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Abstract

In recent years, researchers have explored the connection between eye movements

and cognitive processes. This thesis investigates the relationship between eye move-

ment patterns while reading and text comprehension. I infer text comprehension

using deep neural sequence models. Building upon previous work, my contribution

is engineering linguistic features that are based on findings in psycholinguistics and

employing a bidirectional Long Short-Term Memory (BiLSTM) model for this task.

The results show that linguistic annotation of the stimulus text improves the model

performance. When omitting the linguistic features, my model architecture did not

outperform previous model architectures. This highlights the effectiveness of lin-

guistic features in tasks that infer cognitive aspects from eye gaze data. Overall,

results in this area are not outstanding. Future research should focus on achiev-

ing application-relevant results and exploring alternative approaches with respect

to input features and model architecture.

Zusammenfassung

In den letzten Jahren gab es Forschung zum Zusammenhang zwischen Augenbewe-

gungen und kognitiven Prozessen. In dieser Masterarbeit wird der Zusammenhang

zwischen Textverständnis und den Mustern in den Augenbewegungen beim Lesen

untersucht. Ich schliesse auf das Textverständnis mithilfe von tiefen neuronalen Netz-

werken. Aufbauend auf früheren Arbeiten besteht mein Beitrag in der Entwicklung

linguistischer Features, die auf Erkenntnissen der Psycholinguistik beruhen, und in

der Verwendung eines bidirektionalen Long Short-Term Memory (BiLSTM) für diese

Aufgabe. Die Ergebnisse zeigen, dass die linguistische Annotation der Stimulustexte

die Leistung meines Modells verbessert. Ohne die linguistischen Features übertrifft

meine Modellarchitektur frühere Modellarchitekturen nicht. Dies unterstreicht die

Effektivität von linguistischen Features bei Aufgaben, die kognitive Aspekte aus

Blickdaten ableiten. Insgesamt sind die Ergebnisse in diesem Bereich noch nicht

herausragend. Zukünftige Forschung sollte sich darauf konzentrieren, anwendungs-

relevante Ergebnisse zu erzielen und alternative Ansätze in Bezug auf Features und

Modellarchitektur zu erforschen.
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1 Introduction

Reading involves deciphering a text and deriving meaning from it. Research shows

that the movements of our eyes, which are commonly referred to as a a windows

into the mind and brain, reflect cognitive processes such as reading comprehension.

On the basis of this notion, there have been a few attempts to infer reading compre-

hension from eye gaze data using various classification approaches including deep

neural networks.

Being able to successfully infer reading comprehension from eye gaze data would

provide further insight into the cognitive processes underlying language processing

and reading comprehension. Furthermore, a reliable model would eliminate the need

for the laborious reading comprehension tests that are performed to assess an indi-

vidual’s level of reading comprehension. This way, it would be possible to quickly

evaluate the text difficulty of texts on complex topics which are relevant to the

general public, such as voting texts. It could also lead to new research about the

importance of the documents for estimating reading skill (Augereau et al. [2016]).

While there have been some promising results in related fields, it has been especially

challenging to infer text comprehension where the ground truth label is based on

the stimulus text at hand, as opposed to general reading comprehension which is

assessed using an independent reading comprehension test. Ahn et al. [2020] com-

piled the publicly available SB-SAT dataset which contains eye gaze data from 95

undergraduate students reading different text passages, along with their achieved

scores from corresponding reading comprehension questions. The authors infer the

level of a readers text comprehension with a CNN and an RNN network. They use

horizontal and vertical fixation location, fixation duration and pupil size as model

input. The state of the art in the task of inferring text comprehension on this

dataset is held by Reich et al. [2022], who introduced multiple additional features,

including linguistic features, and presented BEyeLSTM, a modular neural network

architecture consisting of four subnets. Reich et al. [2022] studied four different

tasks: General reading comprehension, text comprehension, subjective text diffi-

culty, whether the reader is a native speaker of the text’s language. In the text

comprehension task, they used the sequence of fixations as an input and predicted

whether an individuals text comprehension was above or below the median in the
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Chapter 1. Introduction

text. They used the same features as Ahn et al. [2020] as input, along with several

reading measures and linguistic features. Interestingly, the ablation study in this

work showed that omitting the model component that took most of the linguistic

features and the reading measures as an input outperformed the full model in many

settings. This leads to the question of whether the good performance is due to their

network architecture or the input features. Similar tasks have shown that the inclu-

sion of linguistic features is beneficial in tasks that infer cognitive aspects from eye

gaze data.

This thesis aims to further explore the relationship between eye gaze patterns while

reading and reading comprehension by performing binary classification of text com-

prehension using the sequence of fixations and linguistic features of the stimulus text

as input. Since Reich et al. [2022] presented a promising approach, I’m building upon

their approach in many aspects, including the choice of features, the target label, the

network structure and the evaluation protocol. My contribution is the incorporation

of further linguistic features which are based on research rooted in linguistics and

psycholinguistics. In addition to the linguistic features, I’m using the same scanpath

features and very similar reading measures to Reich et al. [2022]. Furthermore, I’m

extending the preprocessing pipeline such that it works for German stimulus texts.

I’m classifying the sequence of fixations using a simple bidirectional Long Short

Term Memory (BiLSTM) and I’m evaluating the results in different cross-validation

settings (New Reader, New Book, New Page). I’m working with the SB-SAT dataset

with English stimulus texts in order to be able to compare my results with the state

of the art. Additionally, I’m performing classification on the Individual Differences

Corpus with German stimulus texts, which was compiled at the University of Zurich

(InDiCo).

The general goal of this work is to reach the current state of the art results of infer-

ring text comprehension from eye gaze data. The research questions that shall be

answered are as follows:

• Does linguistic annotation of the stimulus texts improve the results in the task

of inferring text comprehension from eye gaze data?

• Does employing a single BiLSTM that takes all features as input yield better

results than employing a network architecture consisting of several subnets?

• Is there a difference between the results on the SB-SAT dataset and the InDiCo

dataset?

My approach to answer these questions is to preprocess fixation data and stimulus

texts of the two datasets, send them through the same annotation pipeline and train

the same model architecture with the annotated data of the scanpaths. Additionally,

2



Chapter 1. Introduction

I perform an ablation study to investigate the influence of the different kinds of

features on the result. I compare the results within and across the datasets, as well

as to the scores achieved by Ahn et al. [2020] and Reich et al. [2022].

This first chapter introduces the topic and goal of this thesis. Chapter 2 gives

information on the theoretical background and related work. Firstly, I will discuss

the topics of reading comprehension and aspects which affect the difficulty of a text.

This will be helpful in order to construct linguistic features. Then, I will go on and

give some background on the topic of eye tracking and I will highlight some ways in

which reading comprehension influences the eye movements while reading. Lastly,

I will talk about some previous studies that use eye movements as input feature

to predict or infer some cognitive aspect, including some studies on the prediction

of reading comprehension that my work builds upon. The problem setting of this

thesis is described in in chapter 3 and chapter 4 introduces the two datasets used

(SB-SAT and InDiCo), including a description of experiment design and some data

analysis. Chapter 5 is the core of this thesis; here, I will describe all the steps

undertaken to preprocess and annotate the fixation data and stimulus texts of the

two datasets in order to prepare the data for classification. I will also describe the

model architecture. In chapter 6, I will specify the details of model training and the

evaluation procedure. I present the experiment results in chapter 7 and discuss them

in chapter 8. This chapter also includes an overview over the specific experiments

I performed in the ablation study and a discussion of the results thereof. Finally, I

will answer my research questions and talk about the outlook in chapter 9.

3



2 Related Work and Background

2.1 Text comprehension

2.1.1 The process of text comprehension

Text comprehension is a complex cognitive process that takes place on various lin-

guistic levels. Ehri [1998] split that process into the act of deciphering a text on

the one hand and the comprehension of a text on the other hand. They state that

a child learns to comprehend before they learn to decipher text since the reading

comprehension process is similar to the listening comprehension process which is

acquired when a child learns to speak. Proficient readers are able to focus on the

meaning of a text while the mechanics of reading, including deciphering, happen

in the background without their awareness. The way a reader decodes a text and

processes information on multiple levels in parallel can be illustrated on an exam-

ple: The following three sentences are the beginning of the text Dickens from the

SB-SAT dataset, where the protagonist talks about their passion for books.

”Even then my only friends were made of paper and ink. At school I

had learned to read and write long before the other children. Where my

school friends saw notches of ink on incomprehensible pages, I saw light,

streets, and people.”

Figure 1 depicts the knowledge sources involved in the text comprehension process.

At a very basic level, the reader needs to be able to decode the graphemes of the

English language in order to understand this text, i.e. we need to be aware that the

letter E corresponds to the sound ["i], the letter v corresponds to the sound [v] and

so on. In phonetic writing systems such as English or German, this skill requires

the following prerequisites: letter familiarity, phonemic awareness and knowledge of

how graphemes typically represent phonemes in words (Pikulski and Chard [2005]).

Phonemic awareness enables us to hear individual sounds in words Nurjanah [2018].

Secondly, a reader needs to piece together the letters that make up a word and
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Chapter 2. Related Work and Background

retrieve the possible meanings of the word. Since the Latin alphabet has a lim-

ited set of characters and since many languages use the Latin alphabet instead of

having a perfectly customized phonetic writing system, the grapheme representa-

tion of a sound can be ambiguous between languages and even writing a language.

For instance, the word even (["iv@n]) contains the letter e twice but it represents

two different sounds. For this reason, readers don’t only need to be able to recog-

nize individual letters that they can stick together into a word; readers access their

vocabulary knowledge from their oral language skills in order to decipher a word

correctly. This can be illustrated with an example presented by Pikulski and Chard

[2005]. The words zigzags and onychophagia (nail biting) both appear infrequently

in written form. However, zigzags appears much more frequently in spoken language

than onychophagia. For this reason, mature readers have less difficulty decoding the

first word. This example shows that readers don’t always decode words letter by

letter. Ehri [1998] lists five different ways a reader might read words: 1) decoding

the letters of a word, 2) pronouncing and blending familiar spelling patterns (a more

advanced form of decoding), 3) retrieving sight words from memory, 4) analogizing

to words already known by sight and 5) using context cues to predict words. In

order to read fluently, we need to understand most of the words in a text instantly

(Nurjanah [2018]). We also need morphological awareness. Knowledge of prefixes,

suffixes and base words help us to understand and derive word forms. In addition to

the phonetic ambiguity described above, a word can have semantic ambiguity. For

instance, the adverb even is a homonym which is listed with the following meanings

in WordNet 3.1 (Fellbaum [1998]): 1) used as an intensive especially to indicate

something unexpected, 2) in spite of; notwithstanding, 3) to a greater degree or ex-

tent; used with comparisons, 4) to the full extent. Additionally, even as a noun can

be the synonym of evening, as a verb it can have the meaning to become even or

more even and as an adjective, one of the possible meanings is divisible by two.

In order to infer a word’s meaning correctly, it is vital that the reader has a good

understanding of syntax which helps them understand how the words in a sentence

relate to one another and how sentences are linked to form a text. Text cohesion

means that ideas within and between sentences can be connected. The ability to

connect ideas to other ideas in an overall piece of writing is called coherence (Nur-

janah [2018]).

Reading and Text comprehension don’t stop at understanding the things that are

explicitly stated in the text. A big part of meaning of exists as implicit information

in a text. Thus, we have to integrate a great deal of word knowledge in order to

understand implicit aspects of a text and rhetorical figures such as metaphors. In

our example, the reader needs to be able to infer that the concept of friends made of

paper and ink describes books and not literal friends, otherwise the passage doesn’t
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Chapter 2. Related Work and Background

make any sense. Many other things are hinted at in the text without being literally

stated. For instance, the expression I saw light, streets and people suggests that the

protagonist is able to fully immerse himself in a story to the point where it equally

real to him as the real world. We can also suppose with some certainty that the

protagonist must be lonely since he doesn’t have any real friends, he must be clever

since he learned to read before his peers and his tendency to escape into the world of

books rather than live in the real world suggests that his own life does not fulfill him

in some way. All in all, the three introductory sentences already tell the attentive

reader many things about this story, even if they aren’t all explicitly stated.

Research suggests that readers build a representation of a text while they are read-

ing in order to keep track of everything they encountered in the story already and

that they connect new concepts with what they already know (Rayner et al. [2006]).

Many researchers believe that a reader constructs three kinds of text representa-

tions: Firstly, A surface-level representation which is a verbatim representation of

the wording in the text. Secondly, a textbase representation, a propositional rep-

resentation of things explicitly stated in the text. For instance, for the sentence

One Christmas Sempere gave me the best gift I have ever received, Sempre is the

agent, the best gift I have ever received is the patient and the narrator is the re-

cipient of the action. Lastly, the reader constructs a mental model, discourse model

or situation model. Readers track information along multiple dimensions such as

protagonist, time, space, casualty and intentionally. The situation model is contin-

uously updated as new sentences are being read. In order to maintain coherence in

their mental model, readers have to generate inferences in order to integrate things

that are not explicitly stated in the text into the representation (Gernsbacher and

Kaschak [2013]).

Evidently, there are many components involved in reading comprehension, includ-

ing components related to the text, context, and reader (Snow [2002]). There are

also some factors which are specific to the participant that influence reading com-

prehension, for instance their working memory and attention (Nurjanah [2018]).

Furthermore, they need to have critical analytic ability as well as the ability to infer

(Snow [2002]). There are inter-individual as well as intra-individual differences in

the reading skills of children. Factors such as vocabulary and linguistic knowledge,

attention, visualization, inferring, reasoning, critical analysis and working memory,

motivation, understanding of the goals of reading, discourse knowledge, domain

knowledge and cognitive strategy development have an impact on inter-individual

differences, i.e. differences between subjects.

Typically, reading comprehension is assessed with question answering tests, recall

measures, oral passage reading tests, and cloze techniques (Fuchs et al. [1988]).

6



Chapter 2. Related Work and Background

Figure 1: The sources of knowledge involved in text reading and comprehension.
Source: Ehri [1998].

2.1.2 Factors influencing text difficulty

As discussed above, various components have an impact on text comprehension,

including the features of a given text which can make a text easier or more difficult

to understand (Snow [2002]). In order to build a model that can predict reading

comprehension, it makes sense to look into some findings as to which aspects of a

text have an impact on text difficulty or reading comprehension. This question has

been frequently discussed in research, especially with respect to children learning

to read and with the desire to locate difficulties in reading comprehension and to

improve how we teach children to read (e.g. Nurjanah [2018], Deacon and Francis

[2017], Iqbal et al. [2015]).

2.1.2.1 Lexical Properties

On the level of words, some factors regarding the ease with which they can be pro-

cessed are word length, word structure, word frequency and the part of speech (PoS)

of the word.

Longer words take more time to process. Processing time can be an indicator of

word difficulty, however, this effect is complex since it interacts with other factors

such as word frequency. This so-called word-length effect may be due to some in-

volvement of serial sub-lexical letter processing or due to low-level visual factors

that correlate with word length (Barton et al. [2014]).
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Chapter 2. Related Work and Background

Words that occur frequently in daily language use are easier to process than low-

frequency words. This might be due to the different kinds of reading strategies

described in section 2.1.1. High-frequency words can be retrieved by sight from

memory while low-frequency or completely unfamiliar words have to be decoded

letter by letter. If a word has to be decoded, comprehension might be impacted

since the decoding process in fluent reading runs in the background, as discussed

above. Marks et al. [1974] showed in their experiment that reading comprehension

is significantly higher when 15% of the words in a text are high frequency words as

opposed to low frequency words. Naturally, this effect will be bigger if someone has

a small vocabulary. Harkio and Pietilä [2016] showed that vocabulary breadth and

depth are good predictors of reading comprehension of Finnish learners of English in

lower levels of proficiency. Vocabulary breadth and depth in language learners are

positively correlated, meaning that learners who had a large vocabulary size also had

deeper knowledge of the words (Moghadam et al. [2012]). Since vocabulary size is a

key component of reading comprehension (Nurjanah [2018], Rodŕıguez-Ortiz et al.

[2021]), the lexical variation within a text should be considered when determining

whether the text is easy or hard to understand. The higher the type-token ratio in

a text is, i.e. the more diverse the vocabulary, the more difficult is the text (Klein-

Braley [1985]). These effects are interconnected: Stanovich [1986] has found a that

a greater vocabulary increases reading comprehension while better reading compre-

hension also leads to a bigger vocabulary. Similarly, Kieffer and Lesaux [2007] found

that there is a reciprocal relationship between vocabulary size and understanding

morphology in students.

Another component that enables a reader to read more proficiently is morphological

awareness. Morphemes are the smallest linguistic units that carry meaning. They

can convey lexical or semantic information of a word, while simultaneously serving

grammatical purposes. For instance, the word incomprehensible consists of three

morphemes: The prefix in- conveys negation, the suffix -ible denotes the part of

speech (in this instance, an adjective) and the morpheme -comprehen- is derived

from the base form comprehension. Morphological awareness enables the reader

to derive the meaning of new, morphologically complex words. Research suggests

that there is a correlation between morphological awareness and reading comprehen-

sion. The analysis of Deacon and Francis [2017] show that morphological structure

awareness, morphological decoding and morphological analysis account for 8% of

the variance in grade 3 and grade 5 children’s reading comprehension.

Another aspect that influences comprehension is part of speech. Jaan [1997] eval-

uated the relationship between frequency of Parts of Speech (PoS) and reading

comprehension and found that a higher percentage of verbs lead to texts being more

comprehensible and more interesting. They found that the most frequent PoS in
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texts were nouns but the impact of the percentage of nouns in a text was unclear.

Surprisingly, a high repeating rate of nouns had a negative impact on text com-

prehension, contradicting the hypothesis above which states that higher vocabulary

diversity makes texts easier to understand.

2.1.2.2 Sentence-level Properties

Kadayat and Eika [2020] showed that sentence length is a factor, since in their

study, highest comprehension was achieved with sentences comprising 16–20 words.

Students with good knowledge on grammar face less difficulty in reading compre-

hension tests (Nurjanah [2018]) and there is a correlation between a child’s level of

reading comprehension and their knowledge of syntax in spoken language (Brimo

et al. [2018]), however this effect interacts with vocabulary size (Rodŕıguez-Ortiz

et al. [2021]). Due to the significant effect of syntax knowledge on reading compre-

hension, it can be inferred that texts which are syntactically more complex will be

harder to comprehend. Some examples for sentences that might be more difficult to

understand are: Sentences with passive verb constructions, adverbial clauses with

temporal and causal conjunctions, center-embedded relative clauses and sentences

with three or more clauses (Zipoli [2016]). Syntactic complexity can sometimes be

governed by text genre. For instance, the argumentative essay requires fairly com-

plex syntactic structures since ideas have to be tied together and linked to opinions,

facts and logical reasoning to support arguments (Jagaiah et al. [2020]).

Syntactic ambiguity is another factor which can influence reading behavior and com-

prehension. While reading a sentence, readers generate hypotheses about the syn-

tactic structure of said sentence which are based on probabilities in general language

use. In so-called garden-path sentences, the structure of a sentence is temporarily

ambiguous. For instance, in the sentence The horse raced past the barn fell., the

word raced can be either a past-tense verb or a past-participle. Due to the probabil-

ities in grammar, a reader will most likely assume that raced is the main verb, i.e.

a past-tense verb. However, once they arrive at fell, they will have to correct their

initial hypothesis since it becomes apparent that fell is the main verb and thus,

raced is actually a past-participle (Hale [2001]). In such garden-path sentences,

readers slow down when the structure is disambiguated in favor of the less preferred

alternative (Arehalli et al. [2022]). This finding can be explained by surprisal the-

ory which proposes that the slowdowns are related to the unpredictability of words

(Hale [2001], Levy [2008]). Lexicalized surprisal, the words’s negative log-probability

(Levy [2008]) measures to which extent word’s occurrence was unexpected (Frank

and Thompson [2012]) based on grammatical probabilities. The higher the lexical-
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ized surprisal, the more unexpected the word. In our example above, the lexicalized

surprisal for fell would be high. Generally, the difficulty of a word is proportional

to its surprisal (Levy [2008]). The amount to which a reader slows down when

a sentence garden-paths can be referred to as the cost of a word. Schijndel and

Linzen [2021] found that the cost of a word predicted by language models under-

estimate human garden-path effects. For this reason, Arehalli et al. [2022] propose

to calculate syntactic surprisal in addition to lexicalized surprisal. While lexicalized

surprisal captures all factors that contribute to a token’s predictability (including

e.g. word frequency), syntactic suprisal only captures syntactic ones. As such, syn-

tactic surprisal refers to the degree of unexpectedness or surprise associated with a

specific syntactic structure within a sentence up until the level of PoS while lexical

surprisal, also known as word surprisal, refers to the degree of unexpectedness or

surprise associated with a specific word within a sentence.

2.1.2.3 Other Properties

There are various other factors that can impact text difficulty and reading compre-

hension. On the level of the entire text, they include cohesion and coherence, i.e.

the way a text is organized. In a coherent text, ideas are well connected to one

another and flow logically with the use of grammatical and lexical cohesive devices

Nurjanah [2018].

Furthermore, the medium on which the text is presented matters. Electronic text

is more challenging to comprehend than printed text, for instance due to the non-

linearity if we can scroll. Also, there are distracting factors in digital texts such

as hyperlinks, which might distract form reading (Snow [2002]). Another factor is

the knowledge and abilities of the reader. Texts vary in topic, genre and discourse

style. If the topic is outside of the reader’s domain knowledge and/or outside of the

reader’s interests, a text may be harder to understand to the reader than another

one (Snow [2002]).
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2.2 Eye movements while reading

Eye tracking makes it possible to record a participant’s eye movements while read-

ing. In order to understand how this works, one has to first consider the anatomy

and physiology of the human eye which is is illustrated in figure 2. The eye is com-

posed of an external layer (scelera and cornea) which gives the eyeball its white color

and refracts incoming light, an intermediate layer (pupil, iris and lens), and internal

layer (retina) which is the sensory part of the eye. Light that gets reflected from an

object enters the eye through the pupil, which appears black due to the absorption

of incoming light by the retina. The iris bundles the amount of light that enters the

pupil by contraction and dilation. The lens refracts the light to form a sharp image

on the retina, which is is covered by two kinds of photoreceptor cells: Cones, which

are color-sensitive, and rods, which are light-sensitive. The area of the retina with

the highest concentration of cones is the fovea. This is the central point for image

focus, where we have the highest acuity. In the periphoria, where the concentration

of cones decreases and the concentration of rods increase, image clarity decreases

([Kolb, 1995]).

Fovea and periphovea don’t only denote parts of the internal eye structure; they

also name different parts of the visual field which can be categorized into fovea,

parafovea and peripheria (see Figure 2). The eye icon in this figure indicates the

letter o as the location of fixation. The acuity is the highest for the three letters

within the fovea, which spans one degree of visual angle around the fixation point.

The image is less sharp but letters are still partly recognizable within ten degrees of

the fixation point (parafovea). In the rest of the visual field (peripheria), the image

is too blurred to recognize letters. Due to the small size of the fovea, the eye has to

move in order to perceive visual information, which enables eye tracking technology.

The purpose of eye movements is to bring an area of interest into the field of high

visual resolution.

Eye movements can be classified into two broad categories: Fixations and saccades.

A fixation is a short period of relatively stable gaze and a saccade is a rapid, precise

movement between one fixated area and another. Visual information can only be

processed during fixations since the quick movement during saccades suppresses vi-

sion. Despite the common subjective impression that ones eyes move continuously

accross the text when reading, the eyes actually jump from one area to another in a

series of fixations and saccades. Words in a text can receive one, multiple or no fix-

ations. It is believed that readers attempt to target the center of words but tend to

fall short such that the preferred viewing location is halfway between the beginning

and middle of a word (Rayner [2009]). Short and frequent words are more likely to
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(a) (b)

Figure 2: (a) Eye anatomy, source: Kolb [1995] and (b) parafoveal processing while
reading, source: Schotter et al. [2012]

be skipped than others. Information is being processed during fixations. The eyes

of a skilled reader move approximately seven to nine letters per saccade, although

such measures vary between individuals (Rayner et al. [2006]).

In left-to-right written languages such as German or English, saccades going to the

right or down to the next line are called progressive saccades. Regressive saccades to

the left/up, occur frequently during reading whenever a reader goes back in the text,

for instance when the reader faces processing difficulties and goes back to an earlier

part of the text to make sense of it. About 10%-15% of saccades are regressions

(Schotter et al. [2012]).

In video-based eye-tracking-while-reading experiments, infrared light illuminates the

pupil and gets reflected on the cornea. This is used to track eye position (Stuart

[2022]). Horizontal and vertical locations of fixation are recorded and the fixated

word on a screen is identified through the visual angle and distance to screen and

camera. Algorithms to classify eye movements into fixations and saccades can be

duration- or velocity-based. In research, fixation data is often further processed into

reading measures.

The process of visual perception in general, and visual perception while reading, is

complex. For instance, it is depicted in Figure 1b that the field of visual perception

while reading is shifted towards the right. This means that we can perceive a bigger

letter space to the right of the fixation point than to the left. While information

to the right of the fixation point is utilized for information processing, information

between the currently fixated line is not being utilized in reading. However, in differ-

ent tasks such as visual search, information below the currently fixated line is being

utilized (Rayner [2009]). There are many studies that research foveal and parafoveal

processing in order to gain insight in how the human eye processes languages. Back
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in 1980, the eye-mind assumption had been proposed: ”there is no appreciable lag

between what is being fixated and what is being processed” ([Just and Carpenter,

1980, 331]). However, in subsequent research, this theory has often been disproved.

Schotter et al. [2012] discuss multiple experiments that illustrate the interplay of

foveal and parafoveal processing. An experiment that masked letters in the fovea

showed that a great deal of information can be extracted from the parafovea if no

foveal information is available. If the letters in the fovea aren’t masked, the amount

of information retained from parafoveal vision decreases. A lack of parafoveal infor-

mation disrupts reading to a similar amount as a lack of foveal information. Research

suggests that parafoveal information is generally used to decide where to move the

eyes and foveal information is used to decide when to move the eyes. The topic of

parafoveal-on-foveal effects is being discussed controversially by different researchers

(Rayner [2009]). The human eye processes multiple words in parallel and on multi-

ple linguistic levels simultaneously: The decoding of a word takes place at the same

time as syntactic parsing (integration of a word into a phrase), semantic processing

and referential integration to the broader context.

Many studies show that there is a correlation between eye movement patterns and

cognitive processes. As such, eye movements also reflect difficulties readers have

while decoding and understanding a text (Rayner et al. [2006]). Reading mea-

sures such as the number of fixations and regressions respectively, and total fixation

time are an indicator of reading intensity which is related to reading comprehension

(Copeland and Gedeon [2013]). Pinnell et al. [1995] showed a correlation between

reading fluency and comprehension in fourth-graders. Reading fluency is character-

ized by accuracy, speed and prosody of oral reading (Pikulski and Chard [2005]).

Text difficulty affects fixation duration. For instance, when readers encounter words

that are difficult to identify (e.g. low-frequency words or homophones), garden-path

sentences or otherwise syntactically complex sentences, fixations get longer (Rayner

et al. [2006], Rayner [2009]). Fixation-durations are also longer during mindless

reading, when the eye continues to move over across the page despite thinking

about something unrelated to the text (Reichle et al. [2010]). Text difficulty also

affects saccade length. Saccades become shorter when syntactic ambiguity occurs

(Rayner [2009]). Regressions are more frequent in more difficult texts (Rayner et al.

[2006]). Short and high-frequency words are more likely to be skipped than long

and low-frequency words, however the effect is bigger with word length than word

frequency (Rayner [2009]). These effects are more pronounced in poor readers, chil-

dren that learn to read and dyslexic readers (Rayner et al. [2006].) However, they

are not universal, since there are great individual differences when it comes to things

like fixation duration, the span of characters the eyes move with each saccade etc.

(Rayner [2009]).
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2.3 Predicting cognitive processes from eye gaze data

Many studies have leveraged the connection between eye movements and cognitive

processes. While psycholinguistic research traditionally treats eye movements as the

dependent variable (model output) which is predicted from properties of the reader

or text, more recent research has treated eye movements as the independent variable

(model input) to infer characteristics of an individual or text (Reich et al. [2022]).

Henderson et al. [2013] and Boisvert and Bruce [2016] have predicted the view-

ing task from eye gaze data, namely scene search, scene memorization, reading

and pseudo-reading and free-viewing, object-search, saliency-viewing and explicit

saliency respectively. Kunze et al. [2013] predicted the document type from five dif-

ferent document types. There have been multiple approaches to identify the viewer

or reader (Lohr et al. [2020], Makowski et al. [2021], Jäger et al. [2019]) or dif-

ferent traits of the participant such as native language (Berzak et al. [2017]) and

personal traits such as extroversion, agreeableness, conscientiousness, neuroticism

and openness (Hoppe et al. [2018], Al-Samarraie et al. [2017]). Raatikainen et al.

[2021] have used eye gaze data to detect developmental dyslexia in children. Other

studies discriminate between cognitive states or cognitive load (Henderson et al.

[2013], Shojaeizadeh et al. [2019]).

In these studies, raw eye gaze data is typically converted into sequences of fixations

and saccades or further processed into reading measures such as first fixation dura-

tion, saccade length and so on. While some of these studies used only scanpath fea-

tures (Al-Samarraie et al. [2017]) or aggregated eye movement features (Raatikainen

et al. [2021]) as an input, the use of aggregated linguistic and gaze data has been

a promising approach to predict self-reported language skills, native language, sec-

ond language proficiency and task classification (Berzak et al. [2017], Berzak et al.

[2018], Mart́ınez-Gómez and Aizawa [2014], Hollenstein et al. [2021]).

Methods to predict aspects about a text or viewer form eye tracking data include

multivariate pattern analysis (Henderson et al. [2013]), random forests and decision

trees (Boisvert and Bruce [2016], Kunze et al. [2013]) and ridge regression (Kunze

et al. [2013]). More recently, approaches using deep learning approaches have been

successful to identify viewers (Lohr et al. [2020]) and readers (Jäger et al. [2019]).

However, it has been challenging to infer higher-level linguistic processes (Reich

et al. [2022]).

While there has been a good amount research been done that concerned itself with

predicting the behavior of the reader and features of the stimuli, there have only

been a few approaches to predicting a person’s cognitive state during reading, in-

cluding text comprehension (Ahn et al. [2020]).
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One of the first to attempt predicting reading comprehension from eye gaze data was

Underwood et al. [1990]. They used fixations as an input for a multiple regression

analysis to classify students into two groups (highly skilled readers and less skilled

readers). Ground truth labels were based on a separate reading comprehension test.

The authors were able to correctly classify 10 of 15 highly skilled readers and 12

of 15 less skilled readers if they used only mean fixation duration as an input. In

their experiments, fixation duration was a good predictor of reading comprehension,

but the number of fixations, regressive fixations, reading speed and vocabulary were

not. This is interesting since especially vocabulary is often named as an important

factor in reading comprehension (Nurjanah [2018], Rodŕıguez-Ortiz et al. [2021]).

The scores on their dataset were good but their model is not generalizeable to an

unknown dataset since they trained and tested their classifier on the same dataset

(Ahn et al. [2020]).

Augereau et al. [2016] and Lou et al. [2016] used eye gaze data to decode reading

behavior and predict an individual’s literacy skill with multivariate regression and

Support Vector Machines (SVM) with high accuracy. Multivariate regression pre-

dicted TOEIC scores with an error of 21.7 points after reading 3 documents and

the SVM classification algorithm managed to distinguish high-literacy skilled read-

ers from low literacy skilled readers with 80.3% accuracy. Similarly to Underwood

et al. [1990], both papers labeled participants as strong or less strong readers based

on a separate reading comprehension assessment, and not based on the stimulus

text used in the experiment.

Mézière et al. [2021] use linear regression to predict reading comprehension using

different combinations of classical reading measures and reading speed as input.

Makowski et al. [2019] develop a model that generates scanpaths in reading from

hand-crafted linguistic features of the stimulus text. While they achieved state of

the art performance in identifying readers using an SVM with Fisher kernel, they

were unable to accurately estimate text comprehension the same way.

Ahn et al. [2020] presented the first attempt to predict reading comprehension from

eye gaze data using deep neural networks. They use the raw scanpath, represented

by horizontal and vertical fixation location, fixation duration and pupil size as an

input to a Convolutional Neural Network (CNN) and a Recurrent Neural Network

(RNN). The best result for the prediction of reading comprehension was 65% using

the RNN.

As an additional contribution, Ahn et al. [2020] compiled one of the largest datasets

of gaze fixations during reading.1 Therefore, I picked it as one of the two datasets

I used to train my models with. A detailed description of the SB-SAT dataset can

1The data is publicly available at https://github.com/ahnchive/SB-SAT.
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be found in Chapter 4.

Reich et al. [2022] predict i) general reading comprehension, ii) text comprehension,

iii) subjective text difficulty and iv) whether a participant is a native speaker of

the text they read (i.e. English) from a sequence of fixations and a stimulus text.

General reading comprehension is based on the results of a reading proficiency test

while text comprehension is based on the answers to comprehension questions be-

longing to a certain text. Thus, the latter objective is the same as mine. Reich

et al. [2022] were the first to approach this problem with a sequence approach that

incorporates linguistic features of the stimulus text along with raw fixation data

and aggregated reading measures. Linguistic features include word length, lexical-

ized surprisal, part-of-speech (PoS)-tags, Simplified PoS-Tags, Named Entity Tags,

a Content Word feature, the number of syntactic dependents to the left, the num-

ber of syntactic dependencies to the right and the distance to the syntactic head.

The authors present BEyeLSTM, a deep neural network composed of four subnets:

FixNet, POSNet, ContNet and GSFNet. The first three subnets are composed of

two BiLSTM layers and two fully connected layers each while GSFNet consists of

a dropout layer and a single dense layer. The output of the fours subnets is then

concatenated and used as an input to a final dense layer. The different subnets take

different types of data as their input. FixNet processes the sequence of fixations of

the scanpath (x-axis, y, axis, fixation duration and pupil size for each datapoint).

POSNet processes simlified PoS-features and ContNet uses the content word feature

as an input. All other linguistic features and the reading measures get aggregated

and are fed into GSFNet. Reich et al. [2022] use the dataset compiled by Ahn

et al. [2020]. Both papers evaluate their model in three cross-validation settings.

In the New page-setting, individual pages are held out, in the New book -setting,

entire texts (=5-6 pages) are held out and in the New reader -setting, the data from

entire readers is held out during training. Results were most promising in the New

Page evaluation setting, followed by the New Reader setting. The New Book setting

yielded the lowest results, especially in the Text Comprehension and Text Difficulty

task. Overall, scores were best in the General Reading comprehension task and in

identifying native speakers. Predicting text comprehension was challenging in all

evaluation settings. Thus, a desideratum would be to find ways to improve the

prediction of text comprehension especially and to find ways to generalize to new

books. Reich et al. [2022] currently hold state of the art results in all tasks including

the text comprehension task. The code can be found online.2

2https://github.com/aeye-lab/etra-reading-comprehension
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3 Problem Setting

I study the task of inferring text comprehension from a scanpath (i.e. a sequence

of fixations) S recorded during the reading of a stimulus text T.1 Text comprehen-

sion is defined as a reader’s comprehension level of the stimulus text at the time of

recording. The dataset with recordings from N subjects reading M texts is com-

prised of a set D = {(S1,1, T1, y1,1), ..., (SN,M , TM , yN,M)}, where Si,j is the sequence

of fixations that has been obtained from the i -th subject reading text Tj; yi,j is the

corresponding target label.

The target label is solely based on the scores readers achieved with reading com-

prehension questions related to the text at hand. This means that the label is not

derived from any external reading comprehension assessments. I binarize the num-

ber of correctly answered questions into two categories, depending on whether the

achieved score is higher or lower than the median score for the current text.

Since the task at hand is framed as a binary classification task, the model’s perfor-

mance can be evaluated with an AUC (area under the ROC-curve). The ROC-curve

(receiver operating characteristic) is a probability curve where the True Positive Rate

(TPR) is plotted on the y-axis and the False Positive Rate (FPR) on the x-axis.

The TPR and FPR are calculated as follows:

TPR/Recall/Sensitivity =
TP

TP + FN

FPR =
FP

FP + TN

TP, TN, FP and FN are True Positives, True Negatives, False Positives and False

Negatives. The ROC can be observed if the decision threshold is altered and the

AUC is an aggregated measure of performance for all possible classification thresh-

olds. The bigger the area under the ROC-Curve, the better the model’s predictions.

1Since this thesis is based on the work of Reich et al. [2022], many parts of the problem setting
definition have been taken from their paper.
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In this project, I’m working with two datasets: 1) The Stony Brook SAT read-

ing fixation dataset (SB-SAT) with English stimulus texts and 2) the Individual

Differences Corpus (InDiCo) with German stimulus texts.

4.1 Stony Brook SAT reading fixation dataset (SB-SAT)

The SB-SAT dataset was created with the aim of developing models that can pre-

dict a reader’s level of text comprehension by Ahn et al. [2020]. Eye movements

of participants were recorded while they read texts and answered comprehension

questions. Additionally, participants filled out self-evaluation questionnaires. The

data is publicly available on GitHub.1

4.1.1 Participants

Ahn et al. [2020] tested 95 undergraduate students (66 female, 29 male). The par-

ticipants reported diverse native languages, which might have implications for the

readers’ linguistic processing of the English stimulus texts. 66 identified as native

English speakers, 17 as native Chinese speakers, two participants each as native

speakers of Korean, Spanish, Mandarin and Punjabi and one participant each re-

ported Italian, Russian, Cantonese, Turkmen and German as their first language.2

Overall, this corpus tested participants with various first languages, with English

native speakers as a clear majority.

1https://github.com/ahnchive/SB-SAT
2One person noted down both English as well as Chinese as their first language.
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4.1.2 Experiment Design

4.1.2.1 Technical Set-up

The authors reported the following specifics about the technical setup of their ex-

periment: The readers’ eye positions were recorded with an EyeLink 1000 from SR

Research at a sampling rate of 1000 Hz. The reading screens were displayed on a

19-inch flat-screen CRT ViewSonic SVGA monitor with a resolution of 1024 × 768

pixels and a refresh rate of 100 Hz. The monitor subtended a visual angle of 30◦×
22◦, with the width of three characters spanning approximately 1◦.

4.1.2.2 Procedure

After calibration, participants read the four SAT passages described in 4.1.2.3. Each

text passage was fully displayed on either five (Dickens, Northpole) or six (Flytrap,

Genome) screens. Participants were able to turn to the next or previous screen or

to go to the corresponding comprehension question. After every text, participants

answered five comprehension questions and filled out the self-evaluation question-

naire. There was a time limit of five minutes per reading page but there were no

time constraints for the screens with the questions. A drift-correction was performed

before each trial and re-calibration was done between the texts when necessary.

4.1.2.3 Stimulus texts

In this dataset, there are four stimulus texts: Dickens, Flytrap, Genome and North-

pole. All texts are practice passages for the criticical reading part of the SAT

(Scholastic Assesment Test), a standardized test used as entrance exam to colleges

and universities.3 The texts vary in difficulty and genre: Flytrap and Genome are

technical and Dickens and Northpole are excerpts from works of fiction.4 More in-

formation on the content of the texts can be found in the Table 16 in the appendix.

Texts 1 and 4 (Dickens and Northpole) are displayed on 5 screens each while texts 2

and 3 (Flytrap and Genome) are displayed on 6 screens each. The general impression

I had is that texts 1 and 4 are easier to read than text 2 and 3, both because of the

topic and writing style. This is reflected in the text length and mean word length

(see figure 3). Text 2 has more words than the other texts, but fewer sentences,

3https://collegereadiness. collegeboard.org/sat/practice
4Dickens is an excerpt of Carlos Ruiz Zafón’s Angels Game (2008) and Northpole is an adaption
of The Balloonist (1976) by Donald Heiney who wrote under the pseudonym MacDonald Harris.
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meaning that it has longer sentences than the other texts. Text 3 has more shorter

sentences. The mean word length per text is biggest in the two technical texts, which

will probably have implications on the text difficulty as well (see Section 2.1.2).

Figure 3: Text length & mean word length of texts. Text IDs correspond to the
texts as follows: Dickens (1), Flytrap (2), Genome (3), Northpole (4).

Not only text and word length differ from text to text, but also the complexity that

comes with the writing style. For instance, in Dickens, there is a lot of direct speech

and short sentences. In Flytrap, there are many ellipses in the form of brackets or

dashes (e.g. in the following sentence: First, the Flytrap encodes the information

(forms the memory) that something (it doesn’t know what) has touched one of its

hairs). Another aspect that might lead to lower reading comprehension skills is the

familiarity of the reader with the words in the text. Texts 2 and 3 contain many

words that readers might not be familiar with (e.g. transgenic, Biotherapeutics,

microcolulombs etc.). Furthermore, there are some formal features of the texts

which might affect reading comprehension. The majority of the screens ends in the

middle of a sentence. Sentences being cut off at the end of the screen can disrupt

the natural flow of reading (see Figure 4).

Another characteristic of the text might have been confusing for the reader: The

unusual feature placement of punctuation marks in direct speech. For instance, in

Genome, it says: Welcome to the world of ”pharming,” in which simple genetic

tweaks ... instead of Welcome to the world of ”pharming”, in which simple genetic

tweaks .... It is possible that this disturbed the reading flow of the participants.

My hypothesis is that such aspects about the text on various linguistic and formal

levels have an influence on reading comprehension and can thus been used for my

task of predicting reading comprehension from eye gaze data. I will describe my

strategy to encode different aspects of the stimulus text as features in Section 5.1.1.2.
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(a) (b)

Figure 4: SB-SAT: Examples of a reading and a question screens from the SB-
SAT dataset. (a) Dickens, screen 4 and (b) Dickens, question 3. Source:
github.com/ahnchive/SB-SAT.

4.1.2.4 Comprehension Questions

For each text, there are five multiple choice questions that have four possible answers

each, one of which being the correct one. An example of a question screen is depicted

in Figure 4. The questions range from general inquiries about the theme of the text

to more specific questions regarding textual details. Some of the questions also

require the reader to engage in critical thinking and infer meaning beyond what is

explicitly stated in the text. It is worth noting that the scores resulting from the

comprehension questions don’t only reflect how well the reader understood the text,

but also how well they understood the question. For instance, question 2 to text

Genome5 contains terms that not all readers might understand, especially since not

all readers were native speakers of English. Question 5 for Dickens6 shows best that

the quality of the questions have an effect on the scores as well: The wrong answers

were not chosen well which lead to only 17 participants answering this question

correctly, even though the other four questions for this text had some of the highest

numbers of correct answers. This suggests that readers understood the text Dickens

well but didn’t understand question 5 for that text well. While keeping these possible

5Genome, question 2: The authors attitude towards pharming is best described as one of: 1)
apprehension, 2) ambivalence, 3) appreciation 4) astonishment.

6Dickens, question 5: Which statement best characterizes the relationship between Sempre and
Charles Dickens? a) Sempre models his own writing after Dicken’s style, b) Sempre is an
avid admirer or Dicken’s work., c) Sempre feels a personal connection to details of Dickens’s
biography, 4) Sempre considers himself to be Dickens’s most appreciative reader. Answer c was
counted as the correct answer, but many readers answered b (n=63) or d (n=11), which made
sense as well with the given text.
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pitfalls in mind, I will nevertheless use the number of correctly answered questions

as my target variable.

The participants’ answers to the comprehension questions is saved within the fixation

dataframe, along with the correct answer to the respective question. As can be seen

in Figure 5, the number of correctly answered questions by the different participants

range from zero to five in all texts which means that this variable is suitable for

a prediction task. The median is two for Genome and three for all other texts,

which shows that readers had the most difficulty answering questions for Genome.

The interquartile range is the biggest for Northpole and Dickens, meaning that the

middle 50% of the scores are spread out the most in these texts. Due to the unequal

distribution of the number of accurately answered questions, a model may be biased

towards predicting the more frequently occurring scores, particularly in the case of

the Genome dataset where the interquartile range is the smallest.

4.1.2.5 Self-evaluation questionnaire

In the self-evaluation questionnaire which followed each text, participants answered

the following questions on their level of confidence while answering questions and

on their level of pressure while reading the passage. They had to rate the subjective

difficulty of the texts and indicate how interesting it was for them. Furthermore,

they answered whether they had read the passage before and how familiar they were

with the topic of the text passage. The mean scores of the participants’ answers

to some of these questions can be found in Figure 5. Dickens was perceived as

the most interesting and least difficult text. It was recognized the most (n=4).

The more technical texts Flytrap Genome received similar mean scores, except that

people found the latter text more interesting. Northpole received the highest score

for difficulty despite not being a technical text, which tend to be more complicated.

However, the style Northpole is posh and old, which probably makes it more difficult.

It is interesting that the level of confidence in having given the correct answer varies

a lot between the text, even though the median of the number of correctly answered

questions is the same in three texts (see Figure 5).

It would be very interesting to incorporate such self-evaluation questions into a

model, but since they are only available for this dataset and not for InDiCo, I will

refrain from using them in my architecture.
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(a) (b)

Figure 5: (a) SB-SAT Distribution of correctly answered SB-SAT text comprehen-
sion questions by text and (b) results of the self-evaluation questionnaire
for SB-SAT.

4.1.3 Fixation Data

The raw gaze data was parsed into a fixation report containing the sequence of

fixations with the default algorithm by Eyelink which has a velocity threshold of

30◦/sec and an acceleration threshold of 8000◦/sec2 [Ahn et al., 2020]. The fixation

report7 is publicly available on Github as a csv-file. The fixation report contains one

fixation per line and the interest areas are on the word level. It contains the sequence

of fixations for every participant and every text with the following variables:

• Horizontal and vertical coordinates of the fixation: CURRENT FIX X, CUR-

RENT FIX Y

• Pupil size of the current fixation: CURRENT FIX PUPIL

• Duration of the current fixation: CURRENT FIX DURATION

• Interest area ID, label, pixel area, run id and dwell time of the current fixation:

CURRENT FIX INTEREST AREA ID,

CURRENT FIX INTEREST AREA LABEL,

CURRENT FIX INTEREST AREA PIXEL AREA,

CURRENT FIX INTEREST AREA RUN ID,

CURRENT FIX INTEREST AREA DWELL TIME

7The file name of the fixation report is 18sat fixfinal.csv.
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• Previous saccade direction, angle, amplitude, average velocity; whether or not

the previous saccade contains a blink and the blink duration:

PREVIOUS SAC DIRECTION,

PREVIOUS SAC ANGLE,

PREVIOUS SAC AMPLITUDE,

PREVIOUS SAC AVG VELOCITY,

PREVIOUS SAC CONTAINS BLINK,

PREVIOUS SAC BLINK DURATION

Additionally, there are variables to identify the subject, book and screen as well as

the fixations of the question screens and the answers given for the comprehension

questions along with the correct answers. The fixation report contains 463’564

fixations, 263’032 of which belong to reading screens. If all subjects had looked

at all screens8, fixation data should be available for 2090 different combinations of

subjects and text screens.9 However, there are only 2054 combinations of screens

and participants because some screens are missing for some participants, e.g. for

subject 3, there is only fixation data available for three screens for Northpole instead

of six. This could either mean that participants skipped screens frequently or that

Ahn et al. [2020] deleted some of the sceens from the dataset. The latter option

would be unfortunate since I’m interested in using the sequence of fixations for my

experiments.

8Screens are originally called ’pages’ in the SB-SAT dataset
9Dickens and Northpole have 5 screens each, Flytrap and Genome have 6 screens each. Therefore,
fixation data should be available for 95 subjects * 22 screens = 2095.
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4.2 Individual Differences Corpus (InDiCo)

The Individual Differences Corpus (InDiCo) was collected by the Digital Linguistics

Group at the University of Zurich with the goal to (1) research individual differences

in reading, (2) investigate within-subject differences of reading at different daily

conditions as well as to (3) assess the cross-methodological measurement reliability

in individual differences between eye tracking and self-paced reading experiments.

In order to meet this goal, the participants took part in four experimental sessions,

two of which were eye tracking (ET) sessions and two of which were self-paced-

reading (SPR) sessions. Since I’m only working with the eye tracking data, I will

mostly talk about the eye tracking experiments in this section.

I participated in the collection of the data but not in the design of the experiments.

4.2.1 Participants

62 native (Swiss) German speakers (36 female, 26 male) were enrolled in this exper-

iment. However, for 5 of those 62 participants, no eye tracking data is available10

because they only took part in self-paced reading sessions and 6 participants only

completed one of two eye tracking sessions11. In my experiments, I was therefore

only able to consider the 57 participants who completed at least one eye tracking ses-

sion. In contrast to SB-SAT, where some of the participants weren’t native English

speakers, all participants of InDiCo are native German speakers.

4.2.2 Experiment Design

4.2.2.1 Technical set-up

In the eye tracking experiments, eye movements were recorded with an EyeLink

Portable Duo from SR Research. A recording PC was operated by the experimenter

to control the camera while the experiment was controlled by a presentation PC.

Stimuli were displayed in a presentation window with a resolution of 1280 x 1024

px on the presentation display which was positioned 60 cm away from the eye. The

distance between the camera and the eye was 45 cm. A keyboard connected to

the presentation PC was used by the participants as a response device to answer

questions. A chin rest and forehead rest was used in order to keep the head position

10Participants 40, 44, 45, 62, 63
11Participants 9, 15, 17, 24, 48, 51

25



Chapter 4. Datasets

constant.

4.2.2.2 Procedure

In the beginning of the first session, participants were briefed about the experiment

and asked to sign a consent form which they signed in the beginning of all of the

subsequent sessions as well.

In three of the four session, participants completed a number of psychometric tests

before reading text passages and answering reading comprehension questions after

each passage. In each session, participants read four of the sixteen texts described in

section 4.2.2.3. Each text was presented exactly once to every participant in either

an eye-tracking or a self-paced reading session. However, since I’m only considering

the eye tracking part of the data and not the data acquired in the self-paced reading

experiments, in my dataset, every participant will have read only 8 of the 16 texts.

The distribution of the texts in my version of the InDiCo dataset can be seen in

Figure 6 Each of the text passages was displayed on five screens.

In the eye tracking sessions, participants were first instructed to sit close to the

table with a straight back and both feet on the ground such that they were able

to hold the position for the duration it took them to read the four text passages.

Then, the table height was adjusted. Before the camera set up, participants were

asked to answer a number of self assessment questions that were displayed on the

presentation monitor (e.g. to assess their level of tiredness using the Karolinska

Sleepiness Scale). After the questions, the camera was set up and calibration was

done. Then, participants were left to read the text passages. Each text was preceded

by self-assessment questions and followed by reading comprehension questions. A

drift-correction was performed before each trial which also functioned as a fixation

dot such that each trial started at the beginning of the first word on the page.

Re-calibration was done between the texts when necessary.

4.2.2.3 Stimulus texts

The stimulus texts for this dataset were taken from mock exams of the TestDaF Test

Deutsch als Fremdsprache (TestDaF [2000]). TestDaF is a standardized language

test for foreign students or researchers wishing to study or work at a German Uni-

versity. It is administered world-wide and is comparable to the international English

Language Testing System (IELTS) and the Test of English as a Foreign Language

(TOEFL). The exam consists of four parts: Reading, listening, writing and speak-

ing. The reading task has multiple sub-tasks, one of which consists of reading a

26



Chapter 4. Datasets

text passage and subsequently answering a number of multiple choice questions to

assess reading comprehension. The text passages used for this sub-task were written

by journalists, university lecturers and scientists. They were originally published in

journals, magazines and textbooks (TestDaF [2000]).

The text names, titles, a description of the topic and the genre I assigned to them

can be found in the appendix (see Table 15).

Figure 6: Number of subjects who have read each text in my version of the InDiCo
dataset. The number varies because I’m only using a subset of the com-
plete dataset consisting of data from an eye tracking experiment and a
self-paced reading experiment. In the orignial dataset, every participand
read 16 texts. I’m only using the data from the eye tracking experiments.

4.2.2.4 Comprehension Assessment

After every text, participants answered 10 comprehension questions taken from the

original TestDaF mock exam belonging to the text passage. Half of the questions

were multiple-choice questions and half of the questions could be answered with yes,

no or text doesn’t say. Unlike in the SB-SAT experiments, participants were not able

to go back to the text once the questions were presented. This strategy provides a

better measure for text comprehension at the time of reading. Figure 7 illustrates

the distribution of the correctly answered questions across all texts. Most of the

participants were able to answer the questions fairly well but there was still some

variation between subjects and texts which indicates that this label is likely to be

suitable for classification.
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Figure 7: Distribution of the number of correctly answered comprehension questions
for the InDiCo dataset.

4.2.2.5 Questionnaire

In every session, participants were asked to answer a number of questions about their

condition. The questions surrounded the following topics: Alcohol consumption, eye

sight, handedness, hours and sleep as well as medical diagnoses. Participants were

also asked to indicate their age and gender. They answered the questions using the

keyboard before the trial started.

4.2.2.6 Psychometric Tests

A number of psychometric tests were conducted with every participant in order to

assess their cognitive abilities. These tests were used to assess verbal and non-verbal

cognitive control (Simon & Stroop, FAIR-2), verbal and non-verbal working memory

(sentence span; operation span, memory updating, spatial short-term memory),

verbal and non-verbal intelligence quotient (RIAS, MWT-B) as well as lexical an

non-lexical reading fluency (SLRT II). It would be very interesting to use the scores

from these tests as input features but as the SB-SAT dataset does not have them,

I didn’t include them for the classification of the SB-SAT dataset, either. Thus, I

will not go into further detail regarding the psychometric tests.
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4.2.3 Fixation Data

After data collection for the individual differences corpus was concluded, I created

a fixation report for all participants with the DataViewer software provided by SR

Research. There are many variables available to be exported via DataViewer. In

order to ensure that I can process the InDiCo fixations in the same pipeline as the

SB-SAT fixations, I included all the same variables in this data that are available

in the SB-SAT fixation report (see Section 4.1.3), and a few extra variables in case

I needed them later. We collated data from 57 participants who participated in

eye-tracking sessions. In every session, they read four texts that were written on

5 screens. However, not all participants participated in both eye tracking sessions.

Thus, there are fixations from 2160 screens in this raw fixation report. There is

one fixation per line and the interest areas are on the character level. The fixation

report gets exported as a tab-separated txt-file.
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In this chapter, I will describe my method, including how I preprocessed the stimulus

texts and fixation data, engineered features, merged the fixation data with the

linguistic features and extracted the target variable. Additionally, I will describe

the network architecture. The workflow for the preprocessing steps is depicted in

Figure 8. The code can be found in my GitHub repository.1 I used the existing

preprocessing code for the InDiCo dataset as a basis for annotating the stimulus

texts, processing fixations and merging fixations with the linguistic annotations.2 I

extended this code to include additional features and to account for the SB-SAT

dataset and new participants of the InDiCo dataset.3 I will declare which parts of

my code were taken from existing code and which parts I implemented myself within

my scripts as well as within the text of this thesis.

5.1 Data preprocessing and feature engineering

Data preprocessing encompasses the stimulus texts, fixation data and the target

label. My goal was to create a pipeline for data preprocessing and model training

that works for both the SB-SAT and the InDiCo datasets. However, the raw data

of the two datasets was available in different formats, thus the pipeline also includes

some dataset-specific prepossessing steps which bring stimulus texts, fixation data

and target variable into the same format.

1https://github.com/l-stahlhut/inferring-reading-comprehension
2https://github.com/hallerp/individual-differences
3I obtained the code before the data from all participants of the InDiCo was available. The
introduction of new participants required me to account for new types of alignment problems
when merging fixation reports with linguistic features (see Chapter 5.1.3).
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Figure 8: Methods overview: Preprocessing of stimulus texts and fixation data, fea-
ture engineering and classification using a BiLSTM. Green represents a
python script.

31



Chapter 5. Methods

5.1.1 Stimulus texts

The stimulus texts for the InDiCo dataset are available on GitHub as txt-files.2

There is one file per text screen and one sentence per line. The stimulus texts for

the SB-SAT dataset are available as png-files (Ahn et al. [2020]) and as a single tsv-

file Reich et al. [2022] that contains one sentence per line along with the information

of which text and screen it belongs to.

5.1.1.1 Data cleaning and preprocessing

The first step in preprocessing the stimulus texts is to bring the SB-SAT data into

the same format as the InDiCo dataset (one file per screen, one sentence per line).

I worked this way around since my preprocessing code is built on the basis of the

existing preprocessing code for the InDiCo dataset. To create the individual files

per screen from the single tsv-file, I split the sentences by text- and screen-ID and

wrote the sentences of all screens to it’s separate txt-file.

5.1.1.2 Linguistic Annotation

Once in the same format, the texts of the two datasets were ready to be enriched with

linguistic annotations which are based on the findings presented in Chapter 2.1.2. A

factor which had to be considered before annotation is that sentences are frequently

cut off by the end of a screen in the SB-SAT dataset since they carry over to the next

screen. I dealt with this issue during parsing and annotating the stimulus texts: I

manually mapped the cut off sentences to the full sentences in a json-file. For the

annotation, the full sentences were considered, e.g. for dependency parsing.

The script to annotate stimulus texts is based on a script from the original InDiCo

preprocessing code.2 I adapted the code to include more linguistic features and

extended such that it also works for the English stimulus texts of the SB-SAT

dataset. The original InDiCo annotation code provides the overall structure of the

code and the following functionalities: loading the text screens, parsing the German

stimulus texts using SpaCy (Honnibal and Montani [2017]), annotating the texts

with dependency tags (number of syntactic dependants on the right and left of the

word (n rights, n lefts), the dependency tag deps, dependent tokens on the right

and left (rights, lefts) and distance to the syntactic head) and with lexical and

syntactic surprisal. It also annotates words with frequency scores but I did not use

those scores and opted to calculate them using the wordfreq library (Speer [2022]).

The texts are annotated on the word level and results are written to a csv-file.
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The code keeps track of the text-ID, screen-ID, sentence-ID and word-ID which is

very important since the csv files with the annotated texts later have to be merged

with the fixation data which contains fixations on the word level. The original

code also contained a class SurprisalScorer which I could use to calculate syntactic

surprisal on the English texts after adapting the model. All other functionalities

were implemented by myself.

I introduced some external data resources in this code, namely GermaNet (Hamp

and Feldweg [1997], Henrich and Hinrichs [2010]), a semantic wordnet for German

similarly to WordNet, and previously calculated surprisal scores for the SB-SAT

dataset obtained from Reich et al. [2022]. As mentioned above, annotations were

made on the word level whenever possible since the interest areas of the fixation data

which will be used as a model input are also on the word level. German stimulus texts

were parsed with SpaCy’s transformer model (de dep news trf); the large model

(de core news lg) was used to obtain semantic similarity vectors and Named Entity

features since these features are not available in the transformer model. For English

stimulus texts, the transformer model (en core web trf) was used to parse texts and

the large model (en core web lg) was used to obtain semantic similarity vectors.

In cases where annotations could only be made on the sentence or text level (e.g.

sentence length and text genre) words of the respective sentence or text all received

the respective label.

The following features were added by me:

I calculated word length in number of characters, sentence length in number

of words and text length in number of sentences. Additionally, I calculated the

mean word length in each sentence by dividing the number of words in a sen-

tence by the number of characters. I obtained PoS-tags and Named Entity types

and -tags using SpaCy. Following the approach of Reich et al. [2022], I collapsed

the PoS-tags into the simplified POS-tags nouns (N), adjectives/adverbs (A) and

function words (FUNC) and I also implemented their content word feature. A

mapping from the PoS-tags to the simplified PoS-tags and the content word tags

can be found in Table 1.

Since the consensus in the literature states that vocabulary knowledge is a funda-

mental factor in text comprehension, I added some features which are supposed to

capture the lexical variation within a text and the frequency of the words used in

a text are in every day language. I calculated lemma frequency with the python

library wordfreq4 after lemmatization using SpaCy. I also added a feature which

indicates whether a word has a more frequent synonym or homonym in Word-

Net or GermaNet depending of the language of the input text. I did this by looking

4https://pypi.org/project/wordfreq/
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up all synonyms and homonyms of a word in the respective wordnet and calculat-

ing word frequencies of all candidate words with the wordfreq library and returning

True if any of the candidate words were more frequent than the word that occurs

in the text. I assume that more complicated texts will have a greater proportion of

words that have more frequent synonyms or homonyms. To further measure lexical

diversity, I calculated the token type ratio of lemmas in the text (lemma TTR)

the ratio of content lemmas in the text (content lemma TTR) and the ratio of

function words in the text (function lemma TTR). For every word, I addition-

ally calculated the TF-IDF score (Term Frequency-Inverse Document Frequency)

to weigh the importance of the term. Term Frequency (TF) measures the frequency

fo a word within a document. Inverse document frequency (IDF) measures the sig-

nificance of a term in the entire collection of documents. The TF-IDF score is the

product of the TF and IDF scores, thus it gives more weight to terms that occur

frequently within a document but less frequently in the collection of documents.

TF =
number of times the term appears in the document

number of terms in the document

IDF = log

(
number of documents

number of documents containing the term

)
TF-IDF = TF*IDF

On the level of sentences, I calculated lexical density, i.e. the percentage of con-

tent words in a text. I also calculated lexical density on the level of the entire text.

As a proxy for syntactic ambiguity, I calculated the pronoun-to-noun ratio and

the determiner-to-noun ratio in subsequent sentences. The rational behind this

feature is that if there are significantly more nouns than determiners or pronouns

in the preceding sentence, the syntactic relations are more likely to be ambiguous.

For all consecutive sentences, I also calculated Semantic similarity between ad-

jacent sentences using SpaCy and adjacent sentence overlap, i.e. the lexical

overlap between consecutive sentences to capture aspects such as repetition, expan-

sion, elaboration and coherence. For each sentence, I also annotated whether it was

in active voice or passive voice. However, it should be noted that my function

to recognize passive voice depends on the existence of a passivized subject since it

is based on SpaCy’s dependency tags. It does not capture sentences in passive voice

without a passivized subject. For instance Die Katze wird gejagt doesn’t get recog-

nized by my voice detector but Die Katze wird vom Hund gejagt gets recognized.

The tools to calculate syntactic surprisal and lexicalized surprisal for InDiCo

were already present in the preprocessing code. I adapted the model to calculate

syntactic surprisal for English stimulus texts and took the surprisal scores from Re-
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ich et al. [2022].

In Section 2.1 I mentioned that text format can have an influence on text compre-

hension. A noticeable difference in the two datasets is that the SB-SAT dataset

contains many screens (n=15) with a cut off sentence at the end of the page. This

might confuse or irritate the reader. I annotated the words of the affected sentences

with the label sentence is cut off. The sentences in the InDiCo dataset are never

cut off.

Lastly, it was established in Chapter 2.1 that text genre can have an impact on

text difficulty and reading comprehension. For the annotation of genre, I initially

asked ChatGPT to assign a genre to each text without providing categories to speed

up the process. I then went back in for a manual correction and decided to use the

genres fiction and scientific for the texts in the SB-SAT dataset and the genres

scientific and informative for the InDiCo dataset. The stimulus texts in the InDiCo

dataset all have scientific context (see Section 4.2.2.3). However, not all of the texts

originate from academic journals, therefore they vary in style. I made the decision

on which genre a certain text belongs to with respect to where the passage was orig-

inally published at, the detail in which scientific experiments were described and the

general tone of the text.

I annotated the texts with multiple other features, for instance with morphological

features from SpaCy. However, I will not further elaborate on annotations that I

didn’t end up using as features.

I annotated the stimulus texts of both datasets with all features and saved the to-

kenized and annotated texts as csv-files to later merge with the fixation report on

the text ID, screen ID and word ID.
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PoS-Tag Simplified PoS-Tag Content word Description of PoS Tag

ADJ A True adjective

ADP FUNC False adposition

ADV A True auxiliary

AUX FUNC False auxiliary

CCONJ FUNC False coordingating conjunction

DET FUNC False determiner

INTJ FUNC False interjection

NOUN N True noun

NUM FUNC False numeral

PART FUNC False particle

PRON FUNC False pronoun

PROPN N True proper noun

PUNCT FUNC False punctuation

SCONJ FUNC False subordinating conjunction

SYM FUNC False symbol

VERB V True verb

X FUNC False other

Table 1: PoS-Tags and simplified PoS-tags. I tagged the texts with spaCy’s coarse-
grained PoS-tags which follow the universal dependency POS tags. To
obtain simplified PoS-tags, I followed Reich et al. [2022] and collapsed the
tags into four categories: function words (FUNC), nouns (N), full verbs
(VERB) and adjectives/adverbs (A). Words in the content word categories
(N, A, VERB) are marked as content words while function words are not.
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5.1.2 Fixation Data

5.1.2.1 Data cleaning and preprocessing

Preprocessing raw eye tracking data traditionally consists of denoising data (e.g.

removing blinks), event detection (grouping samples in fixations and saccades) and

the computation of reading measures based factors such as gaze duration, re-reading

time etc. However, as I described in sections 4.1.3 and 4.2.3 I didn’t start out with

the raw eye tracking data but with the fixation reports generated using the algorithm

in the DataViewer software by SR Research. Ahn et al. [2020] exported a fixation

report with the reading measures listed in chapter 4.1.3. I exported a fixation report

with the same variables from the EDF-files of the Individual Differences Corpus. The

tasks of denoising and event detection were thus already taken care of. Nevertheless,

it was necessary to perform some data cleaning and re-arranging on the fixation

reports before calculating reading measures and merging the fixation data with the

lexical features.

SB-SAT fixation data

The SB-SAT fixation report contains the fixations for the reading and question

screens from all participants and all texts, one fixation per line with interest areas

on the level of words. This data was likely preprocessed already, therefore it re-

quired less extensive preprocessing than the fixation report from the InDiCo. Some

adjustments were nevertheless necessary: Firstly, I filtered out all lines belonging

to a question screen, such that I was only left with screens belonging to reading

trials. Then, I added columns for an anonymized subject ID and an ID for the

session, which is always 1 in this dataset, since they are also present in the InDiCo

dataset. I extracted the subject ID from a column in the data frame containing

the recording session. I then deleted lines with fixations outside of interest areas.

This includes fixations outside of any lexical material as well as fixations on words

which control the flow of the experiments, e.g. buttons to go to the questions or

the next or previous page. I corrected the datatypes in certain columns if necessary

and I dropped and renamed some columns in order to achieve the same formatting

that I ended up with with the prepossessed InDiCo fixation data described below.

Finally, I renamed, ordered and dropped some columns and I sorted the dataframe

by subject ID, session ID, text ID and screen ID but not by word in screen ID since

we’re interested in the sequence of fixations and want to preserve regressions.

InDiCo fixation data

The fixation report I obtained from SR Resarch’s Dataviewer algorithm is a tsv-file

that contains one fixation per line with interest areas on the level of characters.
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Data cleaning and mapping the interest areas to the level of words was necessary

since the linguistic annotations I will merge the fixation report with are on the word

level.

Data cleaning. I read the tsv-file containing the raw fixation report into a dataframe

and performed some data cleaning. Firstly, I filtered out rows that only contained

NA values and the rows containing the screen ID 0 because those are not reading

screens. The raw fixation report included several log messages. This lead to multiple

cases where the desired information was not in the right cell. An example of such

a log message is depicted in table 2. The subject answered n (no) to the question

of whether or not they had had alcohol on the day of the experiment. In certain

rows, the column READING TRIAL ID contains a log message with the answer

to that question instead of the reading trial ID. The first character in the affected

cell is the value 3 which actually belongs in the cell indicating the reading trial

ID. The last character of the string is the value that is supposed to be in the cell

ALCOHOL TODAY and that got replace with ’UNDEFINEDnull’ in these cases.

I searched for all affected cells using regular expressions, deleted the log messages

and recovered all missing values with the information contained in the log messages.

X Y fix. ID IA LABEL READING TRIAL ID ALCOHOL TODAY

731.5 175.6 133 l 1 n

884.5 186.1 144 p 1 n

... ... ... ... ... ...

259.1 508.3 240 e 3 MSG 4103170 !V TRIAL VAR PAR-
TICIPANT ALCOHOL TODAY n

UNDEFINEDnull

356.6 512.8 247 3 MSG 4103170 !V TRIAL VAR PAR-
TICIPANT ALCOHOL TODAY n

UNDEFINEDnull

Table 2: Example of log messages and missing values in the exported indico fixation
report after donwloading it from SR Research Dataviewer software. X
and Y ar the horizontal and vertical coordinates of fixation. This excerpt
belongs to the fixation report of participant 12, session1.

Furthermore, I replaced missing values denoted as ’.’ with NaN values, adapted the

data types of the columns when necessary and renamed some columns to match the

column names of the preprocessed fixation report of the SB-SAT fixation report.

Mapping of interest areas. I was provided with the code for the transformation of in-

terest areas from the level of characters to the level of words for the InDiCo dataset5.

This script also adds a new column with the word ID that should correspond to the

5https://github.com/hallerp/indiff-preprocessing/tree/main/parsing
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word ID in the stimulus text. An example for the mapping of interest areas can be

seen in the comparison of tables 11 and 12 in the appendix. I added another column

that contains the running count of fixations on a word. I then deleted all rows with

fixations that did not fall on an interest area.

Quality Check. As mentioned above, eye tracking data is available for 57 participants

who had completed at least one eye tracking session (see section 4.2.1). 51 of the

subjects read eight texts while the other six subjects only read four texts because

they only participated in one eye tracking session. I manually checked the quality of

the fixation data in all 2160 trials of the dataset in the Data Viewer by SR Research.

Unfortunately, the overall quality of the collected data is not very good. There are

hardly any trials where the recorded fixations fall perfectly on the line. The most

common issues include an upwards (sometimes also downwards) drift towards the

end of the lines, fixations that are generally too high (multiple lines above the

line) and pupils not being recognized by the eye tracker in significant parts of the

recording. As a result of my manual inspection, 8 more participants were excluded

from the dataset. This means that there are now 43 participants in this dataset,

all of which have read 8 of the 16 texts. Unfortunately, the low data quality has

implications on the classification results, as discussed in chapter 7.

After these preprocessing steps, I was finally left with one csv-file per dataset con-

taining the sequence of fixations from all trials for the respective dataset with inter-

est areas on the level of tokens and the columns listed in section 4.1.3. These files

were then used to calculate reading measures and merge the fixation data with the

linguistic annotations described in section 5.1.1.2.

5.1.2.2 Reading measures

Following the approach of many works discussed in chapter 2.3, I transformed the

cleaned fixation data into reading measures, which I computed for each interest area

in the sequence of fixations, i.e. for each fixated word. The columns included in the

SB-SAT fixation report (see section 4.1.3 area a limiting factor on the kind of reading

measures that can be derived from the fixation reports. I decided to follow Reich

et al. [2022] in the choice of the following reading measures: First Fixation duration

(FFD), Total Fixation duration (TFD), Normalized Incoming Regression Count and

Normalized Outgoing Progressive and Regressive Saccade Counts. I opted not to

implement Words in fixed Context on unigrams, Syntactic Clusters with Universal

Dependencies PoS-tags as syntactic labels and Averaged Horizontal and Vertical

Location of all fixations due to time constraints on the one hand and the fact that
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I didn’t use aggregated features in the first place on the other hand. I implemented

the calculation of those reading measures myself since I wanted to fit them into my

preprocessing pipeline. Additionally, I calculated the number of fixations on a word

and first pass regressions. The calculation methods are described below.

First fixation duration (FFD)

First fixation duration is the duration of the first fixation on a word. I calculated

this by grouping the fixations of a scanpath by screen ID and word ID and picking

the first entry in the column ’CURRENT FIX DURATION’.

Total Fixation Duration (TFD)

Total fixation duration is the sum of all durations of the fixations made on a

word within a scanpath. I calculated TFD by grouping the fixations of a scan-

path by screen ID and word ID and summing up all values in the column ’CUR-

RENT FIX DURATION’ on a word.

Number of fixations on a word (n fix)

I calculated the number of fixations on a word (n fix) within a scanpath by grouping

the fixations of a scanpath and picking the maximum value of the column ’CUR-

RENT FIX INTEREST AREA RUN ID’ for each word in the scanpath. ’CUR-

RENT FIX INTEREST AREA RUN ID’ is the running count of the number of

fixations on a word which was readily available for the SB-SAT dataset and which

I calculated specifically for the word-level interest areas for the InDiCo dataset (see

section 5.1.2.1).

First Pass Regression (FPR)

For every fixation, I noted down whether it was followed by a first pass regression. To

determine FPRs, I first marked for every fixation whether the outgoing saccade was

regressive or progressive by comparing the word ID of the current fixation with the

word ID of the next fixation. If the outgoing saccade was regressive and the word was

fixated for the first time, i.e. when the CURRENT FIX INTEREST AREA RUN ID

was 1, I noted down a FPR.

Normalized Outgoing Progressive and Regressive Saccade Counts

I summed up the number of outgoing progressive saccades and outgoing regressive

saccades from every fixated word and divided that count by the total number of

outgoing progressive saccades in the scanpath or outgoing regressive saccades in the

scanpath respectively to normalize.

Normalized Incoming Regression Count

Similarly to the detection of outgoing regressive and progressive saccades, I also

determined for every fixation whether the incoming saccade was regressive by com-
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paring the word Id of the current fixation with the word ID of the fixation before.

For every fixation, I summed up the total number of fixations on that word and

divided by total number of regressive saccades in the scanpath to normalize.

In table 3 and figure 9, I illustrated how I calculated different metrics with the

example of the fixations of a participant on the first sentence of the first text in

the SB-SAT dataset. The full sentence is ”Even then my only friends were made of

paper and ink.” The participant fixated twice on the words ”my” and ”friends” but

only fixation 3 is a first pass regression since the run ID in fixation 4 is greater than

1. I also indicated outgoing regressive and progressive saccades as well as incoming

regressions with which I calculated the reading measures as described above.

Even then my only friends were made of paper and ink.

1

2

3

4

5

6

7 8

Figure 9: Fixation sequence on a phrase which illustrates regressions. The full phrase
is ”Even then my only friends were made of paper and ink.” and these
particular fixations stem from subject 1, text 1, screen 1 (SB-SAT)

fixation ID word run ID fpr outgoing sac progr outgoing regr incoming regr

1 Even 1 0 1 0 0

2 my 1 0 1 0 0

3 friends 1 1 0 1 0

4 my 2 0 0 1 1

5 then 1 0 1 0 1

6 only 1 0 1 0 1

7 made 1 0 1 0 1

8 paper 1 0 1 0 0

9 ink 1 0 0 0 0

Table 3: Illustration of the calculation of first pass regression (fpr). A fpr regression
occurs if the run ID is 1 and the word ID is greater than the word ID of
the following line. Noted in the field of the fixation after which follows a
fpr.

Examples for the reading measures of a scanpath can be found in the appendix for

both the InDiCo dataset (table 13) and the SB-SAT dataset (table 14).
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5.1.3 Merging fixation data with linguistic features

In order to combine the reading measures of the fixated words with the linguistic

features, I merged the two files on the text ID, screen ID and word ID while pre-

serving the sequence of fixations. However, before merging the two files, I had to

take care of various kinds of segmentation errors in the files containing the reading

measures that lead to alignment problems between the word ID of the reading mea-

sures and the word ID of the lexical features. The root of the problem was that the

DataViewer didn’t always tokenize the texts correctly when creating the fixation

reports. There were three kinds of alignment problems to take care of:

• Alignment problem, type 1: Words that had been split into multiple areas of

interest in the fixation report

• Alignment problem, type 2: Multiple words that had been joined together

within a single area of interest in the fixation report

• Alignment problem, type 3: Correct mapping between word and area of inter-

est, but wrong value in the word column/ encoding errors in the word column

To clean the reading measures and merge them with the lexical features, I worked on

the basis of a code that was already available for the individual differences corpus.6.

However, I majorly adapted the code to run more efficiently and to handle cases

that appeared in SB-SAT and new subjects in InDiCo.

5.1.3.1 Joining multiple interest areas together

The first type of alignment problem encompassed words that had been wrongly

split into multiple areas of interest in the fixation report/reading measures e.g.

”Eiszeiten” (W1) had been split into ”Eis” (W11) and ”-zeiten” (W12) in the reading

measures. As a consequence to this, the word IDs of all following words of the

same screen (W1+1, W1+2, ..., W1+n, with n = number of words in a screen) were

inconsistent with the word IDs of the lexical features such that they couldn’t be

merged. The task at hand was to join the wrongly split interest areas back together.

Generally, I merged the interest areas together by replacing the split word with the

full word, merging W2 into W1, subsequently dropping W2 and updating all word

IDs that come after than W1. However, the concrete operations I made on the

different variables differ depending on whether W1, W2, both or neither had been

fixated, and by the number on fixations on them. Examples of all different scenarios

6https://github.com/hallerp/individual-differences/blob/main/src/reading measures.py
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are presented in table 4.

1. W11 fixated, W12 not fixated

In the case that only the first interest area of the split word was fixated, I adjusted

the word and word IDs as described above and left all other variables as they were.

Case 1 is illustrated in table 4: The participant fixated W11 (”Mutter-”), but not on

W12 (”Kind-Situation”). I replaced the split word in fixation 3089 with the merged

word (Mutter-Kind-Situation) and adapted the word IDs after fixation 3089.

2. W11 not fixated, W12 fixated

In the case that only W12 was fixated, but not W11, I employed the same stratecy as

in the first case. An example can be found in table 4: the participant only fixated

on ”Kind-Situation”, but not on (”Mutter-”). Therefore, I replaced the split word

in fixation 4278 with the merged word (”Mutter-Kind-Situation”) and adapted all

the following word IDs to match the word IDs of the lexical features. The reading

measures in line 4278 and the following lines were left unchanged.

3. W11 fixated, W12 fixated

The most complex case to handle was if both areas of interest belonging to the split

word had received fixations. In these cases, not only the words and word IDs were

affected by the merge, but also the reading measures. The frequency and order in

which W11 and W12 had been fixated lead to several different ways the problem had

to be handled. In these two datasets, participants never fixated more than twice on

either of the affected areas. All the different kinds of scenarios that appeared in this

dataset are described below with examples in table 4.

Generally, I always checked whether there were any cases of W11 and W12 being

directly fixated after one another. If this was the case, I treated them as two

fixations on the same word. In this, my code differs from the original preprocessing

code for the Individual differences corpus, since fixations in such cases were merged

together, along with the reading measures. However, I would argue that treating

them as two fixations on the same word is a better way to handle these cases, since

they were recorded as individual fixations on different interest areas belonging to

one word. In my case, I did not delete any fixations. I replaced the split word with

the joined word in the affected rows and adapted the word IDs to match the word

ID of the lexical features. I then changed the reading measures as follows: For W11,

I set the values for outgoing progressive and regressive saccade on word to 0. For

W12, I replaced the ffd with the ffd of W11 and set the value for incoming regressive

saccade on word to 0. For both W11 and W12, I updated the n fix by summing them

up. For cases where there were multiple fixations on W11 and/or W12 but they were

not immediately fixated after one another, I treated them as seperate fixations and

43



Chapter 5. Methods

only adapted the words and word IDs similarly to cases 1 and 2.

Although the principle in how I handled these cases is always the same, I put the

different cases present in the dataset in table 4. In case 3i, there were two fixations

on W12 and only one fixation on W11. In case 3ia, the reading measures for fixations

1807 and 1808 get adapted because they get treated like two fixations on the same

word while the reading measures of fixation 1818 stays the same; only the word and

the subsequent word IDs get adapted. In case 3ib, it is the other way around: The

first fixation on W12 (”-zeiten”) gets treated as an independet fixation while fixations

113 and 114 get treated as two fixations on the same word which involves changing

the reading measures. In case 3ii, on the other hand, there are two fixations on W11

and only one fixaiton on W12. The fixations are all directly after one another. They

get treated as three subsequent fixations on the same word with a changement in

reading measures. In case 3iii, there are two pairs of subsequent fixations on W11

and W12 each. Fixations 5512 and 5517 each get treated as a second fixation on

word 82 which changing the reading measures.

4. Neither W11, nor W12 fixated

In case neither of the two problematic interest areas received any fixations, the only

measure I had to take was to adapt the word IDs after the problematic line. In the

example in table ??, it can be seen that the problematic word IDs 82 (”Mutter-”)

and 83 (”Kind-Situation”) were skipped by the reader. I only had to adjust Word

IDs higher than 82 and was able to leave anything else unchanged.
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Case Subj Fix. ID Text Screen Word ID RM Word RM Word ID corr. Word corr.

1 28 3089 2 3 82 Mutter- 82 Mutter-Kind-Situation.

1 28 3090 2 3 84 Die 83 Die

1 28 3091 2 3 86 zwischen 85 zwischen

2 41 4277 2 3 81 der 81 der

2 41 4278 2 3 83 Kind-Situation. 83 Mutter-Kind-Situation

2 41 4279 2 3 84 Die 83 Die

2 41 4280 2 3 85 Korrelation 84 Korrelation

3ia 16 1807 2 3 82 Mutter- 82 Mutter-Kind-Situation.

3ia 16 1808 2 3 83 Kind-Situation 82 Mutter-Kind-Situation.

3ia ... ... ... ... ... ... ... ...

3ia 16 1818 2 3 83 Kind-Situation 82 Mutter-Kind-Situation.

3ia 16 1819 2 3 84 Die 83 Die

3ib 4 104 1 2 87 -zeiten 86 Eiszeiten

3ib 4 ... ... ... ... ... ... ...

3ib 4 106 1 2 88 werden. 89 werden.

3ib ... ... ... ... ... ... ... ...

3ib 4 113 1 2 86 Eis 86 Eiszeiten

3ib 4 114 1 2 87 -zeiten 86 Eiszeiten

3ii 10 491 2 3 82 Mutter- 82 Mutter-Kind-Situation.

3ii 10 492 2 3 82 Mutter- 82 Mutter-Kind-Situation.

3ii 10 493 2 3 83 Kind-Situation 82 Mutter-Kind-Situation.

3ii 10 494 2 3 85 Korrelation 84 Korrelation

3iii 53 5511 2 3 83 Kind-Situation 82 Mutter-Kind-Situation.

3iii 53 5512 2 3 82 Mutter- 82 Mutter-Kind-Situation.

3iii ... ... ... ... ... ... ... ...

3iii 53 5517 2 3 82 Mutter- 82 Mutter-Kind-Situation.

3iii 53 5518 2 3 83 Kind-Situation 82 Mutter-Kind-Situation.

4 4 152 2 3 78 anders 78 anders

4 4 153 2 3 84 Die 83 die

Table 4: Examples for the correction of segmentation errors of split words in the
InDiCo reading measures (Word RM and ID RM are the word and word
ID in the reading measures before correction, word ID corr. and word corr
are the word and ID after correction to match the ID of of the word in the
lexical features.

5.1.3.2 Splitting merged interest areas apart

The second type of alignment problem occurred in cases where multiple words got

joined in the same interest area when the fixation report was generated in the

DataViewer. The second kind of segmentation error that occurred in the reading

measures is that two words were joined together, for example in InDiCo, in one text

the two words ”hatten.Kleine” were a single interest area, resulting in a mismatch

between reading measures word IDs and lexical features word IDs.
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In InDiCo, only two tokens were merged together (”hatten.Kleine” and ”Pflanzen-

welt”), while in SB-SAT, there were quite a few instances of three tokens being

merged together.

1. Two words merged together

In some cases, two words were joined together in the reading measures report, but

correctly split in the lexical features:

• InDiCo: ”zu” + ”kanalisieren” (lexical features) vs. ”zukanalisieren” (reading

measures)

• InDiCo: ”hatten” + ”Kleine” (lexical features) vs. ”hatten.Kleine” (reading

measures)

• InDiCo: ”Pflanzenwelt” + ”Es” (lexical features) vs. ”Pflanzenwelt.Es” (read-

ing measures)

• SB-SAT: ”them” + ”apart” (lexical features) vs. ”themapart” (reading mea-

sures)

1i. Subject fixated on the word

In case 1i (see table 6), the participant fixated on the merged word. In this case, I

updated the word to the first word in the interest area. This is a simplified solution

since I don’t know which one of the two tokens in the interest area actually got

fixated. I changed the word IDs of the following words in the same screen and left

all reading measures unchanged. One example from SB-SAT: lexeats [Sempre, &,

Sons] vs reading measures [Sempre, & Sons]

• SB-SAT: ”species” + ”–” (lexical features) vs. ”species-” (reading measures)

1ii. Participant didn’t fixate on the word In case the participant didn’t fixate on

the word, the index of the subsequent words have to be moved up. This case is

illustrated in table 6: participant 7 didn’t fixate the problem area (see fixation ID).

Therefore, the only adjustment is the adaption of the word ID after the ID of the

problem area.

2. Three tokens merged together

In SB-SAT data, whenever there’s a dash in the text, the dash get’s merged together

with the preceding and following words into one interest area. For instance, the sixth

sentence of text 1, screen 1 is: ”There was something about them – apart from the

letters he could not decipher – that offended him. In the lexical features, the words

are tokenized as follows: [..., them, –, apart, ..., decipher, –, that, ...]. However, in

the fixation files, the tokens get merged together: [..., themapart, ..., decipherthat,
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...].

2i. Subject fixated on the word when multiple lines have been merged into one line,

such as when there is a hyphen. It moves the subsequent lines two indexes up and

renames the line. If the problem area got fixated, the approach to solve this is the

same as in 1i, except that the word IDs of the subsequent words need to be increased

by two instead of one (see table 6 where the word id for from got increased to 110

from 108.

• SB-SAT: ”them” + ”–” + ”apart” (lexical features) vs. ”themapart” (reading

measures)

• SB-SAT: ”decipher” + ”–” + ”that” (lexical features) vs. ”decipherthat”

(reading measures)

• SB-SAT: ”change” + ”–” + ”if” (lexical features) vs. ”changeif” (reading

measures)

• SB-SAT: ”microcolombs” + ”–” + ”a” (lexical features) vs. ”microcolombs”

(reading measures)

• SB-SAT: ”together” + ”–” + ”flowed” (lexical features) vs. ”togetherflowed”

(reading measures)

• SB-SAT: ”animals” + ”–” + ”first” (lexical features) vs. ”animalsfirst” (read-

ing measures)

• ”voilà” + ”human” (lexical features) vs. ”voilàhuman” (reading measures)

2ii. Participant didn’t fixate on the word If the participant didn’t fixate on the

problematic word, the only action required was to fix the word IDs of the subsequent

words.
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Case Subj Fix. ID Text Screen Word ID RM Word RM Word ID corr. Word corr.

1i 6 187 4 4 79 zukanalisieren, 79 zu

1i 6 188 4 4 81 regulieren 82 regulieren

1ii 7 643 4 4 52 zunächst 52 zunächst

1ii 7 644 4 4 81 regulieren 82 regulieren

1ii 7 645 4 4 82 und 83 und

1ii 7 646 4 4 83 zunehmend 84 demnächst

2i 1 88 1 1 107 themapart, 107 them

2i 2 94 1 1 107 themapart 107 them

2i 2 95 1 1 108 from 110 from

Table 5: Examples for the correction of segmentation errors of joined words in the
reading measures (Word RM and ID RM are the word and word ID in the
reading measures before correction, word ID corr. and word corr are the
word and ID after correction to match the ID of of the word in the lexical
features.

5.1.3.3 Changing name, no ID adjustement

This was necessary in the following problem: text 9, screen 4, wordid 2: lexical

features word VHB vs. reading measures word www.vhb.org In these cases, changing

the word ID was not necessary, only to rename the words.

In SB-SAT fixation data, there were many encoding errors, especially when there

was an apostrophe or quotation marks in the word (e.g. didn’t, I’d, company’s etc.).

For all of these cases, I checked whether alignment with the word ID in the fixation

data was correct and then I replaced the word from the fixation data, which had

an encoding error, with the word from the lexical features, which didn’t have an

encoding error. Examples for this are: didnt vs didn’t, Id vs. I’d, companys vs

company’s.

Case Subj Fix. ID Text Screen Word ID RM Word RM Word ID corr. Word corr.

1 4 185 9 4 2 www.vhb.org, 2 VHB

1 4 186 9 4 2 www.vhb.org 2 VHB

1 4 187 9 4 3 stehen 3 stehen

Table 6: Examples for the correction of the words in the reading measures dataframe.
No other changes than renaming were made here, word IDs were kept as
they were
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After all these cases were handled, words and word IDs of both files (lexical features

and reading measures) were aligned. I joined the two dataframes on the columns

subject ID, text ID, screen ID and word ID.
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5.1.4 Target variable

The target label is based on the score in the comprehension questions achieved by

a specific participant for a specific text. For the SB-SAT dataset, this score can be

extracted from the fixation report available on GitHub. For the InDiCo dataset,

I took the score from the results folder from the deployed experiment. In the SB-

SAT dataset, participants answered five comprehension questions per text, in the

InDiCo dataset, they answered ten questions per text. This doesn’t matter since

firstly, the number of questions within each dataset is consistent secondly, I binarize

the scores to get the target variable. I explain in chapter 3 how I transformed the

comprehension scores into the target variable.

It is worth noting that the difficulty of the reading comprehension task doesn’t

only depend on the difficulty of the stimulus text but also on the difficulty of the

comprehension questions (see TestDaF [2000]). However, I will work under the

assumption that the comprehension questions all have a similar level of difficulty.
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5.2 Model Architecture

In figure 10, it is illustrated how the features of a scanpath (described in table 10)

are fed into the network. The input to a single input node is a tensor comprised

of all features of a single fixation. The number of input nodes corresponds to the

number of fixations. The input shape is defined in the first bidirectional LSTM

layer (Hochreiter and Schmidhuber [1997]). The model expects a 3D tensor as input

(batch size, time steps, input dimension) where batch size is the number of scan-

paths in a batch, time steps is the number of fixations in the scanpath and input

dimension is the number of features. The input is fed into a single bidirectional

LSTM. The network architecture is depicted in figure 10. It is comprised of two

bidirectional Long Short-Term Memory (BiLSTM) layers with 75 units each, three

dropout layers with a dropout rate of 0.3 and three dense layers with 50, 50 and

20 layers respectively and a tanh activation function. The network concludes with

an output layer consisting of a dense layer with a single unit and a sigmoid acti-

vation function for binary classification. I arrived at this architecture after tuning

the model on the SB-SAT dataset using all scanpath features, reading measures

and linguistic features as an input (s1 rm1 lf1) that are listed in table 10. Tuning

involved experimentation with the number of layers and input nodes in the different

layers, the activation functions, the batch size and the number of epochs the model

trained for.

BiLSTM layers are a type of recurrent neural network consisting of two LSTM sub-

layers that process sequential data in both forward and backward directions. This

allows the network to capture bidirectional dependencies in the input sequence, in

this case the scanpath. The dropout layers are used to prevent overfitting and the

dense layers enable the network to extract features and capture and transform data

and produce a final output. I call this model LinguisticEyeLSTM since my focus

was to introduce more linguistic features and classify eye gaze data using an LSTM.
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Figure 10: Model architecture. Scanpath features, reading measures and linguistic
features are assigned to the sequence of fixations and used as the model
input. In total, there are M = 37 different features. An overview of the
linguistic features can be found in table 10 One scanpath is comprised of
the fixations of one participant within one page of a stimulus text. The
model infers whether reading comprehension for a specific scanpath were
above or below the median for the respective stimulus text.
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6.1 Model training

I trained LinguisticEyeLSTM with the input features listed in table 10. All models

were trained with GPU support using the Keras and Tensorflow libraries. I used

an Adam optimizer with a learning rate of 0.001 and set training for 1000 epochs

with a patience of 50. Effectively, the model ended up training for ca. 50-80 epochs

depending on the dataset and amount of input features used. The code is available

on GitHub.1

6.2 Evaluation procedure

To evaluate the performance of my models, I used the area under the ROC curve

and the three cross-validation settings that have also been explored by Reich et al.

[2022] and Ahn et al. [2020]. Cross-validation is a method employed to assess the

performance and generalization ability of a predictive model. The dataset is split

into multiple subsets (”folds”) and the model is iteratively trained with a different

fold being used as the training set each time. To obtain a final score, the scores

of the different folds are averaged. The standard deviation of the different scores

indicates how well the model is generalizeable across different datasets. I employed

three cross-validation settings that vary in how the dataset is divided to form the

training and test set in the different folds:

In the New Reader setting, fixation data from certain readers is held out during

training. For readers that are not held out during training, the model sees all books

and all pages during training. In the New Book setting, entire books are held out

during training. The model sees all pages and fixations of all participants who read

the book in the books that are used during training. In the New Page setting,

individual pages are randomly held out during training. Of the pages that are not

held out during training, the model sees fixations from all participants.

1https://github.com/l-stahlhut/inferring-reading-comprehension
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Four-fold cross validation is performed on the New Book setting and five-fold cross

validation is performed on the New Reader and the New Page settings. In each eval-

uation setting, a train or test instance consists of the sequence of fixations (scanpath)

recorded from a participant reading one page of text. I follow the same evaluation

protocol for InDiCo. The code for my experiments is based on the code by Reich

Figure 11: Illustration of 4-fold cross validation: The dataset is split into four folds
and the model is iteratively trained with a different fold being used as
the test set each time. The final result is the average of the results of
the different folds, in this case the average area under the ROC cuve
(AUC). Not depicted in the figure is the validation set, which is 10% of
the training data.

et al. [2022].2 I changed the model architecture and adapted the training and eval-

uation procedure to work for the new model and the problem setting described in

chapter 3.

2https://github.com/aeye-lab/etra-reading-comprehension.
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7 Results and Discussion

7.1 Initial experiments with all features

An overview of the results of LinguisticEyeLSTM taking all features as input for

both datasets can be found in table 7. In order to determine the performance of

my overall approach, the AUC scores these experiments can be compared to Reich

et al. [2022]’s BEyeLSTM and the different approaches presented by Ahn et al.

[2020], which are presented in the same table. BEyeLSTM with all four subnets

previously held the state of the art in the New Reader setting while BEyeLSTM

without GSFNet held the state of the art in the other two evaluation settings.

This suggests that simplified PoS-tags and the content word feature of a fixation

sequence were good predictors of reading comprehension in the New Page and New

Book settings while the inclusion further aggregated linguistic features and reading

measures lead to better results in the New Page setting. The results of Ahn et al.

[2020] were outperformed by Reich et al. [2022] in all evaluation settings.

On the SB-SAT dataset, LinguisticEyeLSTM with all scanpath features, reading

measures and linguistic features outperformed BEyeLSTM in all evaluation settings,

although only by a very small margin in the New Page and New Book settings and

with a bigger standard error in the New Page and New Book settings, suggesting that

the approach isn’t genrealizeable to new data as well in those settings. The results

suggest that the inclusion of further linguistic features might have had a positive

impact on the prediction of text comprehension from eye gaze data. However, the

effect of the input features interacts with the effect of the model architecture. In

order to differentiate between the effects of the two factors, the results of the other

experiments have to be investigated.

The the influence of the two different datasets can be examined by comparing the

results on the InDiCo dataset with my results on the SB-SAT dataset. The results

for the InDiCo dataset in both settings were worse than the results for the SB-SAT

dataset in all evaluation settings and they didn’t exceed chance level (0.5) by much

in any setting. I argue that this is most likely largely due to the issue regarding the

data quality explained in section 5.1.2.1. The effect of the data quality is likely to
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overshadow any other effects that might be due to the factors which differentiate

the two datasets such as the language or the distribution of texts across subjects.

However, other factors might influence the difference in the results, such as the

choice of the label as discussed in section 5.1.4 which depends on the quality and

standardization of the comprehension questions.

Model Features Dataset New Page New Book New Reader

LinguisticEyeLSTM all SB-SAT 0.607 ± 0.031* 0.524 ± 0.024 0.581 ± 0.02*

LinguisticEyeLSTM all InDiCo 0.52 ± 0.018 0.506 ± 0.012 0.515 ± 0.02

BEyeLSTM (Reich et al.
[2022])

all SB-SAT 0.596 ± 0.012* 0.504 ± 0.015 0.542 ± 0.015*

BEyeLSTM w/o GSFNet
(Reich et al. [2022])

reduced SB-SAT 0.597 ± 0.013* 0.522 ± 0.013 0.521 ± 0.029

RNN (Ahn et al. [2020]) scanpath SB-SAT 0.571 ± 0.01 0.507 ± 0.01 0.514 ± 0.024

CNN (Ahn et al. [2020]) scanpath SB-SAT 0.538 ± 0.006 0.493 ± 0.009 0.485 ± 0.016

Regression (Ahn et al.
[2020])

scanpath SB-SAT 0.539 ± 0.007 0.492 ± 0.013 0.532 ± 0.016

Table 7: AUC results ± standard error of the experiments with LinguisticEyeL-
STM with all features in comparison to the results from prior studies. The
asterisk * indicates values that are significantly higher than random guess-
ing. The colors indicate whether the score is higher (green) or lower (red)
than the state-of-the-art held by Reich et al. [2022] for the model using
all linguistic features and reduced linguistic features respectively. For ev-
ery evaluation setting, previous state-of-the-art is underlined, while current
state-of-the-art is shown in bold.

7.2 Ablation study

In this section I will investigate how the different parts of my method contribute to

the overall performance of the proposed machine learning model.

7.2.1 Input ablation study

I trained six models per dataset, including the models discussed above that took

all features as input. I used the same model architecture for all experiments (see

image 5.2) but varied the input features. Following Ahn et al. [2020], I used vertical

and horizontal coordinates, pupil size and current fixation duration as features to

represent the scanpath. The reading measures and some of the linguistic features

are inspired by Reich et al. [2022]. Table 10 provides an overview of all features
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used as model input in the different experiments.

Firstly, I trained a model where the input is the same as in BEyeLSTM without

GSFNet presented by Reich et al. in order to evaluate the effect of my model

architecture:

• Reduced linguistic features: Binary classification using LinguisticEyeL-

STM with the scanpath features, simplified PoS and the content word feature.

Secondly, I trained the following models to investigate the impact of different types

of features on the model performance:

• No linguistic features: Binary classification using LinguisticEyeLSTM with

all features described in table 10 except for the linguistic features.

• Scanpath features: Binary classification using LinguisticEyeLSTM with

only the four scanpath features as model input.

• Reading measures: Binary classification using LinguisticEyeLSTM with

only the reading measures as model input.

• Linguistic features: Binary classification using LinguisticEyeLSTM with

only the linguistic features as model input.

7.2.2 Results ablation study

The two factors under investigation are the model architecture and the input fea-

tures.

The ideal way to determine the role of the model architecture would have been to

train BEyeLSTM with my input features. However, this was not possible due to

time constraints. Therefore, I opted to approximate this approach by training my

model with the same input features used in BEyeLSTM w/o GFSNet (Reich et al.

[2022]). The input might vary slightly due to different preprocessing methods and

independent construction of the features. While I used all features as input to a

single BiLSTM, the input features are distributed across three different subnets in

BEyeLSTM w/o GFSNet: (1) horizontal and vertical fixation coordinates, pupil size

and fixation duration, (2) simplified PoS-tags and (3) the content word indicator.

The results of both network architectures with full and reduced input features can

be found in table 8. The results on the SB-SAT dataset show that LinguisticEyeL-

STM with reduced linguistic features only surpassed the scores of BEyeLSTM w/o

GSFNet in the New Reader setting, indicating that Reich et al.’s modular archi-

tecture consisting of multiple subnets generally outperforms my simple BiLSTM.
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While BEyeLSTM outperforms BEyeLSTM w/o GFSNet only in the New Reader

setting, LinguisticEyeLSTM with all features outperformed the version with reduced

features in all settings. This reinforces the notion that the added linguistic features

were helpful at improving the results for the task at hand.

Model Features Dataset New Page New Book New Reader

LinguisticEyeLSTM all SB-SAT 0.607 ± 0.031* 0.524 ± 0.024 0.581 ± 0.02*

LinguisticEyeLSTM reduced SB-SAT 0.547 ± 0.012* 0.518 ± 0.006 0.53 ± 0.044*

LinguisticEyeLSTM all InDiCo 0.52 ± 0.018 0.506 ± 0.012 0.515 ± 0.02

LinguisticEyeLSTM reduced InDiCo 0.508 ± 0.019 0.509 ± 0.014 0.515 ± 0.007*

BEyeLSTM (Reich et al.
[2022])

all SB-SAT 0.596 ± 0.012* 0.504 ± 0.015 0.542 ± 0.015*

BEyeLSTM w/o GSFNet
(Reich et al. [2022])

reduced SB-SAT 0.597 ± 0.013* 0.522 ± 0.013 0.521 ± 0.029

Table 8: AUC results ± standard error of the experiments that included all or re-
duced linguistic features in the input with the state-of-the-art results for
comparison. The asterisk * indicates values that are significantly higher
than random guessing. The colors indicate whether the score is higher
(green) or lower (red) than the current state-of-the-art for the model us-
ing all linguistic features and reduced linguistic features respectively. For
every evaluation setting, previous state-of-the-art is underlined, while cur-
rent state-of-the-art is shown in bold. In the case of LinguisticEyeLSTM
all features refers to scanpath features, linguistic features and reading mea-
sures while reduced refers to scanpath features, simplified PoS-tags and the
content word feature, i.e. the same features used as in BEyeLSTM w/o
GSFNet.

Tables 9 and 10 contain the results for the ablation study for the two datasets. Ta-

ble 10 gives information on the exact features that were used as an input for any

given experiment.

The results on the SB-SAT dataset in table 9 show that the best results were achieved

if all available input features were used in both the New Page and the New Reader

settings while for the New Book setting, the best result was achieved by the model

that was only trained with the scanpath features.

In the New Page setting, omitting the linguistic features lead to the worst per-

formance. Reducing linguistic features, only using scanpath features or only using

reading measures all lead to similarly mediocre results. Using only linguistic features

was slightly better but this version of the model could still not reach the performance

of the model that used all features. Using a combination of scanpath and linguistic

features as well as reading measures proved to be beneficial in this setting, with a
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strong emphasis on the linguistic features.

Features New Page New Book New Reader

All features 0.607 ± 0.031* 0.524 ± 0.024 0.581 ± 0.02*

No ling. features 0.527 ± 0.034 0.535 ± 0.028 0.54 ± 0.016*

Reduced ling. features 0.547 ± 0.012* 0.518 ± 0.006 0.53 ± 0.044*

Scanpath features 0.546 ± 0.042 0.547 ± 0.025* 0.544 ± 0.029*

Reading measures 0.541 ± 0.013* 0.527 ± 0.03 0.542 ± 0.034

Linguistic features 0.575 ± 0.029* 0.52 ± 0.034 0.58 ± 0.036*

Table 9: AUC results ± standard error for training LinguisticEyeLSTM on the SB-
SAT dataset with different features. The asterisk * indicates values that
are significantly higher than random guessing. The colors indicate whether
the score is higher (green) or lower (red) than the approach that used
all linguistic features. Bold numbers highlight the best results in a given
evaluation setting.

In the New Reader setting, the results look similar in many cases: Omitting or reduc-

ing linguistic features, using only scanpath features or using only reading measures

lead to mediocre results. Interestingly, the results of the model that was trained

with linguistic features only was on par with the model trained with all features in

the New Reader setting. This is the setting where I was able to achieve better results

than the state of the art quite consistently. The model seems to be able to generalize

well to new readers when the stimulus text is linguistically annotated, which implies

that a reader’s reaction to different properties of the text varies strongly.

In the New Book setting, the pattern looks different from the other two settings.

Here, the best results were achieved when only using the scanpath features, followed

by the combination of scanpath features and reading measures and only reading

measures. In fact, the inclusion of linguistic features consistently leads to worse

results in the New Book setting. The linguistic features and reading measures were

not helpful when generalizing to books that were not seen during training. That

being said, the results in the New Book setting can’t compete with the results in the

other setting in general. In fact, the results of the model that only used scanpath

features are comparable across settings, while the results with any other input is

just much worse in the New Book setting than in the other two settings.

The ROC curves in figure 12 also illustrate how the model’s performance in the

New Book setting is excelled by the performance in the other two settings, a pattern

which is also found in Reich et al. [2022]’s ROC curves. The only improvement

that can be seen when comparing their ROC curves with mine is in the New Reader
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setting. The plots also show that the model benefits from linguistic features, espe-

cially in the New Page setting but also in the New Subject setting. In the latter,

using only reading measures pretty much matches the results of using all features.

In the New Reader setting, chance level is barely outperformed by any combination

of input features.

Comparing figure 12 to figure 13, it becomes apparent that the classification

Figure 12: ROC curves for the SB-SAT dataset in the New Page, New Book and New
Subject evaluation settings. For every experiment, the line represents
the mean score of the different folds and the shaded area represents the
standard error.

Figure 13: ROC curves for the InDiCo dataset in the New Page, New Book and New
Subject evaluation settings. For every experiment, the line represents
the mean score of the different folds and the shaded area represents the
standard error.

results on the InDiCo dataset don’t exceed chance level in any setting. I conducted

the ablation study with this dataset despite the disappointing results in the initial

experiments which are most likely due to the data quality issues as mentioned above.

Despite the low AUC-scores, the patterns in the results displayed in table 10 are in-

teresting since they are similar to the patterns in the results for the SB-SAT dataset
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in table 9. In the New Page setting, results are once again the best if all available

features have been used as input. In the New Book setting, using only scanpath fea-

tures lead to the best results again and the incorporation of linguistic features lead

to noticeably worse results. The only difference in the results pattern between the

datasets is in the New Reader setting where firstly, the model using only linguistic

features was not on par with the model using all features and secondly, the best

performance was achieved if linguistic features were omitted. This might once again

be due to bad recording quality in entire sessions. All in all, it is difficult to derive

a meaningful interpretation from the results in table 9 due to the data quality.

Features New Page New Book New Reader

All features 0.52 ± 0.018 0.506 ± 0.012 0.515 ± 0.02

No ling. features 0.52 ± 0.02 0.504 ± 0.029 0.524 ± 0.018

Reduced ling. features 0.508 ± 0.019 0.509 ± 0.014 0.515 ± 0.007*

Scanpath features 0.513 ± 0.028 0.516 ± 0.016 0.514 ± 0.025

Reading measures 0.505 ± 0.016 0.509 ± 0.024 0.505 ± 0.017

Linguistic features 0.507 ± 0.014 0.507 ± 0.005 0.509 ± 0.017

Table 10: AUC results ± standard error for training LinguisticEyeLSTM on the
InDiCo dataset with different features. The asterisk * indicates values
that are significantly higher than random guessing. The colors indicate
whether the score is higher (green) or lower (red) than the approach that
used all linguistic features. Bold numbers highlight the best results in a
given evaluation setting.
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Vertical coordinate of the fixation yes yes yes yes no no float NA

Horizontal coordinate of the fixation yes yes yes yes no no float NA

Pupil size yes yes yes yes no no float NA

Current fixation duration yes yes no yes no no int NA

First fixation duration (FFD) yes yes no no yes no int NA

Total fixation duration (TFD) yes yes no no yes no int NA

Number of fixations yes yes no no yes no int NA

First-pass regression yes yes no no yes no int binary

Normalized Incoming Regression Count yes yes no no yes no float NA

Normalized Outgoing Progressive Saccade Count yes yes no no yes no float NA

Normalized Outgoing Regressive Saccade Count yes yes no no yes no float NA

Word length (number of characters) yes no no no no yes int NA

Sentence length (number of words) yes no no no no yes int NA

Mean word length within a sentence yes no no no no yes float NA

Text length (number of sentences) yes no no no no yes int NA

Simplified PoS-Tags yes no yes no no yes object OHE

Content word feature yes no yes no no yes int binary

Pronoun-noun ratio / Determiner-noun ratio yes no no no no yes float NA

Lexical density (sentence-level) yes no no no no yes float NA

Lexical density (text-level) yes no no no no yes float NA

Entity type yes no no no no yes object binary

Lexicalized Surprisal yes no no no no yes float NA

Lemma TTR yes no no no no yes float NA

Content lemma TTR yes no no no no yes float NA

Function lemma TTR yes no no no no yes float NA

More frequent synonym and/or homonym yes no no no no yes int binary

Lemma frequency yes no no no no yes float NA

Number of syntactic dependants to the right yes no no no no yes int NA

Number of syntactic dependants to the left yes no no no no yes int NA

Dependency distance to head yes no no no no yes int NA

Syntactic Surprisal yes no no no no yes float NA

Voice yes no no no no yes float NA

Semantic similarity between adjacent sentences yes no no no no yes float NA

Lexical overlap between adjacent sentences (lemma) yes no no no no yes float NA

TF-IDF yes no no no no yes float NA

Genre yes no no no no yes object OHE

Sentence is cut off yes no no no no yes int binary

Table 10: A list of features used as model input in the different experiments including
the ablation study. Regarding the encoding column, OHE refers to one
hot encoding, binary refers to binary features (0/1) and features that have
the data type float or int don’t require any further encoding.
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8 Discussion and future work

In my approach to infer text comprehension from eye gaze data that was recorded

during reading experiments, I framed the task as a binary classification problem and

used scanpath features, reading measures and linguistic features of the stimulus text

as inputs to a BiLSTM in order to infer whether the achieved score in text compre-

hension questions belonging to the text at hand were above or below the median for

a given scanpath. I worked with the SB-SAT dataset which had been used for the

same task in previous research and with a new corpus with German stimulus texts

(InDiCo). My main contributions to this field are the annotation of the stimulus

texts with new linguistic features based on findings in the field of psycholinguistics,

the employment of a new neural network architecture for this task and the classifica-

tion on a new dataset to provide baseline results. I evaluated my results in multiple

cross-validation settings (New Reader, New Page and New Book). For the sake of

comparability, my method has many similarities to the one presented in Reich et al.

[2022], which hed the previous state of the art in this task, for instance the choice

of scanpath features and reading measures and the evaluation strategy. Presently,

there is only little research on the task of inferring text comprehension from eye

gaze data and the results are not application ready yet. This leaves much room for

creativity in how to approach this task but it is also limiting in that there are not

many results available to compare my results with.

Generally, the results of my classification approach on the SB-SAT data were sat-

isfactory, although not excellent. They exceeded the previous state of the art, es-

pecially in the New Reader evaluation setting. This is gratifying since Reich et al.

[2022] expressed that generalizing to novel readers not seen during training was one

of the main challenges for future work. In the other two evaluation settings, my

approach was more or less on par with the state of the art for the SB-SAT dataset:

I outperformed previous models by a very small margin but the standard deviation

from the different folds suggests that my model isn’t as good at adapting to new

data as the previous state of the art model.

With regard to the research questions posed in chapter 1, it can be said that the

linguistic annotation of the stimulus text increase the model performance in the task

of inferring text comprehension from eye gaze data in the New Page and New Reader
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settings, where using only the linguistic features yielded almost the same results as

using all available features. However, the use of linguistic features had a negative

impact on the performance of the model in the New Book setting, suggesting that

there is a trade-off between a model being able to generalize to new readers and

pages and the model being able to generalize to new books.

Secondly, I investigated the impact of my network architecture. I compared the

results for BEyeLSTM without GSFNet reported by Reich et al. [2022] with the

results of my model using the same features as input. It appears that my network

architecture falls short in comparison to BEyeLSTM without GSFNet, suggesting

that a modular network consisting of multiple sequential subnets that take different

features as inputs remains a promising approach to this problem.

Thirdly, the question of whether there a significant difference between the results of

the classification of text comprehension between the two datasets can be answered

with a clear yes. The performance on the SB-SAT surpassed chance level in the

New Page and the New Reader settings but the performance on the InDiCo dataset

didn’t exceed chance level in any setting. The difference can be explained with the

difference in data quality rather than with any other properties that set the datasets

apart (such as language of the stimulus texts or distribution of the text across sub-

jects).

For future work, the main goal will be to achieve application-relevant results. This

could be attempted by adding even more linguistic features, since the introduction

of additional linguistic features was beneficial in many cases. However, a middle

ground should be found between the use of linguistic and scanpath features in order

to account for the trade-off between the different evaluation settings. It would have

been interesting to perform a more fine-grained ablation study to figure out which

of the linguistic features were responsible for the drop of performance in the New

Book setting but the time frame of this thesis would not allow for it. Additionally,

it could be worthwhile to investigate whether using a pre-trained language model to

extract contextualized embeddings of each word or paragraph improves the perfor-

mance of the proposed architecture. Furthermore, regarding network architecture

it would be interesting to experiment with a modular network architectures simi-

lar to BEyeLSTM without GSFNet consisting of three subnets which take reading

measures, linguistic features and sequential features as inputs respectively. Then,

the outputs of the three subnets could be weighted differently in order to attempt

to find a balance between the features and lessen the trade-off between the different

evaluation settings.
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9 Conclusion

In this thesis, I presented LinguisticEyeLSTM, a sequential neural architecture that

processes the sequence of fixations during reading and infers text comprehension. A

key aspect of my approach is linguistically annotating the stimulus texts.

I was able to answer the following research questions:

• Does linguistic annotation of the stimulus texts improve the results in the task

of inferring text comprehension from eye gaze data?

Yes, as shown in section 7.2.2, the annotation of the stimulus texts with ad-

ditional linguistic features proved to be beneficial in two of three evaluation

settings (New Page and New Reader). However, there was a trade-off with

the New Book setting which is generally the hardest to infer. In that setting,

using linguistic features is a drawback.

• Does employing a single BiLSTM that takes all features as input yield better

results than employing a network architecture consisting of several subnets?

No, the model architecture I used did not outperform the modular architecture

proposed in previous research, as discussed in section 7.2.2.

• Is there a difference between the results on the SB-SAT dataset and the In-

DiCo dataset?

Yes, the performance on the SB-SAT dataset was much better than the per-

formance on the InDiCo dataset (see section 7.1). However, I refrain from

drawing a conclusions from this since I suspect the nature of the target label

as well as the data quality of the latter dataset to be a potential issue.

My model outperforms the previous state of the art model which was a different

architecture and included less linguistic features. It especially lead to an improve-

ment in the ability to generalize to new readers, however generalizing to new books

not seen during training remains a challenge. This thesis also confirms that findings

from the field of psycholinguistics can be employed in order to improve the results

of a neural model that takes eye gaze data as input. This is a small step towards

models that can potentially one day reach application-relevant results, eliminating

the need for laborious text comprehension assessments.
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CHAPTER 9. CONCLUSION

To conclude, my findings reinforce the notion that linguistic annotation of the stimu-

lus texts is beneficial in tasks that infer labels that are related to cognitive processes

from eye-gaze data using neural networks. Future research should focus on develop-

ing application-relevant models by further exploring model architectures and input

features with an emphasis on alleviating the trade-off between different evaluation

setting occurring due to the use of scanpath and linguistic features.
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A Tables

subject session text screen
CURRENT FIX INTEREST AREA

X Y ID LABEL RUN ID

4 2 1 1 139.4 136.2 2 o 1

4 2 1 1 203.1 135.1 7 w 1

4 2 1 1 240.4 138.8 10 d 1

4 2 1 1 396.2 136.7 22 l 1

4 2 1 1 523.3 131.3 32 c 1

4 2 1 1 667.5 173.4 83 2

4 2 1 1 761.7 154.4 83 2

4 2 1 1 862.2 136.8 58 g 1

4 2 1 1 691.5 145.5 83 3

4 2 1 1 640.3 145.4 83 3

4 2 1 1 706.3 151.5 83 3

4 2 1 1 875.4 143.5 83 3

4 2 1 1 1050.8 126.1 72 M 1

4 2 1 1 1038.0 124.2 71 1

4 2 1 1 1141.0 138.1 79 n 1

4 2 1 1 1190.2 144.9 83 4

4 2 1 1 245.5 188.8 93 o 1

Table 11: InDiCo fixation report for participant 4, session 2, text 1, screen 1 after
data cleaning. There is one fixation per line, with the vertical and hori-
zontal location of the fixation. Interest areas are on the level of character
after exporting the fixation report from SR Research Dataviewer. The
interest areas are indexed and the variable RUN ID denotes how many
times the current character has already been fixated. Underscores signify
fixations outside an interest area.
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subject session text screen
CURRENT FIX INTEREST AREA

X Y ID LABEL RUN ID

4 2 1 1 139.4 136.2 1 Wohin 1

4 2 1 1 203.1 135.1 2 wird 1

4 2 1 1 240.4 138.8 2 wird 2

4 2 1 1 396.2 136.7 5 Klima 1

4 2 1 1 523.3 131.3 6 entwickeln? 1

4 2 1 1 862.2 136.8 10 Folgen 1

4 2 1 1 1050.8 126.1 13 Menschen 1

4 2 1 1 1141.0 138.1 13 Menschen 2

4 2 1 1 245.5 188.8 15 Mitteleuropa 1

4 2 1 1 182.0 190.4 15 Mitteleuropa 2

4 2 1 1 391.8 180.6 17 rechnen? 1

4 2 1 1 1144.4 185.7 26 hin 1

4 2 1 1 1191.3 188.7 27 zu 1

4 2 1 1 245.5 225.3 28 Befürchtungen, 1

4 2 1 1 356.4 225.2 29 dass 1

4 2 1 1 467.8 229.5 31 wegen 1

4 2 1 1 537.1 237.4 32 des 1

Table 12: InDiCo fixation report for participant 4, session 2, text 1, screen 1 after
fixation mapping. There is one fixation per line, with the vertical and
horizontal location of the fixation. Interest areas are on the level of words.
The interest areas are indexed and the variable RUN ID denotes how many
times the current character has already been fixated. Underscores signify
fixations outside an interest area.
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X Y ID LABEL RUN ID ffd tfd n fix fpr n regressions norm

139.4 136.2 1 Wohin 1 256 256 1 0 0.0

203.1 135.1 2 wird 1 192 370 2 0 0.0

240.4 138.8 2 wird 2 192 370 2 0 0.0

396.2 136.7 5 Klima 1 128 128 1 0 0.0

523.3 131.3 6 entwickeln? 1 313 313 1 0 0.0

862.2 136.8 10 Folgen 1 138 138 1 0 0.0

1050.8 126.1 13 Menschen 1 336 506 2 0 0.0

1141.0 138.1 13 Menschen 2 336 506 2 0 0.0

245.5 188.8 15 Mitteleuropa 1 147 332 2 0 0.018182

... ... ... ... ... ... ... ... ... ...

980.9 541.7 99 Patzelt 1 269 437 2 0 0.0

1001.0 540.8 99 Patzelt 2 269 437 2 0 0.0

162.3 589.7 102 3000 1 267 267 1 0 0.009091

259.6 578.2 103 Quadratkilometer 1 166 166 1 0 0.0

603.5 585.7 107 dieser 1 304 304 1 0 0.0

257.5 633.2 113 Gleichzeitig 1 110 431 3 0 0.018182

191.1 626.1 113 Gleichzeitig 2 110 431 3 0 0.018182

232.0 635.2 113 Gleichzeitig 3 110 431 3 0 0.018182

435.0 628.4 116 aufgrund 1 229 229 1 0 0.0

644.8 632.5 118 wärmeren 1 243 243 1 0 0.0

771.3 635.3 119 Temperaturen 1 231 231 1 0 0.0

292.1 677.2 127 verschoben. 1 153 292 2 0 0.009091

222.6 683.1 126 oben 1 173 173 1 1 0.0

333.2 675.3 127 verschoben. 2 153 292 2 0 0.009091

Table 13: InDiCo reading measures for participant 4, session 2, text 1, screen 1.
There is one fixation per line with interest areas on the token-level and
fixations outside of interest areas removed. ID and label indicate which
word has been fixated, X and Y denote the horizontal and vertical position
of the fixation and Run ID is the running count of the number of fixations
on a word. For a description of the reading measures, see section 5.1.2.2
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X Y ID LABEL RUN ID ffd tfd n fix fpr n regressions norm

348.7 182.0 21 long 1 26 364 2 0 0.0

630.5 400.3 69 safe 1 216 364 2 1 0.006849

492.0 400.2 66 boundless 1 125 315 2 0 0.006849

526.6 390.5 67 world, 1 486 1040 2 0 0.0

545.8 397.9 67 world, 1 486 1040 2 1 0.0

525.7 181.8 24 other 1 158 372 2 1 0.013699

167.3 124.8 1 Even 1 194 194 1 0 0.006849

270.9 111.3 3 my 1 210 449 2 0 0.006849

344.1 115.3 5 friends 1 228 228 1 1 0.0

242.6 113.3 3 my 2 210 449 2 0 0.006849

225.6 114.6 2 then 1 117 117 1 0 0.0

327.4 119.3 4 only 1 174 174 1 0 0.0

476.0 115.4 7 made 1 261 261 1 0 0.0

604.5 126.7 9 paper 1 255 255 1 0 0.0

691.2 128.0 11 ink. 1 179 179 1 0 0.0

794.7 123.7 13 school 1 135 135 1 0 0.0

854.8 127.6 15 had 1 149 149 1 0 0.0

92.0 207.0 16 learned 1 186 186 1 0 0.006849

... ... ... ... ... ... ... ... ... ...

Table 14: SB-SAT reading measures for participant 1, session 1, text 1, screen 1.
There is one fixation per line with interest areas on the token-level and
fixations outside of interest areas removed. ID and label indicate which
word has been fixated, X and Y denote the horizontal and vertical position
of the fixation and Run ID is the running count of the number of fixations
on a word. For a description of the reading measures, see section 5.1.2.2
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