably, the study found that the processing speed in a visual search task during

kindergarten years served as a reliable predictor of early literacy acquisition. An-

other study by Cui et al. [2020] reported that Chinese children with developmental

dyslexia (DD) and/or attention deficit hyperactivity disorder (ADHD) displayed sig-

nificantly lower accuracies in a visual search task involving five Chinese characters

compared to their counterparts. Children with DD and ADHD also demonstrated

notably extended gaze duration and viewing times, along with an increased number

of fixations.

2.2.1 Visual Search, Machine Learning and Reading Skills

A lot of research has been done regarding the relationship between eye-tracking

data based on reading tasks and reading skills, and the relationship between visual

search tasks and reading skills. However, no research regarding eye-tracking data

of a visual search (VS) task could be found. By bridging the gap between these

two domains, this research aims to provide a comprehensive understanding of the

intricate interplay between eye movements, VS, and reading skills.

6



3 Data

3.1 Data Collection

The data was collected as part of a larger study (’Lesen im Blick’), which was

ongoing at the time of submission. The project aims to investigate the connection

between eye movements and Dyslexia.

3.1.1 Eye-Tracking Visual Search Task

The VS task was the first of the three sub-tasks of the eye-tracking experiment.

The EyeLink Portable Duo eye tracker was used with the technical specifications

found here: SR Research Ltd. [2017] and the study-specific settings:

• Remote, head free to move

• Monocular, stronger eye

• 25 mm lens

• Eye-tracking principle: Pupil with Corneal Reflection

• Pupil Detection Model: Ellipse Fitting

• Calibration: 13 points

• Sampling rate: 1000Hz

The experiments were conducted in rooms designated by the school, and prepared

by the experiment conductors. Preparing included: eliminating possible distractors,

turning on the light, setting up the eye-tracker and laptop, etc. The camera was

positioned on top of the laptop’s keyboard, on which the tasks were displayed. The

participants were seated in front of the laptop and instructed to move their heads as

little as possible. They were approximately placed 60 cm away from the screen and

instructed to use a button box, having four buttons in the colors yellow, blue red,

7



Chapter 3. Data

and green. The experiment started with two test trials, where the participants were

instructed and corrected by the computer’s audio. Theoretically, the test consisted

of 2 example trials and 42 real trials. However, the VS task was terminated after

20 minutes regardless of done trials, to prevent exhaustion, resulting in different

number of trials for each participant. The VS task has three modes: geometrical

shapes, letters, and mirrored letters. Each mode is composed of seven different

figures. They are randomly distributed over an array with 19 positions, in which

the target figure appears one to three times. Figure 1 depicts how such an exemplary

screen could look like.

Figure 1: Visual Search Example Screen

Firstly, the target symbol, also called the stimulus, is displayed. In the example

screen, the target symbol is the diamond. The participant is instructed to fixate on

it to start the trial. The fixation triggers the appearance of the search array. The

participant terminates the trial by pressing a button, the search array disappears

only leaving the stimulus on the screen. They then are asked by the computer’s

audio how many targets they have found. The experiment conductor records the

answer. If the answers are in the range of possible answers (one to three) they are

recorded accordingly, otherwise, 4 is logged, referencing a wrong answer.

The VS task implemented is inspired and constructed similarly to the VS task

introduced in Ferretti et al. [2008]. However, in the cited study the collected data

is not eye-tracking based, but reaction times are measured.

3.1.2 SRTL-II

The SLRT-II is designed to capture and rate its participants’ reading and writ-

ing competence. Our participants have only partaken in the reading exercise of

8



Chapter 3. Data

the SLRT-II. The SLRT-II reading exercise is a standardized test to measure and

test the ability of synthetic reading and direct word recognition in German and

Swiss-German-speaking individuals. Synthetic reading describes the ability to join

depicted sounds to form an articulatory unit. It enables one to read independently

as it allows one to process and understand new and unknown words. Direct word

recognition means the ability to activate a memorized representation of a known

written word based on its visual appearance without needing to decipher its sound-

or letter-wise. This ability enables efficient reading. The participant read out words

and pseudo-words as quickly and accurately as possible. The SLRT-II time limit

is set for one minute for each the real word part and the pseudo word part. The

pseudo words test for synthetic reading in more proficient readers, who might not

need synthetic reading in the real-word setting as they know all non-pseudo words

already. The depicted pseudo-words neither have a known letter sequence nor does

their articulation correspond to an existing German word. However, their letter

sequence and their phonetic structure adhere to German phonological and writing

structures Kristina Moll and Karin Landerl [2017, 27-28].

3.1.2.1 Procedure

The SLRT-II was conducted as part of further psychometric tests in the first of

two sessions. The experiment was conducted as follows: The experimenter provided

the participant with instructions, after which the participant vocalized the exercise

words while the experimenter provided additional guidance. The participant then

vocalized the test words aloud. The same procedure was followed for the pseudo-

words.

For the exercise words they were presented with eight exercise items in two columns

on the back of the respective reading sheet as exercises before the paper was turned,

the timer was started and they read the test words.

In Figure 2 the initial instruction read to the participants is depicted, and the

instructions between exercise and testing are in Figure 3. In short, the instructions

include an explanation of the order to read words column-wise. The conductor

recorded all wrongly read or skipped words on the protocol sheet. After one minute,

the conductor concluded the reading and moved on to either the pseudo-word task

or another psychometric test following the completion of the pseudo-word task.

9



Chapter 3. Data

Figure 2: SRLT- II instructions part one

Figure 3: SRLT- II instructions part two

3.1.2.2 Scores

Based on the protocol sheets the scores were computed by the number of mistakes

multiplied by 100, divided by the number of read words. To be able to compare the

reading scores of first and second-graders, the percentage rank of their performance

in the SRTL reading task was taken. The percentage rank is normed for the grade

and the semester the participants were in when partaking. The confidence level is

0.05. For 82 first graders, in the second semester, the confidence interval is ± 4.98

with a mean of 15.28 and a standard deviation of 11.54 rightly read words. For

154 second graders, in the second semester, the confidence interval is ± 7.63 with a

mean of 46.43 and a standard deviation of 17.70 correctly read words Kristina Moll

and Karin Landerl [2017, 75-77].

10



Chapter 3. Data

3.2 Dataset

The dataset used comprises 33 children in first and second grade. It contains 1302

VS eye-tracking trials with their corresponding SRTL-II score as Labels.

The eye-tracking data is from a VS Task, where the children had to count the

occurrence of a displayed target symbol in a line of 19 symbols as fast and as precise

as possible. The target symbol occurred one to three times in the sequence.

The label assigned to the trials is the participant’s achieved SLRT-II percentage rank

score normed for their age group. For the classification task, the label is one of 20

classes, where each class represents the span of 5 percentage ranks. Figure 4 shows

the occurrence distribution of the labels. The y-axis is the absolute occurrence of

trials with the corresponding label on the x-axis. Note that the dataset contains no

data with labels 2, 3, 9, 11, 13, and 17 since none of the participants had a corre-

sponding SLRT-II score. It also shows that classes 15 and 18 are overly represented.

For the regression task, the scores were taken directly as labels without any further

Figure 4: Class Distribution in the Dataset

transformation. The distribution of the SLRT-II scores are displayed in Figure 5

11



Chapter 3. Data

Figure 5: SLRT-II Score Percentage Rank Distribution in the Dataset

3.2.1 Preprocessing

This Section describes what the eye-tracking data used looks like and how it is

preprocessed to fit the model’s architecture and input requirements. Furthermore,

the transformation of the SLRT-II score to a label format is explained.

3.2.1.1 Raw Eye-Tracking Data

With the Dataviewer proprietary software [SR Research Ltd., 2023] only the data for

the interest period of the VS task were extracted, meaning the eye-tracking recording

for the time between the appearance of the search array and its disappearance. To

trigger the appearance of the search array the participant had to fixate on the

stimulus symbol (The diamond in the example screen of Figure 1 and the square in

Figure 6), and its disappearance by pushing a button, indicating that they found

all symbols.

Table 1 lists all gaze measurements used. The selection of relevant gaze measure-

ment was mainly based on findings of other studies, discussed in section 2.2, and

on educated guessing since there is no comparable study documented. It includes

four different types of measurements: numerical values regarding the current fixa-

tion, categorical values regarding the current fixation, and numerical and categorical

values regarding the whole trial.

Durations are measured in milliseconds. The current fixation Area position is de-

12



Chapter 3. Data

Numerical, fixation dependent

Current fixation x-axis coordinate

Current fixation y-axis coordinate

Current fixation pupilsize

Duration of fixation

Duration of outgoing saccade

Amplitude of outgoing saccade

Angle of outgoing saccade in relation to the current fixation

Velocity of outgoing saccade

Current fixation area position

Next fixation area position

Categorical, fixation dependent

Current fixation area label

Direction of outgoing saccade in relation to the current fixation

Target status

Numerical, whole trial dependent

Number of total fixations

Reaction trial time

Number of targets

Categorical, whole trial dependent

Experiment condition

Screen configuration

Table 1: Gaze Measurements

noted by the ID of the position on the array, whereas the current area label encodes

the symbol gazed at.

Target status encodes, if the current fixation is on a target symbol, on the stimulus

(the exemplary symbol the participant needs to search for) or if it is neither on a

target nor on the stimulus.

In Figure 6 some measurements are visualised. The orange boxes mark the interest

areas, each with a corresponding position ID and a label. The position ID encodes

where on the screen the interest area is (target or position 1 to 19) and the label

which symbol it displays. The blue circles denote fixations, where the size of the

13



Chapter 3. Data

Figure 6: VS Screen with Eye-Tracking Measurements

circle indicates their duration, and the yellow lines encode saccades, with start and

end points as well as arrows visualising their directions.

3.2.1.2 Dataset to Input Tensor

To transform the eye-tracking data into a suitable format for machine learning the

following steps were taken: Normalization was applied to numeric features across

the entire dataset (see Table 1 for the exhaustive list of features). The normalisation

was performed by the standard scaler of the sklearn package (see Pedregosa et al.

[2011] for details). This step standardized the numeric data to a common scale,

enabling more consistent and meaningful comparisons across these variables.

In addition to normalization, categorical features were one-hot encoded to convert

them into a binary format suitable for machine learning algorithms. For example,

the feature ’direction of next saccade’ can have the values: up, down, left, right, or

NaN. The corresponding one-hot encoding for the value ’left’ would therefore look

like: [...0,0,1,0,0, ...] Where [ ] denotes the whole tensors and ... denotes other

entries not related to the feature ’direction of next saccade’. The columns that

underwent one-hot encoding include the direction of the next saccade, the label of the

current fixation area label, the target status (stimulus, target, non-target, off-search
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array), and the experimental condition (letter, mirrored letter, geometrical) as well

as the trial screen configuration. These transformations facilitated the integration

of categorical information and screen-specific details into the analysis, allowing for

a comprehensive exploration of the eye-tracking data in the context of the research

objectives. None values were filled with zeros.

3.2.1.3 SLRT-II Score to Label

The SLRT-II scores referred to in this thesis are percentage ranks and are in a

format unsuitable for machine learning. They include different ranges, greater than

and smaller than symbols, and their ranges are not uniform. To generate a suitable

format a custom label transformer function was employed. It takes a score as input

and returns a float. First, it checks if the score contains a ’greater than’ (>) or

’smaller than’ (<) symbol. If this symbol is present, the score is returned without

it, as all those scores represent either the lowest or the highest possible label score.

If the score contains a hyphen (-), signifying a range, it is split into two values, and

the average of these values is computed and returned as a float.

Following these initial transformations, an additional step is taken to convert the

transformed score into a one-hot encoded format. The score is firstly divided by

5, and the result is used to determine the appropriate position in a 20-element

tensor filled with zeros. The position corresponding to the label’s value is set to

1, effectively one-hot encoding the label. This final one-hot encoded tensor is then

used as the true label for training the model.

These transformation steps are split to enable the possibility of changing the label

implementation. It would be possible to change up the classification task for example

to a binary classification, or to change up the number of classes to predict.

For this thesis, in the first setting a number of 20 classes were implemented to still

approach the large range of scores but also take into consideration, that the scores

between the age norm tables do not have a one-to-one correspondence. In a second

setting where the prediction is seen as a regression problem, the labels were kept

unchanged after the initial transformation to directly predict the score.
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4 Problem Setting

The task of predicting the SRTL-II score based on an eye gaze sequence on one

visual search task can be formalized in different ways; I chose to try two different

approaches. In the first approach, the problem is viewed as a classification task,

where the model tries to predict one of 20 classes associated with the reading score.

The second approach interprets the problem as a regression task, where the model

tries to predict the reading score directly.

Additionally, I implemented two variations of the base model, implementing three

different versions in total. In the first version, the model was implemented in its base

form as detailed in section 4.1.1, providing the model with no screen information

at all. In the second version detailed in 4.1.1.2, the screen configuration is added

to each input tensor of the fixation sequence, giving it the most influence on the

model’s learning behavior. In the third version explained in 4.1.1.3, the model has

an additional attention layer put ahead to process the screen information of the

visual search task separately, which is then fed into the LSTM.

4.1 Formalisation

The following sections detail the formalisation of the different variations.

The goal is either to train a multi-class classifier gθ, where ŷi is the predicted class

label, or interpret the prediction as a regression problem, where ŷi is the predicted

target label yi with a value between 0 - 100 for participant i.

4.1.1 Model

For all my models the LSTM layer of the PyTorch library was used; having the

following mathematical formalisation based on the Sak et al. [2014, 2]:

It ”...computes a mapping from an input sequence -x = (x1, . . . , xT ) to an output

sequence y = (y1, . . . , yT ) by calculating the network unit activations using the
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following equations iteratively from t = 1 to T :

it = σ(Wixxt +Wimmt−1 +Wicct−1 + bi)

ft = σ(Wfxxt +Wfmmt−1 +Wfcct−1 + bf )

ct = ft ⊙ ct−1 + it ⊙ g(Wcxxt +Wcmmt−1 + bc)

ot = σ(Woxxt +Wommt−1 +Wocct + bo)

mt = ot ⊙ h(ct)

yt = Wymmt + by

(4.1)

Where the W terms denote weight matrices (e.g., Wix is the matrix of weights from

the input gate to the input), the b terms denote bias tensors (bi is the input gate

bias tensor), σ is the logistic sigmoid function, and i, f , o, and c are respectively

the input gate, forget gate, output gate, and cell activation tensors, all of which are

the same size as the cell output activation tensor m. ⊙ represents the element-wise

product of the tensors and g and h are the cell input and cell output activation

functions, generally tanh.”

To improve the performance of the architecture the LSTM was implemented bidi-

rectionally.

Figure 7, taken from Siciliano et al. [2021, 5] is a visual representation of the struc-

ture of such LSTM cells. On top multiple connected LSTM Cells are depicted, below

the ’inner’ working of one such cell. The blue line represents the cell state Ct, the

green line the cell output ht, cell input xt is represented by the purple line, the forget

gate by the dashed red rectangle, the input gate by the dashed blue rectangle, the

output gate by dashed green rectangle, the activation functions by yellow rectangles

and other operators by orange circles. The output gates are the gray lines.

4.1.1.1 Base LSTM Model

The base form of the proposed models is a bidirectional LSTM, which takes as input

a tensor rij of visual search screen j, gazed at by participant i and predicts label yi,

where the tensors ri1, . . . , riT represent the input sequence tensor x in the formal-

isation of the LSTM. The last tensor yiT of the output sequence y = (yi1, . . . , yiT )

is connected to a linear layer with the output size of the label tensor (20 for the

implementation of the proposed classifier model, or one for the proposed regression

model). The resulting tensor either encodes the model’s predicted probabilities for

each label class or the predicted score. In the case, where no screen information is

passed to the model, the formalisation is used as explained in this subsection.

17



Chapter 4. Problem Setting

Figure 7: LSTM cells

4.1.1.2 Base LSTM Model with Screen Information

To include screen information, each input tensor rij was expanded by the one hot

encoded screen configuration. The input tensor is then fed into one or multiple

connected LSTM layers, which are connected to a linear layer, projecting it to either

the classification size of 20 or to one resulting value for the regression model.

4.1.1.3 LSTM Model with Attention Layer

The attention layer is adjusted from the attention mechanism described in Vaswani

et al. [2017]. This model takes an additional input tensor uj, where the symbol

sequences of the screen are one-hot-encoded. This tensor is then split into 20 sub-

tensors (one tensor for each of the nineteen positions plus one target position).

This tensor sequence of 20 tensors is then fed to an attention layer. Its attention

mechanism is defined using linear transformations. Three linear transformations are

employed to map the input data to query, key, and value tensors: The key tensor

is used to compare against the query tensor, and the value tensor holds the actual

information one wants to retrieve based on the query’s attention. A score tensor

is calculated by performing a dot product between the query and key tensors. It

is then scaled to control the magnitude of the scores. The resulting scores reflect
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the similarity or relevance between the query and key tensors for each element in

the input data. The softmax function is then applied to the scores to obtain the

attention weights. The softmax operation normalizes the scores to produce values

between 0 and 1, where higher values indicate higher attention or importance. The

context tensor for the current batch is computed by taking a weighted sum of the

value tensors, where the attention weights determine the weights for each element in

the value tensor. This means that more attention is given to more relevant elements

based on the query-key similarity. This resulting context tensor is then flattened

into a 1D tensor and adjusted to the right dimension to represent the batch size, to

conform to the subsequent layers. This tensor is then used as the initialisation of

the h0 and c0 tensors, which are normally comprised of zeros.

4.1.2 Data

To investigate the task of predicting the SRTL-II score based on an eye gaze sequence

on one visual search task screen the used data can be formalized as a set D =

{(W11, y1), . . . , (WN,M , yN)}, where Wij = ⟨wij1, . . . , wijK⟩ is a sequence of reading

measure tensors for each fixation k ∈ 1, . . . , Kj obtained from subject i looking at

VS screen j, where N is the number of participants, M is the number of VS screens

processed by each of the participants, and Kj, is the number of fixations registered

while looking at screen j. Each reading measure tensor consists of R gaze measures,

i.e., wijk = (rijk1, . . . , rijkR) and possibly an encoded representation of screen j. See

Table 1 for the exhaustive list of gaze measurements used.

The target label yi has two different formalisations: When interpreting the prediction

of the SRTL-II score as a classification task (a), the categorical target label yi

represents one of 20 classes for participant i. The goal is then to train a multi-class

classifier gθ, where ŷi is the predicted class label. In this case, ŷi can take one of

the 20 possible values, corresponding to the predicted class, based on the model’s

output. Interpreting the prediction as a regression problem (b), the true target label

yi is a value between 0 - 100 for participant i. The goal is then to train a model

gθ, where ŷi is the predicted value. In this case, the predicted target ŷi can have

any rational value theoretically, but the model should learn to assign values between

0-100.
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5 Method

In this chapter, the choices of model architectures with their input configurations are

explained, as well as how their hyperparameters were tuned and what the evaluation

procedure looks like1.

5.1 Model Architecture

The use of the Long Short-Term Memory (LSTM) architecture was driven by the

idea of encapsulating the sequential nature in the VS task. The engagement in a vi-

sual search task necessitates a consecutive and evolving interaction with an array of

symbolic information displayed on a screen. This interaction is comprised of a suc-

cession of distinct ocular events, including fixations, saccades, and blinks. LSTMs,

as a specialized recurrent neural network (RNN) variant, are adept at modeling and

predicting sequences, rendering them well-suited for this task. Their key distin-

guishing feature lies in their capacity to retain and process temporal dependencies

and long-range interactions within sequential data [Sak et al., 2014], allowing for the

effective modeling of the intricate dynamics associated with eye-tracking patterns

[Haller et al., 2022] in the context of visual search. This architectural choice facili-

tates the preservation of context and the extraction of meaningful information from

the ordered sequences of ocular events, ultimately enhancing the model’s capacity

to predict the ensuing reading score based on these patterns2.

To acknowledge different ideas about how the screen configuration influences the

eye-tracking pattern of the participant and the model predictive power based on it,

I came up with three different variations of the base model and its input:

1. not processing the screen information at all, based on the idea that the model

can learn from patterns in the data independent of the screen configuration

1The whole code implementing the methodology was written in Python and can be found on
Github.

2An other popular neural network architecture choice regarding processing sequential data are
Convolutional Neural Networks for example used in Deng et al. [2023].

20

https://github.com/saphjra/BA_ET_SRLT


Chapter 5. Method

2. adding the screen information to each input, following the observable differ-

ences in eye movements depending on the number of targets, the experiment

condition, how similar neighboring symbols are, etc.

3. combining the two approaches by providing the model with some information

about the screen but only once in the course of a fixation sequence, mimicking

the idea of gathering information about the screen as a whole first before

processing the individual symbols, sequentially.

For the first setting, the model was implemented in its base form as detailed in

section 4.1.1.1. In the second setting, the screen configuration is added to each

input of the fixation sequence, giving it the most influence on the model’s learning

behavior (see section 4.1.1.2. In the third setting, the model has an additional

attention layer put ahead to process the screen information of the visual search task

separately, which is then fed into the LSTM part as initial values for the hidden

states (section 4.1.1.3).

Based on their performance in the tuning process detailed in section 5.1.1, only the

best-performing model was evaluated.

5.1.1 Hyperparameter Tuning

The Ray framework, as detailed by Liaw et al. [2018], was employed for hyperparam-

eter tuning. This framework utilizes a random combination approach, assembling

hyperparameter settings from the respective values3 outlined in Table 2. The model

undergoes training for a predetermined number of epochs or until no further im-

provement is discernible. The tuning process employs the ’Asynchronous Hyper

Band scheduler’, a scheduling algorithm introduced by Li et al. [2018]. It is an algo-

rithm specifically designed for hyperparameter tuning of neural networks. It involves

the concurrent execution of multiple configurations of hyperparameters, optimizing

the efficiency of the tuning process. It employs an asynchronous early-stopping ap-

proach based on its successive halving algorithm. Its idea is to allocate resources

dynamically, adapting to the performance of different configurations as they progress

through the tuning procedure. By asynchronously managing the allocation of re-

sources and exploiting parallelisation, it significantly enhances efficacy and expedites

the convergence of hyperparameter optimization compared to traditional methods.

Figure 8 shows how such tuning results look like.

3Embedding Size is only used in models with attention layer
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Hyperparameter Possible values

Batchsize 2, 4, 8, 16, 32

Learning rate 0.001 - 0.1

Hidden layersize 64, 128, 254, 512, 1024

Number of stacked LSTM cells 1, 2, 4, 8

Embbedding size 32, 64, 128, 254

Table 2: Possible Hyperparameters for Tuning

In the training process the optimizer Adagrad [Duchi et al., 2011] was used. As

loss function of the classifier, the Cross-Entropy-Loss and for the Regression task

Huber-Loss [Zhu et al., 2008] from Pytorch were used.

5.2 Evaluation Procedure

For the evaluation phase, the models configured with the most effective hyperpa-

rameter settings, as determined through the tuning process, were utilized. The

evaluation employed a 10-fold random cross-validation and a 10-fold group

cross-validation implemented by Scikit Pedregosa et al. [2011]. The dataset was

partitioned into ten subsets, and the model underwent training and testing itera-

tively ten times. During each iteration, a different subset was designated as the test

set, while the remaining subsets served as training sets. Training phase had 100

epochs.

In the random validation, the test and training set were split randomly by trial

indices. In the group validation, groupings were established based on participant

IDs, ensuring that the test set comprised only participants unseen by the model

until that point.

Subsequently, the obtained results were compared against baseline results. A T-

Test, implemented from SciPy Virtanen et al. [2020], was conducted on the results

to ascertain their statistical significance. The null hypothesis is, that the baseline

results have a higher mean in regards to their underlying distribution, as my model

results, meaning the baseline model performs equally or better than my models re-

garding their accuracy in case of the classifier and the mean square error in case of

the regression model. A significance level of 0.05 is chosen.
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Figure 8: Hyperparameter Tuning Results of LSTM with Screen Information

5.2.1 Reference Method

To facilitate the interpretation of the models’ performances, baseline models are

introduced to serve as benchmarks for evaluating the efficacy of the more intricate

models and assessing their performance relative to a fundamental predictive strategy.

In the classification task, a baseline model was implemented, which consistently

predicted the majority class of the current cross-validation folds training set. For

the regression task, a baseline was established by utilizing the median of the true

scores within the current cross-validation folds training set. Those straightforward

approaches establish a baseline against which the performance of more complex

models can be measured and help understand their effectiveness in comparison to a

basic predictive strategy.
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6 Results and Discussion

6.1 Results

This section presents a detailed examination of the outcomes derived from the imple-

mented models. It encompasses an analysis of classification and regression results,

providing insights into the models’ predictive capabilities concerning reading scores.

The discussion includes an exploration of the impact of different configurations, the

differences observed in cross-validation settings, and an evaluation of the models’

efficacy compared to baseline strategies.

6.1.1 Best-performing Model Classification Task

Following the outcomes of the hyperparameter tuning process, as depicted in Figure

8 introduced in Section 5.1.1, the LSTM model with Screen information was config-

ured with the following parameters: a singular LSTM layer featuring a hidden size

of 128, an optimizer employing a learning rate of 0.0692, and batches comprising 8

trial sequences.

Figure 9 presents a visual representation1 of the configured model. The yellow

input tensor encompasses one batch of 8 fixation vectors, each containing 467 entries

encoding measurements detailed in Section 4.1 and the current screen arrangement.

The gray boxes labeled ’to depth:1’ illustrate the dimensions of the h0 and c0 tensors.

The green box labeled ’LSTM depth:1’ visually depicts the transformation from a

tensor of size (8, 1, 467) to a hidden size tensor of (8, 1, 256). Notably, due to

the bidirectional nature of the model, the effective hidden size is twice the tuned

hidden size of 128. The subsequent gray box illustrates the removal of the batch

dimension, as it holds no additional information. The succeeding green box labeled

’linear depth:1’ illustrates the linear transformation from the hidden size tensor to

the output tensor, resulting in a reduction from (8, 256) to (8, 20).

1The visualisation was generated using the torchview package available at:
https://github.com/mert-kurttutan/torchview
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Figure 9: Best LSTM Model Classifier Configuration
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6.1.1.1 10-Fold Random Cross-Validation

In the context of the cross-validation, where the random split of test and training

data was employed, the outcomes prove promising, revealing an average Baseline

accuracy of 13.75 percent and an average model accuracy of 17.03 percent. The

specific results for each fold are provided in Table 3. A one-sided T-test, assuming

the model’s underlying sample distribution is not greater, yields a P-value of 0.04,

satisfying the criterion p < 0.05. This statistical significance indicates that the null

hypothesis, asserting that the baseline model performs better or equivalently, can

be rejected. The corresponding T-value is -1.80.

6.1.1.2 10-Fold Group Cross-Validation

In the case of the 10-Fold group cross-validation, where the training and test data

are segregated by participants, both models exhibit generally low accuracy. The
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Random setting Group setting

Fold Baseline Model Baseline Model

1 17.19 17.19 0.0 0.83

2 20.31 21.88 0.0 3.33

3 10.16 12.50 33.33 31.67

4 14.06 22.06 0.0 0.0

5 17.97 17.97 0.0 1.67

6 8.59 9.38 0.0 0.83

7 11.72 19.53 0.0 0.0

8 12.50 14.06 0.0 0.0

9 10.16 20.31 0.0 1.39

10 14.84 14.84 0.0 0.0

Average 13.75 17.03 3.3 3.97

Table 3: 10 Fold Cross-Validation Results Classifier as Percentage

average accuracy is 3.97 percent for the proposed model and 3.3 percent for the

baseline model. This suboptimal performance is attributed to the uneven distribu-

tion of reading score labels, resulting in scenarios where only one participant carries

a particular label. When such a participant is excluded from the training set, the

model is inclined to assign a very low probability to this label class, leading to in-

frequent predictions. Similarly, the baseline model predicts the majority class of the

training set of the current fold, resulting in zero percent accuracy if the majority

class label is absent from the test set. However, when the majority class label is

present, as exemplified in fold 3, the baseline model performs better than the pro-

posed model, correctly predicting a third of the true class label. Consequently, the

t-test results suggest an inconclusive determination of whether the proposed model

outperforms the baseline, as evidenced by a T-value of -0.14 and a P-value of 0.44,

failing to satisfy the criterion P < 0.05.

6.1.2 Best-performing Model Regression

Moving on to the best-performing model for regression, the hyperparameter tuning

process outlined in Section 5.1.1 yielded the configurations displayed in Figure 10.

The optimal parameters include a hidden size of 128, a batch size of 1, eight con-
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Figure 10: Hyperparameter Tuning of Regression Model

nected LSTM layers, and a learning rate of 0.00627.

6.1.2.1 Random Cross-Validation Regression

Evaluation based on mean square error indicates a suboptimal performance for the

SRTL-Scorer, predicting, on average, 35.51 score points off from the true score ranks
2 in the group evaluation setting, whereas the baseline model was 35.38 score points

off. Table 4 depicts the results of the random cross-validation setting, where for

each fold the mean square error is computed. The results were rounded to integers

for better readability.

Model and Baseline have very similar results for each fold of the cross-validation.

Unsurprisingly, the T-test results in a T-value of 0.0001 and a P-value of 0.9999, not

2This number is the result of taking the square root of each mean square error, summing them
up and dividing it by the number of folds
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Random Setting Group Setting

Fold Model Baseline Model Baseline

1 1407 1396 1060 1048

2 1440 1441 834 721

3 1353 1355 323 374

4 1170 1172 1419 1418

5 1086 1096 636 583

6 1386 1369 3104 3053

7 1156 1120 411 534

8 1157 1132 3594 3608

9 1177 1193 884 919

10 1402 1430 2014 2004

Average 1273 1273 1426 1438

Table 4: 10-Fold Cross-Validation Regression Results Mean Square Error

satisfying the criterion P < 0.05, indicating that there is a high chance that both

models perform equally or that the baseline model even outperforms the proposed

model, since the null-hypothesis can not be rejected.

6.1.2.2 Group Cross-Validation Regression

The results in the group Setting displayed in 4 were similar to the ones of the random

setting. One can observe a slightly better performance in the random setting for both

the proposed and the Baseline Model compared to the group setting. However, both

models performed almost the same compared to each other, leading to a T-Value of

-0.0229 and a P-Value of 0.98 for the group setting not satisfying the criterion P <

0.05.

6.2 Other Models

6.2.1 LSTM with Attention layer

During the hyperparameter tuning process for the LSTM model without screen

information and incorporating an additional attention layer, as elaborated in Sec-

tion 4.1.1.3, it became evident that this architectural modification conferred no
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discernible advantages over the baseline model. Its performance exhibited a no-

ticeable decline in terms of accuracy, as illustrated in Figure 11 compared to the

LSTM Model given the screen configuration for each fixation step. The optimal

Figure 11: Hyperparameter Tuning of Model with Attention Layer

configuration, characterized by a hidden size of 256, embedding size of 32, batch size

of 8, a single LSTM layer, and a learning rate of 0.064, achieved only an accuracy

of 17.96 percent. Given the observed performance drop in comparison to the base-

line model, particularly when splitting the dataset based on participants, no further

investigation went into the performance of this model.
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6.2.2 LSTM without Screen Information

Similar results (refer to Figure 12 for details) were observed when entirely excluding

screen configuration information from the input in the LSTM model, as outlined in

Section 4.1.1.1. Subsequently, the performance of this model was not subjected to

further exploration.

Figure 12: Results of Hyperparameter Tuning for LSTM without Screen Information
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6.3 Discussion

This section discusses key aspects related to the performance and implications of

the developed models. It aims to address the reasons behind divergent outcomes

observed in random and group Cross-Validation settings, the crucial role played

by screen configuration information in model performance, and potential avenues

for addressing challenges encountered in this thesis. By analyzing these elements,

potential directions are identified for future research and refinement.

6.3.1 Random vs. Group Cross-Validation of Classifier

Comparing the outcomes of random and group Cross-Validation settings provides

valuable insights. The model demonstrates significantly better accuracy over the

baseline when subsets are randomly segregated. However, when data is split by

participants, the model’s performance diminishes, raising questions about its gen-

eralisability. Potential reasons for this discrepancy include the model potentially

learning participant-specific patterns rather than predicting reading scores. Factors

such as the model architecture, input data appropriateness, and dataset size limita-

tions may contribute to this phenomenon. Challenges related to dataset distribution

and socio-demographics of participants should be considered for future research., as

well as using a more suitable validation process.

6.3.2 Regression Model

The regression model’s performance was below expectations in both the random and

the group settings. Its prediction ability was practically the same, even a bit worse

in this specific setting than the baseline model, which always predicts the median

of the scores in the test set of the current cross-validation fold. Despite a loss of

around 28 during hyperparameter tuning, the model struggled to approach this value

in practice. The selection of the Huber-Loss loss function may have impacted this

difference because one of its key traits is being less sensitive to outliers [Zhu et al.,

2008, 1639]. This means that its output may appear superior to that of a standard

mean square error used to assess the model’s performance. Further investigation is

required to determine whether the model’s configuration is inadequate or if other

factors are influencing its performance.
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6.3.3 Screen Information

During the hyperparameter tuning phase, a notable observation is, that the LSTM

architecture with one-hot-encoded screen information added to each input vector

of the sequence outperforms other models. Table 5 displays the models and their

highest achieved accuracy during hyperparameter tuning. These results suggest

the significance of screen information, with the model emphasizing this information

performing the best. Although not further explored in this thesis, the observed

trend highlights the potential importance of screen configuration data.

Model variant Highest accuracy (percent)

Without screen Information 16.12

With attention layer 17.57

With screen information 27.01

Table 5: Achieved Accuracy during Hyperparameter Tuning for Classification

6.3.4 Possible Solutions

Various strategies can be considered to address the challenges encountered. The

following passage addresses distinct aspects, ranging from fine-tuning the classifier’s

feedback mechanisms to more substantial changes in model architecture and dataset

characteristics:

For example, one could refine the classification task: This involves adjustments such

as altering the number of classes or adopting a binary classification approach, for

instance, distinguishing between SRLT-II scores lower or higher than the dataset’s

median.

An alternative involves preserving the ordinal nature of classes. implementing an ad-

justed accuracy measurement tailored to maintain the ordinal relationships between

classes can potentially enhance classifier performance.

Further enhancement may be achieved by modifying the model architecture with

the attention layer. One specific adjustment is to relocate screen configuration

information to the end of the computation sequence, aiming to provide the model

with a more robust computational weight. The aspect of the screen configuration

information might be fruitful to experiment with in general, such as future research

could involve experimenting with different input variations. Exploring alternative

placements within the model structure may yield insights into optimizing its impact
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on prediction outcomes.

Another approach might be to consider entirely different architectures. For example,

investigating Convolutional Neural Network architectures is a promising avenue,

given their documented superiority in some settings in sequential prediction tasks

compared to LSTMs (see for example Siciliano et al. [2021]; Deng et al. [2023]).

And lastly, in my opinion, the most promising and easiest solution might be in-

creasing the participant dataset size. A larger dataset should enhance the model’s

generalisation abilities and contribute to a better performance.
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7 Conclusion

In this thesis, I was able to implement an LSTM-based neural network architecture

that can classify visual search-based eye-tracking significantly more accurately than

the baseline model. However, it also shows that further investigation is needed since

it only outperforms the baseline in one setting explored in this thesis, as discussed

in Chapter 6.

Nonetheless, this thesis has addressed a significant research gap in the understand-

ing of the intricate interplay between eye movements, visual search, and reading

skills. As highlighted in Chapter 2, this investigation might not only contribute

to advancing the comprehension of cognitive processes but also might hold promise

for practical applications that can benefit individuals with diverse levels of reading

proficiency.

The outcomes of hyperparameter tuning, as detailed in Section 5.1.1, underscore the

importance of incorporating screen configuration information into models utilized

for predicting visual search tasks.

This finding suggests that future models should be equipped with such information

to enhance learning outcomes. This insight could prove instrumental in refining

existing models and developing new ones, thereby improving the efficacy of predictive

systems in visual search scenarios.

In Section 6.3.4, potential approaches to address challenges encountered in this

thesis were discussed. Strategies such as augmenting the dataset, manipulating

screen information in alternative manners, and adjusting the classification task were

explored. These considerations provide a foundation for future investigations aimed

at refining methodologies and overcoming limitations in similar research endeavors.

Moreover, the developed code framework, a byproduct of this work, serves as a

valuable resource that can be adapted and extended for future research endeavors,

particularly those related to the ’Lesen im Blick’ data.

Future research endeavors could involve further refinement and adaptation of the

proposed model. Testing the architecture on additional datasets, including those
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Chapter 7. Conclusion

from different participant demographics, such as adults or a more diverse population,

since it would enhance the generalisability of the findings.

Additionally, extending the scope to incorporate prediction tasks for other languages

would contribute to establishing a more universal relationship between eye move-

ment patterns and reading fluency, independent of language constraints.

In conclusion, this thesis not only addresses existing gaps in research but also lays

the groundwork for future investigations, offering valuable insights and tools for

advancing the understanding of cognitive processes related to visual search and

reading skills.
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Glossary

The explanations of eye-tracking related terms stem from: SR Research Website

other explanations are from Googles Machine Learning Glossary

Accuracy The number of correct classification predictions divided by the total num-

ber of predictions

Baseline A model used as a reference point for comparing how well another model

(typically, a more complex one) is performing. [...] For a particular problem,

the baseline helps model developers quantify the minimal expected perfor-

mance that a new model must achieve for the new model to be useful.

Bidirectional A term used to describe a system that evaluates both preceding and

following input of a target section of a sequence. In contrast, a unidirectional

system only evaluates the preceding input of a target section of the sequence.

Categorical Data Features having a specific set of possible values [...]. Also some-

times called discrete features.

Numerical Data Features represented as integers or real-valued numbers [...] some-

times called continuous features.

One-hot Encoding Representing categorical data as a vector in which: One element

is set to 1 and all other elements are set to 0. One-hot encoding is commonly

used to represent strings or identifiers that have a finite set of possible values.

[...] Representing a feature as numerical data is an alternative to one-hot en-

coding.[...] With numeric encoding, a model would interpret the raw numbers

mathematically and would try to train on those numbers, even if their is no

mathematical relationship present.

LSTM Long -Short-Term-Memory A type of cell in a recurrent neural net-

work used to process sequences of data in applications such as handwriting

recognition, machine translation, and image captioning. LSTMs address the

vanishing gradient problem that occurs when training RNNs due to long data

sequences by maintaining history in an internal memory state based on new
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Glossary

input and context from previous cells in the RNN.

RNN Recurrent Neural Network: A neural network that is intentionally run

multiple times, where parts of each run feed into the next run. Specifically,

hidden layers from the previous run provide part of the input to the same

hidden layer in the next run. Recurrent neural networks are particularly useful

for evaluating sequences, so that the hidden layers can learn from previous runs

of the neural network on earlier parts of the sequence. [...]

Saccade The term saccade [...] was first used to describe eye movements by Javal

in the 1880s. It refers to the very rapid, conjugate (both eyes do the same

thing) eye movements we make when re-orienting the foveal region to a new

spatial location. We typically make around 3 saccades each second. [...] as far

as eye-tracking is concerned, we are generally assumed to be “effectively blind”

during saccades. [...] saccades can be a very rich source of information, and

common metrics include their latency, amplitude, direction and peak

velocity. Amplitude and velocity are related by what is known as the “main

sequence” – larger saccades have a higher peak velocity.

Fixation Saccades are typically preceded and followed by a fixation – the term used

to describe the period of relative stability during which visual information

is processed. The rules and algorithms that researchers (and eye-tracking

software) use to determine whether the eye is in a fixation or in a saccade can

be complex [...]. Fixations are typically 200-300ms but can be much shorter

or much longer, and average fixation duration depends to some extent on

the context – e.g. fixations are typically somewhat shorter during reading

than when viewing scenes. [...] Fixations are typically described by two key

metrics: their location (which is defined as the average x and y locations

of the samples they contain) and their duration. In standard visualization

approaches, fixations are represented by circles, with the circle’s center at the

average x,y location and its diameter reflecting the duration.
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A List of most important Python

Packages used in my Code:

• Data

– Pickles

– Pandas

• Models

– PyTorch

• Preprocessing

– Skicit learn

• Training

– Ray

– Skicit Learn

• Evaluation

– Torchmetrics

– Scipy
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