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Abstract

Statistical Machine Translation from English to German is challenging due to the mor-

phological richness of German and word order differences between the two languages.

Aiming at a better translation of selected linguistic phenomena, we explore the use

of automatically computed syntactic information in translation models, language mod-

els, and for reordering. We find that the syntactic head and role of source text words

are helpful during translation, even though data in the syntactically enriched transla-

tion models is sparse. We investigate the effects of data sparseness in the syntactically

enriched models, and how a deterioration in translation quality can be avoided by com-

bining them with more general models. By combining syntactically enriched translation

models and a surface form translation model through a back-off-chain, we obtain a

small improvement in translation quality.
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1 Introduction

1.1 Machine Translation

We live in a world in which most physical boundaries to communication have been

overcome. Thanks to a dense net of data wires and radio technology, communication

between any two points on Earth has become almost instantaneous. Just as importantly,

the World Wide Web has allowed us to organize information comprehensively, so that

we can find and access what is relevant to us in spite of the sheer amount of data

available. However, one important boundary remains: the language barrier.

Even before the advent of the Internet, it had been recognized that the steadily in-

creasing volume of publications and the growth of international cooperation was putting

huge demands on the translation community (Hutchins 1978). Today, we are regularly

confronted with situations in which a translation of a text, spoken or written, would

be desirable, but too expensive and/or too slow to be economically viable. Machine

Translation (MT) tries to close this gap by automating the translation process, and as a

result providing fast translations at little cost.

The automatic translation from one language to another is an extremely challenging

task, mainly due to the fact that natural languages are ambiguous, context-dependent

and ever-evolving. In this light, being able to automatically translate any type of text

from and to any language is an unrealistic goal. Still, MT has proven useful, and

Hutchins (1999) lists various areas where MT systems have been successfully employed.

MT systems can quickly produce rough translations of electronic texts, and are popu-

lar as a reading assistance for foreign-language Web pages and e-mails. Another field

in which MT systems can excel is the real-time translation of repetitive language, for
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1 Introduction

instance weather reports. Generally, MT mostly fills niches where human translations

would be too costly or slow. If the quality of the translations needs to be high and

the texts are linguistically sophisticated, human translators are unrivalled. However, it

is possible to use MT systems as a supporting tool in the human translation process.

Depending on the degree of automation, these approaches are called Machine-Assisted

Human Translation or Human-Assisted Machine Translation (Kay 1982).

Finding real-world applications for MT systems is easy. More problematic is the ques-

tion as to how automatic translations can be achieved. The various approaches to MT

can be divided into two major categories: rule-based MT and corpus-based MT.

The difference between [rule-based MT] and [corpus-based] MT can be

described as “deductive” vs. “inductive” MT. The fundamental difference

between these is the source of knowledge that eventually determines the

behavior of the system. Deductive MT systems rely on linguists and lan-

guage engineers, who create or modify sets of rules in accordance with their

knowledge, expertise, and intuition. In inductive MT systems, the rules are

derived by the system itself and rely on a given set of translation examples.

(Carl et al. 2000)

Both approaches have their strengths and weaknesses. The biggest disadvantage of rule-

based systems is the amount of human work required to write the rules, and the fact

that the rules can rarely be re-used for other tasks. The degree to which a rule-based

system can be re-used depends on its level of abstraction. A rule-based system that uses

little or no abstraction, but executes rules that translate directly from one surface string

into another, called direct translation, needs a new set of rules for every translation

direction. In other words, one needs to write n2 − n sets of rules if one wishes to cover

all translation directions for n languages. The ultimate goal of research in rule-based

MT would be a language-independent representation level, or interlingua, which could

serve as an intermediate step in every translation task. This would reduce the number

of rule sets that need to be explicitly written to 2n for n languages: one set for every

16



1.2 Objectives and Structure

source language that analyses a text and creates its interlingua representation, and one

for every target language that generates the output sentence from the interlingua. An

interlingua that can capture the meaning of a sentence without ambiguities and loss of

information is still far away, though.1

Corpus-based approaches also depend on human work, but this work mainly consists

of building multilingual corpora containing thousands of sentences and their transla-

tions. If such corpora already exist, an MT system can be built with relatively little

work. The component that learns translation rules from the corpus is mostly language-

independent, and can thus be re-used for different translation tasks. Koehn (2005)

demonstrates the ease with which MT systems can be built with a corpus-based ap-

proach by training 110 translation systems – from and to each of 11 languages – within

three weeks.

1.2 Objectives and Structure

In this thesis, we will work with Statistical Machine Translation (SMT), a corpus-based

approach that uses mathematical models instead of linguistically motivated ones. The

quality of SMT heavily depends on the language pair and translation direction. Gen-

erally, translations between related languages are easiest. Koehn (2005) reports good

results for translations between the Romance languages French, Spanish and Italian. In

contrast, translations into German are unsatisfactory, even when translating from re-

lated languages such as Dutch and English. In Koehn’s study, only systems translating

into Finnish performed worse.

What German and Finnish have in common is their rich morphology, which has been

identified as the main difficulty. German noun phrases are marked for case, gender and

number, which are expressed as different word endings. The statistical model often has

no means of generating the right word ending from the source word, especially if the

1Naturally, direct and interlingual translation are not the only possible levels of abstraction, but just the
extremes.
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1 Introduction

source text has no case markings. Our main research question is if we can resolve trans-

lation ambiguities by incorporating automatically computed syntactic information into

the translation process. We will work with the translation pair English – German and

a corpus of proceedings of the European Parliament. Additionally, we will investigate

other methods of integrating syntactic information into the baseline SMT system.

The following chapter introduces the theoretical foundations of Statistical Machine

Translation, with a focus on the Moses system, which we used for all experiments. Then,

we will describe how translation quality is measured and how we can try to optimize the

results with a given model. The subsequent chapter is devoted to a linguistic discussion

as to what information a syntactic analysis provides and how we can use it for SMT.

This is followed by the experimental section, where we describe and evaluate a baseline

system and different experiments we performed. As a conclusion, we will summarize

the most important findings and provide an outlook for possible future research.

18



2 Statistical Machine Translation

2.1 Probabilistic Foundations

The basic idea in Statistical Machine Translation (SMT) is to assign probabilities to

translations. If we task a hundred professional translators with translating a simple

sentence such as example 1, there are several translations that we expect (e.g. example

2), while we would be surprised by others (such as example 3).

1. All the world’s a stage.

2. Die ganze Welt ist eine Bühne.

3. Etwas ist faul im Staate Dänemark.

Intuitively, we expect a translation to be good, assuming that the translators are compe-

tent. In other words, we deem a good translation to be more probable than a bad one.

A probabilistic approach such as SMT exploits this connection between the probability

of a translation and its quality. Instead of trying to produce good translations, SMT

aims to produce probable ones; quality is achieved indirectly. Whether a translation is

probable or not is, as in other corpus-based approaches, learned from a parallel corpus,

a collection of sentences and their respective translations. For now, let us suppose that

our corpus was built by asking a hundred people to translate example 1.

Formally, we express the probability of an event x , denoted by P(x), on a scale from 0

(impossible) to 1 (certain). The probability of a target sentence T being the translation

of a source sentence S is expressed as P(T |S). This is a conditional probability, which

says that we can disregard all sentences that are not translations of S. Probabilities are
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2 Statistical Machine Translation

estimated by counting from a set of data, a parallel corpus in our case. Hence, P(T |S)

is estimated by counting the number of sentence pairs where T is the translation of S,

and dividing the result by the total frequency of S (equation 1).

P(T |S)≈
count(T, S)
count(S)

(1)

This approximation is known as maximum-likelihood estimation (MLE), since it leads to

probabilities that maximize the likelihood of the data we observe in the corpus. Go-

ing back to the one hundred translations of all the world’s a stage, choosing the best

translation is easy: we simply select the most frequent one. This will only result in a

bad translation if the majority of the people mistranslated the sentence; in those cases,

nobody expects an automatic system to succeed anyway.

Fundamentally, all statistical approaches in natural language processing can be di-

vided into two steps: firstly, train a statistical model by estimating probabilities from a

training corpus; secondly, use the model to generate or find an output O that maximizes

P(O|I) for a given input I . The first step is known as training phase, while the second

is the decoding phase, owing to Weaver’s famous metaphor of translations as a crypto-

graphical problem (1949/1955). Statistical approaches are successfully used in many

fields of computational linguistics, including parsing, tagging, and speech recognition.1

So far, our discussion of SMT has been largely hypothetical. In reality, we do not have

the luxury of possessing a hundred human translations for every sentence we wish our

SMT system to translate. Actual SMT systems do not operate on the sentence level due

to limited data. To show what is realistically possible, we will now describe how the

data for SMT is obtained, and then proceed to introduce actual, more fine-grained SMT

systems.

1see (Manning and Schütze 1999) for an overview.
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2.2 Parallel Corpora

2.2 Parallel Corpora

Statistical Machine Translation is corpus-based, and consequently requires a parallel

corpus to learn a model, i.e. to estimate translation probabilities. Parallel corpora are

different from normal text corpora in that they are not just a collection of texts, but are

bi- or multilingual and structured so that every sentence is linked to its translation(s).

Of course, researchers in SMT have neither the time nor the money to hire experts to

translate tens or hundreds of thousands of sentences. This would also negate one of

the major advantages of SMT, namely that a system can be adapted to new domains or

languages pairs with relatively little effort. Instead, it is sensible to adapt pre-existing

and openly available corpora to our purpose.

Early experiments on SMT were performed with the proceedings of the Canadian

Parliament (Brown et al. 1990). Due to Canada’s bilingualism, the proceedings of the

Canadian Parliament are published in both French and English. These proceedings can

be easily obtained and freely used. Additionally, the amount of text is extensive: Brown

et al. (1990) report that they could obtain a corpus of 100 million words.

What is missing is a sentence-level alignment between the English and the French

version of the proceedings. If we want to apply equation 1 to estimate translation

probabilities from the corpus, we need to know which sentences are translations of each

other, or aligned. It would be naive to assume that the nth sentence in the source text

corresponds to the nth sentence in the target text. Brown, Lai and Mercer (1991) note

that “at times a single sentence in one language is translated as two or more sentences

in the other language. At other times a sentence, or even a whole passage, may be

missing from one or the other of the corpora.”

The proceedings of the Canadian Parliament are practical for sentence alignment in

that they contain meta-textual information that can be used as anchor points. These

include “session numbers, names of speakers, time stamps, question numbers, and in-

dications of the original language in which each speech was delivered” (Brown, Lai and

Mercer 1991). Since these comments are the same in both language versions of the pro-
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2 Statistical Machine Translation

ceedings, they can be used for a first alignment. If there are several sentences between

two anchors, a sentence-level alignment is conducted based on the number of tokens

the sentences contain. Brown, Lai and Mercer (1991) report that this method leads to

an accuracy “in excess of 99%”.

Apart from the availability of the different corpora and the feasibility of sentence-

level alignment, there are various other selection criteria that need to be considered

when choosing a corpus for SMT. There are obvious ones such as the quality and style

of the translation. Ideally, a training corpus should be as similar as possible to the type

of text we wish to translate. If a SMT system is used to translate texts on other topics

than the training data, and are written in a different style, its performance will suffer.

Experiments have shown that better results can be achieved with a smaller in-domain

training corpus than a larger out-of-domain one (Koehn 2002). For research purposes,

we are usually not bound to a specific text type. Consequently, we can circumvent this

problem by selecting the training data first and then choosing a test set that fits the

training data. Usually, part of the original corpus is held out from training so that it can

be used for testing.

Today, the parallel corpus most frequently used in research is Europarl, which is based

on the proceedings of the European Parliament (Koehn 2005). At the time the corpus

was built, the proceedings were published in 11 languages, so that it can be used to train

translation systems for 110 language pairs. The quality of sentence-level alignment is

high thanks to clear and frequent anchor points. We will use Europarl to work on the

language pair English – German. The corpus contains about one million sentences (35

million words) and will be described in more detail in the experiments section.

Now that we know the size of a typical training corpus, we can judge the effectiveness

of a sentence-level MT system. Using approximately 1,000,000 sentences of Europarl

as a training corpus, and 1000 random others as a test set, we found only 15 of the test

sentences in the training corpus.2 While we have so far only discussed how to translate a

2This number varies with the text genre: Hardmeier (2008) reports that sentences are often short and
repetitive in the genre of film subtitles.
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2.3 Word-Based Machine Translation

sentence that occurs in the training corpus, the real challenge lies in translating unseen

sentences, that is, sentences that never occur in the training corpus. Considering the

large proportion of unseen sentences in our test set, it is clear that these sentences

cannot be simply ignored; nor is an increase in corpus size a promising and feasible

solution. The problem of not having enough data is generally known as data sparseness,

and is common to all statistical approaches. The solution is a more fine-grained system

that calculates probabilities on a word level instead of a sentence level. An inspection

of our test set shows that this makes sense. All but 50 of the 28,000 words in our test

set also occur at least once in the training corpus. Of the 50 that do not, most are either

proper names, which can be left untranslated, or hyphenated words.3

2.3 Word-Based Machine Translation

We have seen that sentences are ill-suited for probability estimations, and that a more

fine-grained approach is sensible. Indeed, the first successful SMT systems worked on

a word level (Brown et al. 1990). Interpreting a sentence as a sequence of words, we

can rephrase the translation probability as in equation 2, sn and tn being the individual

words in the source and target sentences S and T :

P(T |S) = P(t1, t2, ..., tn|s1, s2, ..., sn) (2)

The next central step is to apply Bayes’ theorem:

P(T |S) =
P(S|T ) ∗ P(T )

P(S)

=
P(s1, s2, ..., sn|t1, t2, ..., tn) · P(t1, t2, ..., tn)

P(s1, s2, ..., sn)

(3)

3The portion of unseen surface forms is bigger when German is the source language, with 200 out of
26,000 test set words not occurring in the training corpus, including gems such as Luftverkehrsknoten-
punkten (simply translated as airports) or EU-Schulmilchprogramm (the EU’s school milk programme).
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2 Statistical Machine Translation

It may not be immediately apparent what benefit the Bayesian inference in equation 3

brings. The reason for applying it lies in the way the probabilities are approximated.

Approximations of P(T |S) are imperfect, though no more so than those of P(S|T ). P(T )

formalizes our expectation of a good sentence in the target language, and is easier to

approximate than the translation probability in either direction. This will become clear

when discussing how P(S|T ) is approximated in the translation model (TM), P(T ) in

the language model (LM). Since we are interested in translating a given source sentence,

which is the same for every potential translation, we can treat P(S), the probability that

someone utters S in the source language, as a constant, and ignore it in our computa-

tion.

Equation 4 is universally true, but does not help us directly (see (Brown et al. 1990)).

It illustrates the fact that the probability of a sentence can be reformulated as a chain of

probabilities, the probability of each word depending on all preceding words.

P(t1, t2, ..., tn) = P(t1) · P(t2|t1) . . . · P(tn|t1, t2, . . . , tn−1) (4)

The probability of a chain of events is easier to compute if the events are independent,

i.e. if P(tn|t1, t2, . . . , tn−1)= P(tn). This is true for an ideal die, for which the observation

1-2-3-4 is just as probable as 2-4-1-3, but not for languages; intuitively, all the world’s

a stage is uttered more frequently, and hence more probable, than stage world’s the a

all. Still, we now make this independence assumption, also called Markov assumption,

in order to counter data sparseness, however inaccurate it is for natural languages. For

unseen sentences, we cannot estimate P(tn|t1, t2, . . . , tn−1). P(tn), on the other hand,

can easily be estimated through MLE, as long as tn is in the training corpus. In equation

5, we make the Markov assumption and rephrase the probability of a sentence as the

product of the probabilities of all individual words, or unigrams.

P(t1, t2, ..., tn)≈
n
∏

i=1

P(t i) (5)
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A unigram-based language model ignores word order. If we assign the probability 0.1

to a and 0.01 to stage, a stage and stage a would return the same probability, namely

0.001. We expect this to be wrong, and we can improve the model by introducing n-

grams of a larger order. Most language models are n-gram-based, an n-gram being a

sequence of n words. Conceptually, this means that the probability of a word tn in a

sentence depends on the (n− 1) words preceding it. While longer n-grams are more

informative, their drawback is that they are also more sparse. If no data for a given

n-gram is found in the training corpus, lower order n-grams are used via back-off or

interpolation (see (Stolcke 2002)). N -gram language models are efficient, robust and

allow for the incorporation of larger monolingual corpora into the translation system

(see (Federico and Cettolo 2007)).

More challenging than the language model is the translation model that estimates the

probability P(S|T ). Generally, we can make the same independence assumption as in

equation 5, approximating the translation probability as the product of P(si|t i). Firstly,

however, we have to consider word alignment: it would be fatal to assume that the nth

word in the source sentence is aligned with the nth word in the target sentence. Going

back to examples 1 and 2, this naive assumption would lead to a translation model

that considers German die a translation of all, and ganze a translation of the. Moreover,

one word in the source language may be translated with several words in the target

language, and vice versa. A typical example for this are German composite words such

as Bühnenanweisung, which is translated as stage direction.

Brown et al. (1993) have proposed the first models for word alignment. The align-

ment algorithm takes into account the count of word pairs, sentence length and word

order to estimate the alignment. Brown et al. (1993) stress that their algorithm “in-

volves no explicit knowledge of either French or English”. All alignments are discov-

ered with a language-independent algorithm. While research on better word alignment

models has continued in the last 15 years (Vogel, Ney and Tillmann 1996; Och and

Ney 2003; Fraser and Marcu 2007), these so-called IBM Models introduced in the early
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1990s are still influential today and are implemented in GIZA++ (Och and Ney 2003),

which is considered state-of-the-art (Fraser and Marcu 2007).

The IBM models calculate word alignment in each translation direction indepen-

dently. By intersecting the two alignments, we can increase precision at the cost of

recall; by taking the union, we get a high-recall alignment with low precision. Differ-

ent heuristics have been applied to make best use of the bidirectional alignment (see

(Koehn, Och and Marcu 2003)).

Having obtained a word-level alignment between the two languages, we can now esti-

mate the word translation probabilities analogous to equation 1. The only modification

we have to make is that we do not count actual occurrences in the corpus, but align-

ment pairs. A word can have several alignments (or be unaligned), so that the number

of aligned word pairs that include t can be different from count(t). Equation 6 takes

this into account and expresses the probability of a word pair (s, t) as the frequency of

that word pair, divided by the frequency of all word pairs that include t, regardless of

the source language word.

P(s|t)≈
count(s, t)
∑

s′ count(s′, t)
(6)

Now, we need to consider differences in word order a second time. Given a perfect

word alignment, translating example 1 word-by-word would result in this sentence:

Ganze die Welt ist eine Bühne. What we need to do is to allow for an amount of dis-

tortion or reordering in our translations. We introduce a distortion parameter PD(S, T )

to our model that penalizes the probability of a translation depending on the number

of reordering steps made. This parameter is balanced by the language model, which

hopefully prefers die ganze Welt over ganze die Welt. Without a language model, zero

distortion is always preferred.

So far, the discussion of the different models has been focused on the training phase.

In the so-called decoding phase, where we want to use existing models to actually trans-

late a sentence, we can use related formulas. The main difference is that we no longer
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want to find out P(T |S) for two given sentences T and S, but T̂ , that is the most proba-

ble sentence in the target language for a given source sentence S. This leads to equation

7.

T̂ = arg max
T
(PLM(T ) ∗ PT M(S|T ) ∗ PD(S, T )) (7)

Modern SMT systems are built on this statistical foundation. We will now discuss the

implications that word-based systems and the need of computing word alignment have

for the use of parallel corpora, and then describe how this word-based approach was

improved in state-of-the-art systems.
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2.4 Parallel Corpora and Word Alignment

In the first discussion of parallel corpora, we saw that sentence alignment is a conditio

sine qua non for using parallel corpora for SMT. However, sentence alignment is not

sufficient when decomposing the translation of a sentence into the translation of its

individual words. This leads to new problems.

First, let us consider the effect of non-literal translations. The Europarl corpus con-

tains the following sentence pair:

4. This week has seen some 1,400 jobs lost in the footwear industry in England to

low-cost producers overseas.

5. Just in dieser Woche gingen ca. 1400 Arbeitsplätze in der englischen Schuhindus-

trie an Billigproduzenten in Übersee verloren.

This translation is fine on a sentence level. If we look at the translation of the English

phrase has seen, we notice that there is no literal translation in the German sentence. In

such cases, there is a strong likelihood that word alignments that we intuitively consider

wrong are learned in the training phase, such as (has seen|gingen). This generally

decreases the quality of a translation model.4

One of the disadvantages of Europarl is that the sentences are long, the average being

approximately 26 tokens per sentence in the German corpus (after tokenisation). When

working with the Europarl corpus, it is recommended to ignore the longest sentences in

the training phase, since establishing a word alignment becomes more computationally

expensive and less accurate for long sentences. By filtering out all sentences containing

more than 40 tokens, the sentence average can be brought down to 20 tokens per

sentence.

This is still a lot more than in other genres. Hardmeier (2008) reports that film

subtitles are typically short, with an average of 11 tokens per subtitle, because they

have to be readable in the short time that they appear on the television screen.
4For input sentences that are identical or very similar to the training material, an alignment we consider

wrong can actually produce a good translation.
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Not all problems are stylistic in nature. There are also linguistic phenomena that im-

pede word alignment, for instance discontiguous phrases (see (Bod 2007)). In German

V2 clauses (main verb in second position), verbal particles occur in clause-final position.

In between the main verb and the verbal particle, any number of other words may occur.

This is illustrated in example 6.

6. We propose a temporary Commission [. . .]

Wir schlagen eine provisorische Kommission vor [. . .]

In theory, the IBM word alignment algorithm can align one word in English with a

German word sequence of arbitrary length. However, it is not able to do so if the

German phrase is discontiguous. Neither the alignment pair (schlagen|propose) nor

(schlagen eine provisorische Kommission vor|propose) is satisfactory. One approach

to deal with this problem is rule-based reordering, which we will discuss later.

2.5 State-of-the-Art in SMT: the Moses Toolkit

We use Moses for our experiments. Moses is an open source toolkit that includes all

components necessary to build a phrase-based SMT system (Koehn et al. 2007), only

relying on external tools for the creation of the language model and word alignment.

There have been some important developments in SMT since (Brown et al. 1990) that

have found their way into the Moses system. We will lay out some key changes in the

following sections.

2.5.1 Log-Linear Models

We know that the methods for obtaining the different models in equation 7 are only ap-

proximations. Och and Ney (2001) therefore suggest that there is no reason to assume

all system components should be weighted equally. New combinations of the different

models can be achieved through log-linear modeling, which increases the flexibility of

the system. Specifically, each model component h, for instance the language model, is
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modified by a model parameter λ, which determines its weight on the result (Koehn

and Hoang 2007).

T̂ = argmax
T

n
∏

i=1

hi(T, S)λi

= argmax
T

n
∑

i=1

λi ∗ loge hi(T, S)

(8)

This allows for the inclusion of additional features that need not be mathematically jus-

tified, as long as they improve the results. For instance, the translation model PT M(T |S),

which has been replaced with PT M(S|T ) due to the application of Bayes’ theorem, is rein-

troduced as an additional feature. Och and Ney (2001) list the inclusion of additional

language models, of lexical resources, or a sentence length feature, as possible uses of

this generalization.

An SMT system built with the default settings of Moses combines 14 different com-

ponents. 5 components are provided by the translation model, these being the phrase

translation probability in both directions, the lexical weight in both directions5, and a

constant phrase penalty that favours translations that use longer, but fewer phrases.

The distortion model contributes 7 components, and the remaining two are the LM and

a word penalty that controls the length of the translation.

Log-linear models are a great framework to experiment with new model components.

Their only drawback is that they rely on a method to find the best parameters λ. How

good the parameters are can only be determined if we have a way of measuring the

quality of the resulting translations. Hence, this discussion will take place in the chapter

on translation quality, chapter 3.

5See section 2.5.2 for details.
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2.5.2 Phrase-Based Translation

Intuitively, we know that the translation of a word depends on its context. A word-for-

word translation of take the floor does not convey the intended meaning. The phrase

is not meant literally, but rather in the sense of give a speech. Translating the phrase

word-by-word into German leads to den Boden nehmen, which does not convey the

right meaning. A good translation into German is das Wort ergreifen (literally: grab

the word). Although such idiomatic expressions are extreme examples, word-for-words

translations are rarely ideal. Even the translation of common words such as heavy is

highly ambiguous, its possible translations being schwer, stark, or heftig, among others.

Consider figure 2.1 for examples in context.

English phrase German translation
a heavy stone ein schwerer Stein
heavy traffic starker/dichter Verkehr
heavy resistance grosser/heftiger Widerstand
a heavy fine eine hohe Buße
heavy pressure grosser Druck

Figure 2.1: Different translations of heavy depending on context.

In word-based SMT, the translation model is built with the assumption that the in-

dividual word translations are independent of each other, which is clearly inadequate.6

Koehn, Och and Marcu (2003) introduced a partial solution to this problem by modify-

ing the translation model so that not only words, but also longer phrases can be treated

as single units of translation. A phrase, in the context of phrase-based SMT, is not a

linguistically motivated unit, but can be any sequence of words.

The phrase alignment is extracted from the word alignment data: “We collect all

aligned phrase pairs that are consistent with the word alignment: The words in a legal

phrase pair are only aligned to each other, and not to words outside” (Koehn, Och and

6Context is considered in the language model, and consequently, the right translation of heavy might be
picked for the examples in figure 2.1. Still, trying to improve the translation model directly is a good
idea.
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Marcu 2003). This heuristic is simple to implement and has been shown to produce

good results.

Formally, we no longer decode the source sentence S into n words sn
1 , but into I

phrases of arbitrary length sI
1. The phrase translation probability is expressed asφ(si|t i),

which leads to a new formula for the translation model:

PT M(s
I
1|t

I
1) =

I
∏

i=1

φ(si|t i) (9)

The distortion parameter is similarly adjusted to work on a phrase level. The phrase

translation probability is still estimated by MLE, as in equation 6.

The quality of phrase pairs is further validated by a lexical weight lex(s|t). The

central idea of the lexical weight is to check if the individual words of a phrase pair are

good translations of each other. The lexical weight of a word pair is estimated likeφ(s|t)

by MLE (see equation 6).7 The lexical weight of phrase pairs is then calculated as the

product of the lexical weight of all aligned word pairs. As a simple example, the lexical

weight for the phrase pair (the dog|der hund) (the being aligned with der and dog with

hund) equals lex(the|der) · lex(dog|hund). For source phrase words that are aligned

with several target phrase words, we do not multiply, but take the arithmetic mean of

the lexical weights (see (Koehn, Och and Marcu 2003) for more on the calculation of

lexical weights). The lexical weight is added as an additional component to the log-

linear model and improves BLEU score up to 1 point8, compared to a phrase-based

system without lexical weighting.

Phrase alignment is superior to word alignment, but inherits some of its limitations.

Phrase alignment is blind to discontiguous phrases such as the one we have seen in

7For phrase pairs which consist of only one word on both the source and target side, we would expect
φ(s|t) to be equal to lex(s|t). This is not the case, however, because the two are based on slightly
different alignments. φ(s|t) is based on the intersection of the two mono-directional alignments
produced by GIZA++, and ignores unaligned phrases. lex(s|t) uses the mono-directional alignment
and includes unaligned phrases, and consequently has a larger denominator in equation 6. This means
that lex(s|t) is equal or lower than φ(s|t) if both phrases are of length 1.

8We report all scores on a scale from 0 to 100 (in contrast to a scale from 0 to 1, which is also common).
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example 6, and will not translate them correctly in most instances.9 Still, phrase-based

SMT is the dominant paradigm in machine translation research at the time of this writ-

ing.

2.5.3 Factored Models

One application of log-linear models is the introduction of factored translation models

(Koehn and Hoang 2007). Factored models are a framework that allow the integration

of linguistic information into SMT. In this framework, words are represented as a vec-

tor of factors factor0|factor1|factor2..., for example häuser|haus|NN, factor0 being the

surface form, the additional factors its lemma and POS tag. Technically, this vector is

treated like a normal string in each model. The important characteristic of the factored

framework is that we can define which factors to use in which step of the training or

decoding process. For example, word alignment is usually performed on surface forms,

while the translation model may include several factors on either (or both) language

sides, or several translation steps with one factor each.

Along a translation path, one can freely combine several translation or language mod-

els that use different factors, since components that do not improve translation quality

will receive a low weight during training.10 One of the first proposed applications of

factored models was the addition of a language model on the level of POS tags (Koehn

and Hoang 2007), which requires a translation from surface word forms to target words

consisting of two factors, the surface form and its POS tag.

Optionally, we can set the system to use alternative translation paths. Phrase transla-

tions will then be taken from either TM, and scored separately. Which translation path

is preferred is determined by the weights. Koehn and Hoang (2007) implemented an

analytical model that translates word lemma and morphology separately, then gener-

ates the target language surface form from these two factors. This may help if the word

9The exception being when long phrase pairs such as (propose a temporary commission|schlagen eine
provisorische kommission vor) coincide with the source phrase that is to be decoded.

10It is important that a phrase pair occurs in each TM, otherwise it will not be used, even if the weight of
a TM is 0.
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häuser is unknown to the model, but haus is known. The analytical model has led to

lower scores if used instead of the direct translation model, but an improvement could

be achieved through alternative translation paths.11

2.5.4 Moses System Architecture

Having discussed the most important changes to the core of SMT, the algorithm that

calculates translation probabilities, let us now elaborate on the more peripheral compo-

nents of an SMT system such as Moses. Figure 2.2 shows the workflow during training

(from the corpora to the different models) and during decoding (from input to output).

It does not include optional steps/components such as syntactic parsing in preprocessing

or additional target language corpora. The model parameters are typically computed

through Minimum Error Rate Training (see section 3.2, page 43).

decoder
lowercaser;
tokenizer

input

recaser;
detokenizer

output

translation model;
reordering model

lowercaser;
tokenizer;

sentence aligner;
word aligner

source language corpus target language corpus

language modelmodel parameters

Figure 2.2: Moses flowchart

11While the weights were not discussed in Koehn and Hoang 2007, this would be achieved by setting
high weights for the analytical translation model. Since high weights lead to low probabilities, this
ensures that the analytical translation path is only used if the direct translation model yields no result.
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We have already established how we use models to estimate the translation probabil-

ity for a given sentence pair, but it would be inefficient to randomly generate possible

output sentences and compute their score from the models. The Moses decoder employs

a beam search algorithm (Koehn, Och and Marcu 2003). The algorithm generates out-

put sentences from left to right, sorting the partial translations (hypotheses) according

to their probability estimate. Any hypothesis that is not among the n best is discarded

to speed up decoding. While decoding is an integral part of SMT, a detailed discussion

is beyond the scope of this thesis; the decoder is not affected by our experiments and

does not contribute to changes in translation quality.

Before the input sentence is processed by the decoder, it is typically lowercased and

tokenized. Both the lowercaser and the tokenizer are rule-based, and the tokenizer

may include language-specific rules, typically lists of abbreviations that should not be

tokenized. After decoding, a detokenizer and recaser are used to restore untokenized

and mixed case text. While the detokenizer is again rule-based and mostly language

independent, capitalisation is more difficult to predict. At the core of the recaser are a

translation and language model trained on both the original and the lowercased target

language corpus. Recasing is thus treated as a translation problem, with the difference

that no reordering is necessary and that word and sentence alignment are trivial. Ad-

ditionally to the statistical component, the recaser contains capitalisation rules such as

always uppercasing the initial word in a sentence. These rules may be language-specific.

(De-)tokenizer, lowercaser and recaser are the only rule-based components of the

Moses system, and the only components that are language-specific, even though the

number of language-specific rules is low.
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3.1 Measuring Translation Quality

Any scientific theory has to be supported by hard facts. In a goal-oriented research

field such as machine translation, we have to prove the validity of new approaches by

showing that they improve translation quality, which is the main goal of MT research.1

Consequently, research is driven by evaluation results: approaches that improve transla-

tion quality become more wide-spread, and others are abandoned. While the scientific

discourse should not be limited to the discussion of results, it is a good thing that the

evolution of machine translation systems is driven by merit rather than anything else.

Let us first define some basic criteria that any potential metric of translation qual-

ity has to meet. Estrella (2008), who provides an overview over different evaluation

metrics, discusses several requirements: on a basic level, an evaluation metric has to

be meaningful, that is, its results should correlate with the actual characteristic it mea-

sures. It should also be objective (independent of the opinions of the evaluators), repeat-

able and reproducible (a second evaluation of a system in the same environment should

produce similar results), and reliable (free from random error).

3.1.1 Human vs. Automatic Evaluation

Originally, the task of measuring translation quality was exclusively performed by hu-

man judges. Designing an evaluation methodology that meets all the criteria laid out

in the previous section has proven difficult. Simply asking untrained people for their

1Of course, maximizing translation quality is not the exclusive goal: efficiency and adaptability are also
important characteristics of MT systems.
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opinion on a translation will not lead to objective results. In order to successfully use

human judgement in an evaluation, the characteristics that they have to evaluate, and

the scale which they should use, have to be well-defined.

White et al. (1994) suggested three aspects of translation quality, adequacy, fluency

and informativeness, that can be evaluated independently and, so they hoped, consis-

tently. Evaluating a translation was thus decomposed into judging how well the trans-

lation represents the source text (adequacy), to what degree the translation is a well-

formed, correct sentence (fluency), and if the information of the translation is compre-

hensible for readers (informativeness).

A common indicator for the reliability of human evaluations are inter- and intra-

annotator agreement. Inter-annotator agreement is measured by making different an-

notators evaluate the same set of sentences, intra-annotator agreement by randomly

repeating some sentences, so that they are evaluated twice by the same judge. In a

recent evaluation, inter-annotator agreement in sentence ranking was found to be fair

(around 0.37), while intra-annotator agreement was moderate (around 0.54) (Callison-

Burch et al. 2008).2 Callison-Burch et al. (2008) call the agreement “lower than [they]

would like it to be” and suggest refining the instructions given to annotators in order to

improve it.

Considering how difficult it is to make annotators judge sentences consistently, more

indirect metrics have been proposed. These include comprehension-based metrics for

which the human judges are asked “to read the machine translations and perform a

task that shows how much they understood from the translations”, and time-based met-

rics, where one measures “the time it takes a subject to execute a task with machine

translated texts, such as reading or correcting the texts” (Estrella 2008).

Regardless of how reliable human evaluations are, they are all expensive, both in

terms of time and money. Papineni et al. (2001) point out that “human evaluations

can take months to finish and involve human labor that can not be reused”. During

2The agreement is measured on a scale from 0 (no agreement) to 1 (perfect agreement), computed
using the kappa coefficient (κ).
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the development process, it is necessary to have quick and regular feedback on whether

modifications of the system improve its quality or not. Human evaluations cannot meet

this demand.

As a solution, Papineni et al. (2001) proposed BLEU, an automatic evaluation metric.

The central idea behind BLEU and other automatic metrics is to measure the similarity

of the MT output to one or several human reference translations. The underlying hy-

pothesis is that “the closer a machine translation is to a professional human translation,

the better it is” (Papineni et al. 2001). The score itself is a combination of n-gram counts

performed on the system and reference translations.

We will now discuss the methodology of n-gram metrics in more detail, since they

will be used for the evaluation of the experiments conducted for this thesis. A human

evaluation, although still considered superior if performed correctly, is not an option for

time and budget reasons.

3.1.2 N-Gram-Based Metrics: BLEU and NIST

BLEU (Papineni et al. 2001) is the most widely used method for automatic evaluation

of machine translation. As previously mentioned, it is based on the comparison of the

MT output with one or more human reference translations. Regardless of how this com-

parison is performed, relying on reference translations is error-prone. Two translations

that are both good in terms of fluency and adequacy can still be starkly different on a

surface level. Consider the following two translations of the source sentence (example

7). Example 8 is the human reference translation; example 9 is a MT system output3:

7. We know all too well that the present Treaties are inadequate [. . .]

8. Uns ist sehr wohl bewusst, daß die geltenden Verträge unzulänglich sind [. . .]

9. Wir wissen nur zu gut, dass die gegenwärtigen Verträge nicht ausreichen [. . .]

3taken from http://www.statmt.org/matrix/
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While both translations are perfectly adequate, they have little in common on the word

level, sharing only two of eleven tokens. Examples 8 and 9 illustrate that there are many

valid ways to express the same meaning. N -gram-based metrics are sensitive to even

small differences between system and reference translation. If a token in the system

translation is not found in the reference translation, the token is considered wrong,

even if the only difference is a spelling variation (dass vs. daß) or the ending of an

otherwise correct word.4

We are able to use several reference translations to increase the probability that a

good system output corresponds to at least one reference translation. Also, the effi-

ciency of BLEU allows for an increase in test corpus size, so that random effects are

averaged out. An increase in test size is not only possible, but also necessary because of

BLEU’s poor performance on single sentences. Only when comparing two systems based

on their respective translation of a large test set does the score correlate with human

judgement.

On a technical level, BLEU counts the n-gram precision of the translation that is eval-

uated (system translation). For every unigram in the system translation, the algorithm

checks whether this unigram also occurs in one of the reference translations. If a un-

igram occurs multiple times in the system translation, it is only counted as often as it

occurs in the reference translation (clipping). The same is then repeated with n-grams

of any length (usually up to four), and their geometric mean is taken as the result. Un-

igram precision disregards word order, while longer n-grams penalize translations that

contain the right words, but in the wrong order. Hence, Papineni et al. (2001) suggest

that unigram scores are a better indicator of adequacy, while longer n-grams correlate

with fluency.

One shortcoming of BLEU’s precision-based approach is that a shorter translation may

have high precision scores, even if they leave part of the source sentence untranslated.

4We suspect that this makes BLEU biased against morphologically rich languages. It is unclear how much
this bias contributes to the poor results of translations into Finnish and German in (Koehn 2005),
but the fact that Finnish also underperforms as source language shows that morphologically rich
languages are indeed difficult to translate, not only to evaluate.
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In BLEU, this is compensated with the so-called brevity penalty. The low recall of such

a translation is not directly measured in the BLEU score, since measuring recall is only

possible for individual reference translations, not entire sets of reference translations.

Instead, the brevity penalty makes sure that translations that are shorter than the short-

est reference translation receive a lower score.

While BLEU does correlate well with human judgement (Papineni et al. 2001; Baner-

jee and Lavie 2005), alternative metrics were proposed that eliminated some of BLEU’s

weaknesses. The NIST score introduced by Doddington (2002) is a derivative of the

BLEU scoring algorithm which adds a weighting of the n-grams according to their fre-

quency, weighting rare n-grams more heavily for the score. Additionally, the brevity

penalty has been modified and the arithmetic means of the n-gram scores is taken in-

stead of the geometric mean.

3.1.3 N-Gram-Based Metrics: METEOR

One criticism that is left unaddressed by these modifications to BLEU is the fact that the

BLEU/NIST metrics do not consider recall at all. Banerjee and Lavie (2005) point out

that recall is an important indicator of “to what degree the translation covers the entire

content of the translated sentence”. They propose the METEOR metric that includes

a calculation of recall. The problem of several reference translations being available,

which caused Papineni et al. (2001) to ignore recall, is solved by scoring recall for

each reference independently, and using the best score. METEOR is unigram-based

and does not use higher-order n-grams to measure fluency. Instead, Banerjee and Lavie

(2005) introduce a new measure of fragmentation that counts the number of chunks, i.e.

word sequences, that occur in both the reference translation and the system translation.

Fewer and longer chunks gain a higher score than many short ones. Banerjee and Lavie

(2005) report that METEOR correlates significantly better than both BLEU and NIST

with human judgement on a system level.
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3.1.4 Caveats for the Use of Automatic Metrics

There are voices that criticize the over-reliance of the MT community on BLEU and sim-

ilar automatic scores. A case in point is that a rule-based MT system obtained vastly

lower BLEU scores than SMT systems, even though the rule-based system was preferred

in a human evaluation (Callison-Burch, Osborne and Koehn 2006). This poses the dan-

ger that research is misdirected towards approaches that maximize BLEU scores instead

of translation quality. We can provide our own example of such an approach. We find

various spelling variations in the German section of Europarl, most notably dass and

daß. By normalizing the two forms to the one used in the test set, we were able to

increase the BLEU score by 0.7 points. Yet this normalization has no effect on how a

human would evaluate the translation.

Callison and Burch (2006) conclude that automatic evaluation metrics, while valuable

because of their being fast and inexpensive, should not be over-used:

Appropriate uses for Bleu include tracking broad, incremental changes to a

single system, comparing systems which employ similar translation strate-

gies (such as comparing phrase-based statistical machine translation sys-

tems with other phrase-based statistical machine translation systems), and

using Bleu as an objective function to optimize the values of parameters such

as feature weights in log linear translation models, until a better metric has

been proposed.

Inappropriate uses for Bleu include comparing systems which employ radi-

cally different strategies (especially comparing phrase-based statistical ma-

chine translation systems against systems that do not employ similar n-

gram-based approaches), trying to detect improvements for aspects of trans-

lation that are not modeled well by Bleu, and monitoring improvements

that occur infrequently within a test corpus. (Callison-Burch, Osborne and

Koehn 2006)
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There is a risk that the experiments conducted for this thesis fall under the category

of inappropriate uses, since some of the phenomena that benefit from syntactic infor-

mation are too infrequent to have an impact on BLEU scores. We will thus not only

perform a quantitative evaluation of the systems, but also provide an in-depth analysis

of selected translations to see if the experimental changes have the desired effect.

3.2 Optimizing Weights: Minimum Error Rate Training

In the introduction to phrase-based SMT, we saw that the different system components

are modified by weights so that their relative contribution to the system can be op-

timized. A procedure to determine the optimal weights, called Minimum Error Rate

Training (MERT), was proposed shortly after the development of automatic evaluation

metrics (Och 2003).

The idea behind MERT is simple: we let a system translate a set of sentences (de-

velopment set) several times with different weights, score each output with an evalua-

tion metric (typically BLEU), and then pick the weights that result in the best scores.

However, finding optimal weights, and doing so efficiently, is a great challenge. We can

illustrate MERT as the search for the best coordinates in an n-dimensional weight space,

n being the number of weights that have to be set.5 Assuming that we choose a grid of

m weights per dimension, we would have to translate our development set mn times to

test all possible weight combinations.

Since translating is the most time-consuming part of MERT, current implementations

of MERT approximate the decoder output through generating n-best lists, i.e. lists of

the n best translations candidates with a given weight. Additionally, instead of testing

all weights (or a random selection), each new iteration uses the weights that are most

likely to lead to better scores considering prior iterations.

5A vanilla Moses system has 14 components. Alternative translation paths and additional models further
increase the number of weights needed.
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Bertoldi, Haddow and Fouet (2009) point out the limitations of this approach: “Be-

cause the error surface is highly nonconvex, MERT is always at risk of being trapped at

local maxima; and because it uses n-best lists as an approximation for the decoder out-

put, it cannot explore the actual parameter space”. An illustration of the non-convexity

of the error surface of BLEU is shown in figure 3.1. Research to improve MERT is on-

going (Cer, Jurafsky and Manning 2008; Macherey et al. 2008; Bertoldi, Haddow and

Fouet 2009; Foster and Kuhn 2009).
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Figure 3.1: BLEU error surface when varying one parameter. Figure from (Arun 2007).

Despite its limitations, MERT leads to a tremendous improvement in BLEU score. Och

(2003) reports an increase in test set BLEU score from 11.3% to 17.2% in the translation

of news text from Chinese to English. The baseline was established through Maximum

Mutual Information training, the standard method of training weights before the intro-

duction of MERT (Och and Ney 2001). This does not mean that the impact on actual
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translation quality is equally great: “It might happen that by directly optimizing an er-

ror measure in the way described above, weaknesses in the measure might be exploited

that could yield better scores without improved translation quality” (Och 2003).

We have discussed MERT more extensively than other system components that are

more crucial for SMT. The reason for this is that sentence/word alignment and the

language model remain unchanged for all or most experiments described in this thesis,

and thus have no direct effect on differences in score between two experimental systems.

In contrast, every experimental system needs its own set of weights; using the baseline

weights for experimental systems is not possible because of the different number of

weights; if it were, it would yield suboptimal results. The fact that MERT can only

approximate the best weights brings a level of uncertainty to all evaluation results.

When running MERT ten times, the difference between the best and the worst result

can be one BLEU point or more (Arun 2007; Foster and Kuhn 2009). A second problem

is that “two weight vectors that give approximately the same dev-set BLEU score can

give very different test-set scores”, according to Foster and Kuhn (2009).

When finding significant differences in score, we cannot determine without doubt

whether they are caused by MERT or by true improvement/deterioration of the under-

lying system, unless the difference is large – larger than improvements usually reported

in this field. In order to limit variation, Foster and Kuhn (2009) suggest running MERT

at least seven times and reporting the best scores. This is time-consuming and was not

possible for this thesis, but we have run MERT at least twice for any system evaluated,

reporting the better scores.
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4.1 Linguistically Motivated Modi�cations of Statistical

Machine Translation: General Remarks and Related

Work

While the focus of this thesis is on the usage of syntactic information to improve a

phrase-based SMT system, we would like to contrast this approach with others that are

linguistically motivated. A lot of research is focused on remedying current weaknesses

of SMT systems with linguistic knowledge. In principle, this is possible with every

component of an SMT system: word alignment, the translation model(s), the language

model(s), word reordering etc.

Obtaining word alignment and phrase alignment are critical steps for SMT, which

currently are usually performed without linguistic resources. Syntax-based alignment

has been investigated, but phrase-based approaches have consistently outperformed

purely syntax-based ones (Koehn, Och and Marcu 2003; Yamada and Knight 2001).

Koehn et al. (2003) have found that limiting phrase translations to syntactic phrases is

harmful to translation performance, because it eliminates valuable phrase pairs from the

translation model. They illustrate this with the often-quoted phrase pair (es gibt|there

is). While neither phrase is considered a syntactic phrase in constituency grammars,

translating them as a unit yields better results.

Syntactic phrase pairs have been shown to be useful if they are incorporated into the

translation model differently. By supplementing a phrase-based translation model with

constituent pairs, rather than restricting it to constituents, Tinsley et al. (2007) report a

significant improvement in BLEU score.

47



4 Using Syntax in Machine Translation

Tiedemann (2005) proposes a word alignment algorithm that includes GIZA++ align-

ment, but additionally takes into account linguistic clues. These clues can come from

bilingual dictionaries or include “manually defined relations between similar linguis-

tic features such as part-of-speech” (Tiedemann 2005). He reports an improvement in

alignment of 6% points in F-value over the GIZA++ baseline on a manually constructed

gold standard.

One of the problems common to all systems is data sparseness. Both word-based and

phrase-based SMT systems are unable to translate unseen surface forms, and in morpho-

logically rich languages such as German, these are more common than in English. With

morphological analysis, the amount of unseen data can be reduced: splitting long Ger-

man compounds into several separate words increases the likelihood that these occur

in the training corpus (Koehn and Knight 2003). In a more recent experiment, a SMT

system was built that translates lemmas and their morphological information indepen-

dently (Koehn and Hoang 2007). The general direction of these approaches is the same

as in the ubiquitous lowercasing of texts before they are processed by an SMT system:

abstract from the surface form level to a level of representation with types, which makes

each type more frequent. On the one hand, this reduces data sparseness. On the other,

information is thus thrown away which may not be perfectly generated again. The sys-

tem operating on a lemma level by Koehn and Hoang (2007) led to a significant drop in

performance when it was used instead of the surface form model. Only by combining

both models on alternative translation paths was an improvement achieved. Generally,

these approaches have a larger positive effect if the training corpus is small.1

A diametrically opposite idea is not to reduce the number of types in a corpus, but to

increase it. This is achieved by enriching the surface words with linguistic information,

and representing this information as additional factors. Syntactic enrichment can help

to distinguish ambiguous word forms, for instance by indicating whether a noun phrase

1Koehn and Hoang (2007) report an improvement with a German–English corpus consisting of 52,000
sentences, Hardmeier (2008) with 100,000 tokens, translating from Swedish to Danish. Using
a corpus of 10,000,000 tokens, morphological analysis led to no significant improvement (Hard-
meier 2008).
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Level of Representation Tokens Types
Surface form (tokenized and lowercased) 18,505,811 215,528
Lemma 18,505,811 162,034
Syntactic relation label 18,505,811 41
Surface form + syntactic relation 18,505,811 449,046
Surface form + syntactic head 18,505,811 2,742,985

Table 4.1: Number of types and tokens in the German training corpus, depending on
level of linguistic abstraction.

is subject or object, a distinction which is relevant for its translation into German. How-

ever, the combination of surface forms and syntactic factors increases the number of

types in our corpus, which results in sparser data. This necessitates the combination

of the specific model with a general one; otherwise, the loss in performance caused by

data sparseness far overweighs any potential improvements. Table 4.1 shows the effect

different levels of linguistic abstraction have on the number of types and tokens in the

German training corpus. While the number of tokens remains constant, the number of

types varies greatly.2 It is easy to see that the number of types is far lower for the more

general levels of linguistic abstraction. We can expect two benefits from this: on the

one hand, we reduce the likelihood of unseen words; on the other, the average num-

ber of observations of each token is increased, which is beneficial for word alignment

and MLE. In contrast, levels of representation that combine the surface level with other

linguistic information are disadvantaged due to their sparsity. The value of the informa-

tion added as factors has to outweigh this disadvantage in order to justify factorisation.

Avramidis and Koehn (2008) show that noun case information gained from syntactic

analysis helps translating from morphological poor languages such as English. Birch,

Osborne and Koehn (2007) investigate the use of CCG supertags on the source side for

German–English translations, although with inconclusive results.

2It is another interesting fact that there are only 71,810 types in our English training corpus, in contrast
to the 215,528 in the German one. Composite words and the inflectional richness of German account
for this fact.
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While the approaches described so far mainly deal with translation models, one can

also aim to improve language models. In part-of-speech tagging, every word is assigned

one of a few dozen classes.3 Due to the low number of types, the POS level of represen-

tation does not suffer from data sparseness to the same degree as the word form level.

Thus, the probability of a sequence of words can be estimated even if it does not occur in

the training corpus. Koehn and Hoang (2007) performed several experiments with ad-

ditional language models. The improvement for the language pair English–German was

small (0.16 BLEU percentage points). For the language pair English–Czech, however,

an improvement of almost 2 BLEU percentage points was achieved.

Linguistic information is also used for preprocessing of the training corpora and trans-

lation input, which are then processed by an unmodified phrase-based SMT system.

Usual preprocessing steps include lowercasing and tokenization. In order to restore

the normal text form, recasing and detokenization is required in postprocessing. Pre-

processing approaches do not necessarily have to aim at reducing the number of types.

One wide-spread approach is word reordering, which aims to make the source language

more similar to the target language in terms of word order ((Nießen and Ney 2004;

Collins, Koehn and Kučerová 2005; Popović and Ney 2006; Holmqvist et al. 2009), to

name a few). This benefits GIZA++ word alignment and consequently translation qual-

ity.

A reordering based on syntactic information allows more complex reordering rules,

such as always placing the subject immediately before the verb complex in German

(Collins, Koehn and Kučerová 2005), but POS-based reordering approaches have also

shown to be successful (Popović and Ney 2006). Holmqvist et al. (2009) have also

experimented with reordering the target language instead of the source language, but

found that this resulted in lower BLEU scores.

Linguistic analysis has been used for reranking of the n-best lists that SMT systems

generate. Hasan, Bender and Ney (2006) use shallow parsers to identify ungrammatical

354 in the German STTS tagset (Schiller et al. 1999).
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hypotheses and rerank the the n-best list accordingly, resulting in an up to 0.7% points

gain in BLEU score.

This thesis will focus on syntactic enrichment of the source and target language us-

ing factored models; the experiments are thus most similar to (Birch, Osborne and

Koehn 2007; Koehn and Hoang 2007; Avramidis and Koehn 2008). Also, syntax-based

target language reordering is investigated, bearing resemblance to (Collins, Koehn and

Kučerová 2005; Holmqvist et al. 2009). The next sections will elaborate how syntactic

enrichment can be of use for SMT.

4.2 What Can Syntactic Parsing Tell Us?

There is a plethora of competing syntactic theories, and a full discussion thereof would

go beyond the scope of this thesis. In lieu, we will talk about the information we can

gain from syntactic parsing in general. There are two main types of syntactic structure:

the grouping of words and the relation between them.

Constituency parsing analyses the segmentation of a sentence into groups of words,

or phrases, which, unlike the use of the term in phrase-based SMT, are not arbitrary

word sequences, but must be linguistically sound units. Informally, we can test whether

words form a group with simple tests. For instance, a noun phrase can be replaced by

a single pronoun in a sentence to construct another grammatical sentence. Consider

example 10:

10. The man sees the dog.

Since the sentence the man sees him is also grammatical, we can conclude that the dog

forms a noun phrase. The same is not possible with *the man him or *the man sees the

him. A constituency analysis takes the whole sentence as a starting point, segmenting it

into different phrases, which in turn can be segmented into smaller phrases or terminal

nodes, the actual words.4

4The whole sentence is a starting point in the representation of constituency structure. The parsing
algorithm itself does not necessarily start from the top node.

51



4 Using Syntax in Machine Translation
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Figure 4.1: Prototypical parse trees in constituency (left) and dependency (right) struc-
ture.

Dependency parsing explores the relations between the words in a sentence. It takes

its name from the notion that there is a hierarchy within each sentence, and that all

words (except the root) depend on others. That such dependencies exist can be ob-

served through agreement: in inflectionally rich languages such as German, articles and

adjectives have to agree in case, number and gender with the noun they modify; they

can also be said to depend on that noun. We call the dominant word in a relation the

head. The root of a sentence is typically the finite verb. Figure 4.1 shows an analysis of

example 10 in both constituency and dependency representation.

Constituency and dependency parsing have different potential uses for SMT. Since

constituency parsing segments a sentence into smaller units, and we also need to seg-

ment a sentence into units for SMT, it seems obvious to use syntactic phrases as the main

translation unit. In the last section, we have seen that this has proven less successful

than phrase-based SMT, phrase-based in the sense that all word sequences compatible

with word alignment are accepted as units. Dependency parsing is better compatible

with factored translation models, since each word in a sentence is assigned one head

and one relation type, which can be used directly as factors.

In practice, the two grammar approaches are quite reconcilable. Many grammars in-

clude both constituency and functional information, for instance the Lexical Functional
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Grammar (Dalrymple 1999). Also, a mapping between constituency and dependency

trees has shown to be possible as long as both grammars are similarly detailed (Johans-

son and Nugues 2007).

The level of detail in a syntactic analysis is a far-reaching design decision. Shallow

parsing is typically faster and has to deal with fewer ambiguities than full or deep pars-

ing, but may leave important distinctions underspecified. Chunking is a shallow parsing

process that only identifies phrases, but not the relations between them. Among the

information that is missing are syntactic roles. Noun phrases can serve as the subject

or object of a sentence, among others. This has an effect on their translations, since

the syntactic role is encoded differently in different languages. In German, the role is

marked by case; in English, by word order.

A full syntactic analysis is more detailed, but this increase in detail is paid for by

higher computational cost and, since more ambiguities have to be resolved, more classi-

fication errors. The possible advantage of a full syntactic analysis is clear. Every syntactic

distinction might be relevant for a translation. However, it is also possible that some of

them are not. And since an increase in the number of syntactic categories leads to more

data sparseness, uninformative syntactic relations are undesirable. Considering parser

choice, this still speaks in favour of full parsers. Even if we are only interested in partial

analyses, these can be easily extracted from full ones.

We have chosen a full dependency parser, Pro3Gres, for our experiments (Schnei-

der 2008). It is unlikely that any parser provides an output that is optimal for the

specific SMT task. We will first show what information Pro3Gres provides. In the ex-

perimental section, we will then go into more detail as to what information is used, and

how.

4.3 Using Pro3Gres in Statistical Machine Translation

We will now have a quick look at the Pro3Gres output and see how it affects the SMT

system. Of the four experiments we will conduct, two require syntactic information
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from the source text, two from the target text. We have used Pro3Gres, a full de-

pendency parser with grammars for both English and German (Schneider 2008; Sen-

nrich et al. 2009).

Pro3Gres is a robust and fast bi-lexicalised dependency parser originally developed for

English. It uses a hybrid architecture combining a manually written functional depen-

dency grammar (FDG) with statistical lexical disambiguation obtained from the Penn

Treebank. Pro3Gres uses a context-free CYK parsing algorithm, but also models the ma-

jority of English long-distance dependencies. The parser delivers good performance on

newspaper texts. Schneider (2008) reports about 84% F-value for subjects and direct ob-

jects on a newspaper test corpus. The German version of the parser uses data extracted

from the TüBa-D/Z treebank for its statistical disambiguation (Telljohann, Hinrichs and

Kübler 2004). It is competitive with state-of-the-art statistical parsers, and outperforms

them in the prediction of central grammatical relations such as subjects and objects,

thanks to the integration of morphological analysis. On a newspaper test corpus, it

reaches an F-value of 82% for subjects and 74% for direct objects (Sennrich et al. 2009).

We expect a slight decrease in performance on Europarl due to the fact that neither the

German nor the English version of Pro3Gres is optimized for parsing of spoken texts.5

Apart from its solid performance, an important reason for choosing Pro3Gres was our

acquaintance with the parser, which allowed us to modify the parsing process to our

needs. Specifically, we had to override tokenization, sentence boundary detection, and

the analysis of secondary edges to optimally integrate it into our SMT system.

Regardless of the information we wish to add, it is important that no information is

lost during parsing, or in other words, that we are able to reconstruct the original corpus

from the parser output. Hardmeier (2008) highlights that this cannot be taken for

granted. For example, a parser’s sentence boundary detection may distort the sentence

alignment, which is absolutely necessary for SMT. We will now describe the workflow

of the Pro3Gres parser, and how we ensure that no information is lost.

5However, the proceedings are very formal and do not record speech phenomena that make parsing
notoriously difficult, i.e. repetitions, false starts, fillers or cut-off utterances.
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Pro3Gres requires preprocessing performed by several external tools, each of which

has its own limitations (e.g. meta-characters) that may inadvertently distort the origi-

nal text. The German Pro3Gres system relies on the TreeTagger for POS tagging, and

Gertwol for a morphological analysis (Schmid 1994; Haapalainen and Majorin 1995).

Normally, Pro3Gres relies on TreeTagger for tokenization and sentence boundary detec-

tion, but we disabled this behaviour. Consequently, tokenization and sentence bound-

aries were adopted from the unparsed text. The only difference between the unparsed

text and the parsed one is that non-latin1 characters, such as €, were removed from

the parsed text because the version of TreeTagger that was used does not support UTF-8

encoding.

sent([[man, 'NN', ['The_DT', man_NN], man], [see, 'VBZ',
[sees_VBZ], sees], [dog, 'NN', [the_DT, dog_NN], dog]]).

analyses(1, 17.1991, [], 1-3, ['see#2'('man#1'(['The_DT',
man_NN]), '<-subj<-', [sees_VBZ], '->obj->',
'dog#3'([the_DT, dog_NN]))]).

detmod1(_,'man#1',the).
detmod1(_,'dog#3',the).

subj('see#2', 'man#1', _, '(<-)').
obj('see#2', 'dog#3', _, '(->)').

Figure 4.2: Sample output of Pro3Gres for example 10.

The English Pro3Gres system requires tokenized, chunked and lemmatised input.

All of these functions are performed by the LT-TTT2 toolkit, which includes the C&C

tagger and the morpha lemmatiser (Minnen, Carroll and Pearce 2000; Curran and

Clark 2003; Grover and Tobin 2006). Since tokenization is tightly integrated in the

system, it could not easily be disabled. This leads to some differences in tokenization

between the original text, which is tokenized with a script provided by the Moses sys-

tem, and the parsed text. For example, cannot is split into two words by LT-TTT2, can
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and not. However, these changes only affect the source text, and have little effect, if

any, on the translation quality of the SMT system, as long as tokenization is consistent

both in the training and the test set. Tokenization differences in the target text would

be of greater consequence, since these could falsify the evaluation results. Apart from

this difference, the original text can easily be reconstructed.

Figure 4.2 shows a sample output of the Pro3Gres system. Additionally to the surface

forms, we have access to the head lemma of each chunk (e.g. see), POS tags and depen-

dency relations. We will elaborate how this information is incorporated into the SMT

system in the discussion of the individual experiments.
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5.1 Method

All experiments were carried out on the English–German language pair of the Europarl

corpus (Koehn 2005). We split the corpus into three parts: the largest segment of about

one million sentences served for training; the remaining 10% of the corpus were held

out for tuning and testing. Out of these, a set of 1000 sentences was used for tuning

the weights, and another 1000 sentences for the evaluation. The training sets for the

language model and the translation model differ in that all unaligned sentences, and

all sentences longer than 40 tokens, were removed for the training of the translation

model. This is because word alignment becomes more computationally expensive and

less reliable for long sentences. The exact number of tokens in each segment is given in

subcorpus sentences tokens (English) tokens (German)

training set (translation model) 911,122 19,570,126 18,505,811
training set (language model) 1,147,490 31,899,096 30,252,375
development set (MERT) 1000 30,223 27,084
test set (evaluation) 1000 28,315 26,517

Table 5.1: Size of training, tuning and evaluation set for all experiments, including the
baseline.

table 5.1.

The baseline system was built following the guideline for the EACL 2009 Workshop

on Statistical Machine Translation 1, the only difference being that we used the training

and test sets described above. We will now lay out in detail what tools we used for

1http://www.statmt.org/wmt09/baseline.html
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the experiments. The main component of the SMT system is Moses, a state-of-the-art,

phrase-based and factored SMT toolkit (Koehn et al. 2007). Moses contains most of

the components needed to build an SMT system, including tools for preprocessing data,

training models, MERT, and evaluating the results. Word alignment was calculated

with the GIZA++ toolkit (Och and Ney 2003). We used only surface word forms to

calculate word alignment, even when enriching the corpus with additional data. The

language models were built with SRILM (Stolcke 2002). We obtained BLEU and BLEU-

unigram precision scores with version 12 of the NIST scoring tool (Doddington 2002).2

We used version 0.7 of the METEOR system to obtain the METEOR scores (Banerjee

and Lavie 2005). Statistical significance of BLEU results was measured by bootstrap

resampling (Koehn 2004). One needs to bear in mind, however, that the variation

caused by MERT may surpass significance levels, which means that even statistically

significant differences are not necessarily caused by a better or worse model.

We used the Pro3Gres parser for the syntactic analysis, and the preprocessing tools

described in the last chapter. Since there are small differences between the unparsed

and the parsed corpus, even on a surface form level, the parsed corpus was also used

for the training of the baseline system. Thus, preprocessing can be ruled out as a cause

of any changes in translation quality.

5.2 Baseline System

The last section already covers how the baseline system was built. In this section, we will

use the baseline system to illustrate some important points regarding the interpretation

of evaluation results.

Table 5.2 shows the results from three different baseline systems. The systems are

identical except for the parameters set by MERT. Most importantly, we can observe

2BLEU scores vary depending on the script used and its version. Minor differences in scoring, for exam-
ple how tokenization and casing are handled, may have a large impact on the results. Needless to say,
these factors were kept constant for all experiments.
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Experiment
development set test set

BLEU Unigrams METEOR BLEU Unigrams METEOR
Baseline system 1 18.91 51.64 23.63 16.63 49.14 21.47
Baseline system 2 18.82 51.62 23.80 16.96 49.39 21.68
Baseline system 3 18.75 51.51 23.71 16.75 49.29 21.83

Table 5.2: Baseline results with different model parameters (obtained by MERT). Best
results in bold.

a variation of approximately 0.3 BLEU points3 in the test set between the best and

the worst system. Even though the difference is statistically significant (p < 0.05),

the variation is caused entirely by MERT. Consequently, we cannot simply assume that

statistical significance is sufficient evidence that an experimental system is inherently

better (or worse) than the baseline.

Interestingly, the system that performed best on the development set obtained the

worst test set scores. For this reason, both development and test set scores will be

reported in the following sections. While some variation in the difference between de-

velopment and test set scores can be attributed to chance, some systems might be more

prone to overfitting. We know that MERT, as any machine learning technique, overfits

the parameters, meaning that it finds parameters which maximize the score on seen data

(the development set), but not on unseen data (the test set). Overfitting problems be-

come more serious when optimizing a higher number of parameters (Och 2003). Since

most experiments described in this thesis feature more parameters than the baseline

system, we have to observe if overfitting becomes worse.

3We report all scores on a scale from 0 to 100 (in contrast to a scale from 0 to 1, which is also common).
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5.3 Additional Input Factors

5.3.1 Syntactic Relation as Input Factor

Motivation

In English, a strict SVO (subject-verb-object) language, the syntactic roles are marked

by word order. The noun phrase directly before the verb is typically subject, the one

after the verb an object. While German is also considered an SVO language, it has

a looser word order. Instead of word order, grammatical case is the primary marker

for syntactic roles. This means that the same noun phrase in English has different

translation equivalents in German, depending on its syntactic role. Let us consider the

English phrase ’the man’ in examples 11 and 12:

11. The man sees the dog.

Der Mann sieht den Hund.

12. The dog sees the man.

Der Hund sieht den Mann.

If the man is the subject of the verb see, its German translation is der Mann, the subject

role being marked through the nominative case. In object position, the man is translated

as den Mann, a noun phrase in the accusative case.

Phrase-based translation approaches rely on local context to determine the correct

translation of an ambiguous phrase such as the man. This contextual information is re-

stricted to the LM and long phrases in the TM. Our expectation is that the man in exam-

ple 12 will only be translated correctly if the phrase sees the man exists in the translation

model, and can thus be translated as one unit. Otherwise, if the man is translated out of

context, we expect a wrong translation, since der Mann is more frequent than den Mann

(the latter being the correct translation for this example).
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With syntactic parsing, we can make the distinction between subjects and objects with

sufficient accuracy, even over long distances.4 From a syntactically enriched training

corpus, the system can then learn distinct translations not only for every phrase, but

also for every syntactic role of every phrase. Hence, the system no longer has to rely on

contextual information for a correct translation of the man.

Ideally, the integration of parsing makes the SMT system more robust when the sys-

tem has to fall back on short translating phrases. The baseline system can easily trans-

late utterances such as we support the report or the report is excellent, since they are well

covered in the training corpus.5 Both sees the man and sees the dog are not seen in the

training material, which means that the baseline system will most likely fail to produce

a good translation.

Method

A full list of Pro3Gres relations is reported in (Schneider 2008). Our main interest are

the relations assigned to noun phrases, since we hope to predict the grammatical case

of German noun phrases from the source text relations. The main relations for noun

phrases in the Pro3Gres grammar are subj, obj, obj2, modpp and pobj. The last two are

used for noun phrases embedded in prepositional phrases, either as modifiers (modpp)

or verb complements (pobj). The first three are illustrated in examples 13 – 15.

13. The man (subj) sees the dog (obj).

Der Mann (nom) sieht den Hund (acc).

14. The man (subj) gives the dog (obj) the ball (obj2).

Der Mann (nom) gibt dem Hund (dat) den Ball (acc).

15. Peter (subj) is a man (obj).

4About 84% F-value for subjects and direct objects in the English parser (Schneider 2008). These scores
were obtained on a newspaper corpus, and performance on the spoken Europarl corpus is probably
worse.

5support the report occurs appr. 200 times, the report is 650 times.
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Peter (nom) ist ein Mann (nom).

The relation label obj is used in three situations: for complements of transitive verbs

(example 13), for the first complement of ditransitive verbs (example 14), and for noun

predicates (example 15). We can see that there is no clear correspondence between the

relation obj and case in the target language (German). This mismatch can be remedied

by mapping the parser output to a new set of relations. By swapping obj and obj2 in

ditransitive verb clauses, obj2 can be made to correlate with the dative case, obj to the

accusative case. As a second transformation, all relations labeled obj that have a form

of to be as their head are renamed pred. With these measures in place, we expect a

sufficient correlation between the relation in English and German case. Naturally, not

all ambiguities can be resolved this way. In German, the case of a prepositional noun

may vary, depending on the preposition; the relation label modpp is hence of little use.

Additionally, there are structural differences between the two languages, as we can see

in example 16.

16. The commission (subj) is aware that [. . . ]

Der Kommission (dat) ist bekannt, dass [. . . ]

The relation label subj typically corresponds to noun phrases in the nominative case. In

example 16, the English subject instead corresponds to a German dative object. Such

translations may be unexpected, but they do not pose a problem for SMT systems as

long as they are consistent. The English phrase one day is translated as eines Tages (gen)

in most instances, even if the parser assigns it the subject role. Similarly, the day before

yesterday becomes vorgestern (an adverb) in German, no matter what syntactic role

the English phrase is assigned. The only problem with example 16 is that the correct

translations depends on local context, regardless of the syntactic role of the commission.

This means that a specific model offers no advantage over the baseline system in cases

similar to example 16.

The only system component affected in this experiment is the TM, which is computed

with two factors on the source language side (surface form and relation), and one on
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the target language side (surface form). This makes the factored TM more specific than

the surface form TM used in the baseline. For the systems with alternative paths, the

surface form TM is identical to that in the baseline. Word alignment, word reordering,

and the language model are the same as in the baseline system.

Results

The first observation we make is that we obtain scores that are significantly lower than

the baseline ones when the specific translation model is used on its own. We expected

this drop due to data sparseness; using alternative paths to combine the specific trans-

lation model with a general one, we can prevent a deterioration in score. However, the

resulting system is not significantly different from the baseline system.

Experiment
development set test set

BLEU Unigrams METEOR BLEU Unigrams METEOR
baseline 18.82 51.62 23.80 16.96 49.39 21.68
factored only 18.47 51.41 23.61 16.21 48.88 21.35
alternative paths 19.00 51.90 23.93 16.96 49.58 22.10

Table 5.3: Results for models with syntactic relation as input factor. Statistically signifi-
cant (p < 0.05) differences from baseline BLEU score marked in bold.

We will now try to account for the lack of improvement. One might be tempted to

say that mistranslations of grammatical case are too rare to have a significant effect on

BLEU score. Indeed, the baseline translation of long sentences is so fragmented that it

is difficult to establish if noun phrases are in the right case.

If it were true that real improvements exist and we are simply unable to measure

them, we should be able to uncover them with short example sentences. Examples 11

and 12 were created with a special purpose in mind. The verb sees neither co-occurs

with the man nor with the dog in the Europarl training corpus, which should impede the

baseline system, but not the factored one. The translations of example 12 are shown

in table 5.4. We can see that the system containing only the factored model produces
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source the dog sees the man .
reference der hund sieht den mann .

baseline der hund sieht der mann .
factored only der hund sieht den mann .
alternative paths der hund sieht der mann .

Table 5.4: Different translations for example 12, segmented into individual phrase
translations.

the best translation; both the system with alternative paths and the baseline system

mistranslate the man in object position as der mann.

We offer the following interpretation of this finding. The specific model works as

intended, producing the correct translation of example 12. Nevertheless, it is inferior to

the general model, and consequently, the general (baseline) model is strongly preferred

in the system with alternative paths.6 We will continue our investigation as to why this

is the case after discussing the second experiment with additional input factors.

5.3.2 Syntactic Head as Input Factor

Motivation

In the introductory example 1, we said that the correct translation of stage would be

Bühne. This is true for that particular example, but stage has a wide range of meanings

and has to be translated differently depending on its context. We will illustrate this with

examples 17 and 18:

17. It means that we combat terrorism without tampering with fundamental freedoms

and that the EU can play an important part on the international stage.

18. This seems unacceptable to me, not only because the programme for the social

economy has yet to begin its experimental stage [. . .].

6This is not only visible in the similarity of the translations produced by the two systems, but also by
looking at the model parameters themselves.
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In example 17, the meaning of stage is the (metaphorical) place in which a performance

takes place, translated as Bühne. In example 18, however, stage is a step of a process,

corresponding to the German word Phase.

The problem is similar to that of word sense disambiguation (WSD). In the context of

MT, we also speak of word translation disambiguation. Several methods of integrating

WSD models into SMT systems have been investigated (Carpuat and Wu 2005; Carpuat

and Wu 2007). Results were mixed, and Carpuat and Wu (2005) argue that phrase-

based SMT systems are “sufficiently accurate, so that within the training domain, even

the state-of-the-art dedicated WSD model is only able to improve on its lexical choice

predictions in a relatively small proportion of cases.” However, they did later manage to

achieve significant improvements over a baseline SMT system (Carpuat and Wu 2007).

It is true that phrase-based SMT systems are good at disambiguating word trans-

lations, especially if the translation depends on local context. In example 17, local

context does indeed help: international stage is a common phrase that occurs 228 times

in the training section of the Europarl corpus, and it is most frequently translated as

internationale(n|r) Bühne. Hence, the use of a phrase-based system increases the likeli-

hood of a correct translation.

We can sabotage the phrase-based translation disambiguation by replacing interna-

tional with eurasian. Since the phrase eurasian stage is not part of the translation model,

a phrase-based SMT system will translate it no better than a word-based system. In iso-

lation, stage is more commonly translated as Phase, which is the wrong word choice.

We propose to make word translation disambiguation more robust by adding the

syntactic head of each token as an additional factor in the TM. The syntactic head is

useful for word translation disambiguation, even if it is not part of the local context that

is considered in a phrase-based system. Verbs like play, act or perform tend to co-occur

with stage in the meaning of Bühne, while begin, complete or reach are indicative of

stage as a step in a process. The same is true for articles and adjectives. Their inflection

depends on the head noun, no matter if unseen adjectives such as eurasian are between

the article and the noun.
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Method

From a theoretical standpoint, there are relations for which it is unclear which of the

two tokens is the other’s head.7 Taking as an example the prepositional phrase, the

argument can be made that the preposition is its head, since the preposition governs

the inflection of the noun. However, choosing a content word (i.e. the noun) as head

allows for a more direct access to the semantic structure of a sentence. For the Pro3Gres

parser, Schneider (2008) defines the relation modpp as a relation between two content

words, citing advantages for tasks such as Information Retrieval and Text Mining. Figure

5.1 shows the two alternatives. For SMT, both possible heads can provide valuable
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Figure 5.1: Different possible dependency trees of sample segment, depending on
whether relation prep has preposition or noun as head.

information. On the one hand, knowing that stage depends on the preposition on is

relevant for the inflection of the noun phrase in the German translation. On the other,

the lexical head play helps in disambiguating between the different possible meanings

of stage. We decided to use the heads that Pro3Gres provides. While the preceding

preposition is also relevant to the translation of a noun phrase, the distance between

preposition and noun phrase is usually short enough for phrase-based SMT systems to

perform adequately well. Long-distance relations are more likely to provide information

that a phrase-based SMT system cannot access otherwise.

7For an extended discussion on headedness, see (Schneider 2008).
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For some constructions, the syntactic head provides little information. We used the

ambiguity of adjectives as a motivational example for phrase-based SMT (see figure

2.1). If adjectives are used as predicates, word choice depends on the subject, which

can be several words away. This means that a phrase-based approach is not able to

take the subject into account for the translation of the predicative adjective. Figure 5.2

shows the dependency tree of example 19.
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The resistance against the fine was heavy

Figure 5.2: Pro3Gres dependency tree of a sentence with a predicative adjective.

19. The resistance against the fine was heavy.

The syntactic head of heavy is the root verb was, which does not help the disambiguation

between the possible translation candidates schwer, dicht, heftig or hoch that we have

seen in figure 2.1. Furthermore, the immediate context of heavy is not relevant to

finding the right translation. To the contrary, the phrase pair (the fine was heavy|die Buße

war hoch) might even exist in the TM and lead to the wrong translation der Widerstand

gegen die Buße war hoch instead of der Widerstand gegen die Buße war heftig. With

access to the full parser output, we can formulate a rule that does not return the actual

syntactic head as additional factor of predicate adjectives, but their subject. Thus, we

provide the model with more useful information.

When adding syntactic heads as factors, data sparseness is a major issue, as we have

seen in table 4.1. We use the lemmas of the heads to mitigate this problem. Still,

we have to combine the specific TM with a general one to keep the number of unseen
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tokens low. The experimental systems are identical to the baseline system except for the

factored TM, which has the syntactic head as additional input factor, and MERT.

Results

All results are shown in table 5.5. As expected, the specific model performs significantly

worse than the general model when used on its own. We attribute this to the high num-

Experiment
development set test set

BLEU Unigrams METEOR BLEU Unigrams METEOR
baseline 18.82 51.62 23.80 16.96 49.39 21.68
factored only 15.19 47.14 19.74 13.31 44.46 17.72
alternative paths 19.00 51.86 24.03 16.81 49.30 21.82

Table 5.5: Results for models with syntactic head as input factor. Statistically significant
(p < 0.05) differences from baseline BLEU score marked in bold.

ber of token/factor combinations that are not seen during training, and the low number

of occurrences of those combinations that do occur in the training material (relative to

the surface form). We observed no statistically significant difference between the results

of the baseline system and those of the system with alternative paths.

We selected example 19 for a sandbox experiment, since it is one where we expect

the phrase-based system to fail. We have already discussed that phrase-based systems

are good at word translation disambiguation if it can be performed on the basis of local

context. This includes heavy resistance, but not the resistance against [. . .] was heavy.

source the resistance against the fine was heavy
reference der widerstand gegen die buße war heftig

baseline der widerstand gegen die geldstrafe war schwere
factored only der widerstand against fine war die heftigen
alternative paths der widerstand gegen die geldstrafe war schwere

Table 5.6: Different translations for example 19. Experiments add syntactic head.

The baseline and experimental translations are shown in table 5.6. We can see that
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the factored model does a better job at translating heavy, although the form of heftig

is wrongly inflected, so the translation would still be considered wrong by BLEU. Still,

the translation is preferable to schweren, which is not only an unusual (and hence im-

probable) word choice as an adjective to Widerstand, but also has the wrong inflection.

The second difference we spot is that the factored model leaves against and fine un-

translated, apparently because against|resistance and fine|resistance do not occur in the

training corpus. This confirms our expectation that the number of unseen/untranslated

tokens is higher in the factored model than in the general one, as we can deduct from

table 4.1.

The translation of the system with alternative paths is identical to that of the baseline

system. As in our last experiment, the system with alternative paths strongly prefers the

general TM.

5.3.3 Problem Analysis

The root of most problems we encountered is data sparseness. In our experiments,

data is significantly sparser for the training of the factored TMs. This has a number of

implications that partly explain why our experiments were unsuccessful.

The most apparent effect of data sparseness is the high number of token/factor com-

binations in the test set that are not seen during training. In fact, not only unseen tokens

are relevant, but also longer phrases that are not seen during training. If a source phrase

is unseen, it is translated by segmenting it into smaller phrases (or tokens) and trans-

lating these individually. How this can negatively affect performance is shown in table

5.7. The source sentence can only be translated correctly if the day before yesterday is

translated as single unit, as the baseline system does. However, the factored phrase

the|day day|speak before|yesterday yesterday|day does not occur in the training corpus.

The higher number of unseen tokens and phrases in the factored TM necessitates its

combination with a general TM. What we will try to answer now is why the factored

TM was heavily disfavoured in the log-linear combination through MERT.

69



5 Experiments

source he spoke the day before yesterday .
reference er sprach vorgestern .

baseline er sprach vorgestern .
factored only er hat der tag vor gestern .
alternative paths er sprach vorgestern .

Table 5.7: Different translations for he spoke the day before yesterday, segmented into
individual phrase translations.

We have stated earlier that MLE is unreliable when the number of observations of a

source phrase is low. To investigate this hypothesis, we extracted all phrase pairs with

source phrase target phrase φ(s|t) lex(s|t) φ(t|s) lex(t|s)
dog hund 0.727 0.444 0.364 0.255
dog katzenfutter 1 1 0.045 0.021
dog gesetzes über hunde- 1 0.057 0.045 9.631e-06
dog man 3.854e-05 3.560e-05 0.045 0.021

Table 5.8: Phrase translations of dog in the surface form TM (excerpt).

dog as source phrase, both from the surface form TM (table 5.8) and the factored one

(table 5.9). We will focus the discussion on the phrase translation probability φ(t|s),

one of the five translation probabilities provided8, since it is easiest to understand with-

out context9, and since the sum of all probabilities φ(t|s) is 1 for any phrase s.

What we find out is that MLE for hund is based on 22 phrase pairs, and that 14 of

them are noise.10 Since the phrase pair (hund|dog) occurs 8 times, and each of the

noisy pairs only once, the good phrase pair is estimated to be 8 times more probable

than each of the noisy ones. This number increases dramatically when the number

of observations is large. As translation for report, bericht is 570 times more probable

than er (the best-scoring phrase pair we consider noisy), and about 10000 times more

8Only four are shown in tables 5.8 and 5.9, the fifth being a constant phrase penalty.
9φ(s|t) has to be considered in relation to the LM probablity and is uninformative on its own.

10The number of occurrences of a phrase in the training corpus is not identical to the number of valid
phrase pairs extracted through phrase alignment, owing to the phrase alignment heuristic used by
(Koehn, Och and Marcu 2003).
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source phrase target phrase φ(s|t) lex(s|t) φ(t|s) lex(t|s)
dog|view hund 0.091 0.037 1 1
dog|factory katzenfutter 1 1 1 1
dog|act gesetzes über hunde- 1 0.057 1 0.037
dog|drown man 3.854e-05 3.560e-05 1 1

Table 5.9: Phrase translations of dog in the factored TM (excerpt).

probable than darin, among others the worst-scoring target phrase with probability >

0. These probability estimations are based on about 14500 observations of report. As

a rule, the more often a source phrase occurs, the more improbable we expect noisy

translations to become (compared to good ones). This impressively shows how a large

number of observations reduces the impact of noise on phrase translations.

In contrast, noise is a major problem in the factored TM. Most factored strings formed

with dog only occur once, so that the whole probability space can be taken up by a noisy

translation. This is the case for dog with act, drown or factory as its head. We are unable

to estimate accurate translation probabilities from single observations; accordingly, the

factored model often overestimates the probability of bad translations. It comes as no

surprise then that the surface form model is preferred by MERT.

While the phrase translation probability φ(t|s) is unreliable for rare phrase pairs,

φ(s|t) creates a more general problem in the factored TM. φ(s|t) can be several orders

of magnitude lower than the probabilities in the inverse direction.11 Paradoxically, the

more frequent a source word is, or more precisely, the more different factors it co-

occurs with, the more heavily it is penalised in the factored model. For the phrase

pairs occurring only once in tables 5.8 and 5.9, φ(s|t) is unaffected. However, if we

look at a more frequent source phrase such as report, the effect is tremendous. Consider

table 5.10. We can see that phrase pairs in the factored model have values for the phrase

translation probabilityφ(s|t) and the lexical weight lex(s|t) that are several magnitudes

11We can understand this phenomenon by observing the effect factored input has on our MLE estimation
(equation 6, page 26). It does not affect the denominator, but the average numerator is n times smaller
than in the general model, n being the number of different factors existing for the same surface form
phrase.
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source phrase target phrase φ(s|t) lex(s|t) φ(t|s) lex(t|s)
report (no factors) bericht 0.861 0.930 0.737 0.762
report|announce bericht 0.00005 0.00005 1 1
report|write bericht 0.002 0.002 0.720 0.787
a report (no factors) einen bericht 0.695 0.485 0.428 0.056
a|report report|announce einen bericht 0.001 0.000001 1 0.427
a|report report|write einen bericht 0.013 0.00007 0.462 0.336

Table 5.10: Selected phrase pairs in the factored and surface form TM.

lower than in the surface form model. For longer phrases, φ(s|t) tends to increase again,

while lex(s|t) continues to decrease, being a multiple of low probabilities.

When trying to translate a single phrase, low probabilities are not necessarily prob-

lematic; since all translation options will have similarly low probabilities, calculating the

most likely translation will still give generally good results. However, we will face prob-

lems when different phrase segmentations and/or different translation models compete

for producing the translation with the highest probability. We find it hard to imagine

how the weights would have to be picked to properly balance the probability of short

and long phrases on the one hand, the factored and surface form TM on the other hand.

In summary, we have not been able to use alternative paths to combine the two

translation models in a way so that overall performance exceeds that of the baseline.

We still maintain that the factored model is beneficial under the right circumstances,

though we are unable to selectively use the factored TM at the right time with log-

linear modelling, which means that systems with alternative paths mostly ignore the

factored TM.

5.3.4 Investigating Better Ways to Combine Translation Models

Seeing that a log-linear combination of the models did not produce the desired results,

we inspected alternative ways of integrating the factored TM into our baseline system.

We found that the factored model is given bad weights and thus mostly ignored in

the log-linear system, even though our intuitive assumption is that the factored TM is
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useful in specific cases. We are also confident that we can formulate rules as to when

the factored TM should be preferred.

In an initial experiment, two methods of filtering the factored translation model have

been investigated. Most importantly, we eliminated source phrases observed fewer than

10 times during training (count(s)< 10) from the factored TM. We saw that the quality

of probabilities estimated by MLE deteriorates if count(s) is low, and we want to disre-

gard the factored model in those cases.12 Also, we test only considering NP relations in

our factored model, since we expect these to be most informative for our purpose. The

resulting TM will contain fewer phrase pairs, but these should be of higher quality and

produce better results than those in the surface form TM.

To get even more control over the combination of translation models, we imple-

mented a deterministic back-off chain, analogous to Katz’s back-off (Katz 1987), as

an alternative to a log-linear combination of models. If an n-gram is rare or unseen

in a training corpus, Katz proposes to recursively utilize shorter n-grams to estimate

its probability. Similarly, we have implemented a model that backs-off to the surface

form model if a factored source phrase is rare. Potentially, we can determine arbitrary

conditions to control whether translation options are extracted from the factored TM

or its back-off, the surface form TM. The decision is made for every phrase s j
i , that is,

a sequence of words starting at position i and ending at position j of a sentence with

n words (1 ≤ i ≤ j ≤ n). In the system with alternative paths, translation options

of each phrase are extracted from both TMs and compete for generating a translation

with the highest probability. With a deterministic back-off, we combine a number of

TMs with precedence rules, extracting translation options from the TM with the highest

precedence if possible, and backing-off to the TM of next-lower precedence until the

input phrase is found. We call this back-off deterministic since only one TM provides

the translation options for each phrase, and the others are ignored altogether. By fil-

12It is not always ideal to filter the factored TM. When working with an analytical decoding path that
translates lemmas, we expect the surface form model to be sparser. In this case, the surface form
model should best be filtered.
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tering the individual translation tables, we can formulate complex decision rules, such

as extracting the translation options from the factored model if count(s) ≥ 10 and if

the source phrase factors are all NP relations, and using the back-off model otherwise.

With these rules, we force the decoder to use the factored TM as often as possible, but

back-off to the surface form TM when data in the factored TM is too sparse.

As a second modification, we decided to replace φ(s|t) and lex(s|t) in the factored

TM with the values from the surface form model. Besides avoiding the problems with

the probabilities illustrated in the last section, this also allows us to use the same model

parameters for all TMs. Giving every model separate weights would be harder to imple-

ment and has the serious drawback that MERT takes several times longer and produces

results that are less reliable and more prone to overfitting. This would become especially

obstructive when implementing more than one back-off level.

We will evaluate whether taking φ(s|t) and lex(s|t) from the surface form TM does

indeed improve performance. We will also compare different decision rules to see if the

results confirm our hypothesis, namely that we can produce better results by disallowing

certain phrase pairs.

Results

As to the question whether it makes sense to discard φ(s|t) and lex(s|t) from the fac-

tored models, using the probabilities from the surface form model instead, we provide

tentative results in table 5.11. Either all probabilities in the factored model are original

(as estimated by MLE), or mixed, meaning that φ(s|t) and lex(s|t) are from the base-

line model, φ(t|s) and lex(t|s) from the factored one. We observe that the difference

between the two systems is not statistically significant. Since we deem the original prob-

abilities more problematic when trying to combine several TMs, we still opt to continue

our experiments with mixed probabilities. This has the additional advantage that all

experiments can be conducted with the same model parameters.
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Experiment
development set test set

BLEU Unigrams METEOR BLEU Unigrams METEOR
original prob. 15.19 47.14 19.74 13.31 44.46 17.72
mixed prob. 15.24 47.30 20.00 13.48 45.06 18.08

Table 5.11: Results for model with syntactic head as input factor. Statistically significant
(p < 0.05) differences in BLEU score marked in bold.

Having confirmed that mixed probabilities are viable, we can now investigate deter-

ministic back-offs. For all experiments with deterministic back-offs, we used the model

parameters of the baseline system. New training of the factored model did not lead

to significantly better results, and using the same parameters eliminates a confounding

factor, thus making the results more comparable. Table 5.12 shows results obtained

using different sets of rules to decide when to use the factored model. All factored sys-

tems have mixed probabilities (φ(s|t) and lex(s|t) are from the baseline model, φ(t|s)

and lex(t|s) from the factored one). In order to better verify whether improvements

are statistically significant, we conducted these experiments on a larger test set of 2000

sentences. The exact setting of each experiment is as follows:

Experiment BLEU Unigrams METEOR
baseline 19.39 51.58 24.25
rel 19.46 51.81 24.39
relMin10 19.60 51.88 24.50
relMin10NP 19.45 51.70 24.33
head 19.51 51.65 24.30
headMin10 19.62 51.79 24.44
headRelMin10 19.66 51.84 24.48
headRelMin10Mult 19.75 52.08 24.57

Table 5.12: Results for model with additional input factors, using a back-off system. Sta-
tistically significant (p< 0.05) differences from baseline BLEU score marked
in bold.

baseline surface form model; no back-off

rel relation as input factor; baseline model as back-off
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relMin10 relation as input factor; count(s)≥ 10; baseline model as back-off

relMin10NP relation as input factor; count(s) ≥ 10; only NP relations; baseline

model as back-off

head head as input factor; baseline model as back-off

headMin10 head as input factor; count(s)≥ 10; baseline model as back-off

headRelMin10 head + relation as input factors; count(s) ≥ 10; baseline model as

back-off

headRelMin10Mult head + relation as input factors; count(s) ≥ 10; models from

experiments headMin10, relMin10 and baseline as back-offs (in this order)

Four of the seven systems achieve significantly better BLEU scores than the baseline

system, the difference being up to 0.36 BLEU points. We were surprised to find that

including rare source phrases in the factored TM did not lead to a drop in performance.

Still, we could demonstrate that the systems which only include more frequent source

phrases yield better scores. With 0.1 BLEU points, the difference seems small. On closer

inspection, we see that precision actually decreases in the systems whose factored TMs

contain rare source phrases. Only because the system translations are longer, which

reduces the brevity penalty, are BLEU scores slightly (but not significantly) higher than

the baseline scores. Disregarding the brevity penalty, unigram precision is 0.35 points

higher in the system headMin10 than in head, and 0.3 points higher in relMin10 than in

rel.

We have investigated more closely what threshold for min(count(s)) is optimal. Fig-

ure 5.3 shows that most scores improve up to a threshold value of 6, and then start to

slowly converge towards the baseline score, which will be reached when the threshold is

so high that all phrase pairs from the factored TM are discarded. It is unclear in how far

these findings can be generalised, that is if the optimal threshold is constant for smaller

or larger training corpora, different factors, model parameters and test sets.
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Figure 5.3: Scores obtained with different thresholds for minimum number of occur-
rences of source phrase during training. Source phrases below the threshold
are discarded from the factored TM. Factor is syntactic head.

Going back to the results in table 5.12, only allowing NP relations as factors reduced

the score gain. This indicates that not only NP relations, but also other relations help to

disambiguate the translation of ambiguous surface forms. We can see that system per-

formance benefits from multiple back-offs. headRelMin10 and headRelMin10Mult are

identical with the exception that the former backs-off directly to the baseline model,

while the latter has three back-off levels. Using multiple back-offs yields an improve-

ment of 0.1 BLEU points over the system with only one back-off level; filtering rare

source phrases an improvement of 0.1-0.15 BLEU points. While the benefit of each

measure is small, the best system outperforms the baseline system by 0.35 BLEU points.
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We have included five translations that differ between the baseline and the best-

performing experimental system (headRelMin10Mult) in the appendix (table I.1, page

101). Of those five translations, the last shows the clearest improvement of the ex-

perimental system. The English token a.m. is translated out of context, since it does

not co-occur with 10.56 in the training corpus. Consequently, the baseline system mis-

translates it as Uhr wieder aufgenommen, while the experimental system receives the

information from the parser that the syntactic head of a.m. is close, and thus produces a

correct translation.13

Considering both the automatically obtained results and an investigation of sample

translations, we consider this experiment a mild success. We would not recommend this

approach in a productive environment, given the additional effort required by parsing,

but we could show that an improvement is possible, even though initial experiments

suggested otherwise.

5.3.5 Alternative Paths versus Deterministic Back-o�s

In the preceding section, we report an improvement using deterministic back-offs. Some

of our modifications can also be applied to a system with alternative paths, and we will

now try to determine in how far this is viable.

Table 5.13 shows the results obtained by combining filtered TMs and the surface

form TM using alternative paths. Restricting the factored TM to NP relations led to a

significant improvement on the development set, but not on the test set. We observe the

same phenomenon when only allowing source phrases that occur at least 10 times in the

training corpus: development set scores are significantly higher, but not the test set ones.

We attribute this phenomenon to overfitting. We have not attempted to use a larger

development set for tuning, since MERT has proven very time-consuming. Instead, we

continued experiments with mixed probabilities and model parameters of the baseline.

13From a linguistic point of view, it is unsatisfactory that was closed is translated as wird, and a.m. as
Uhr geschlossen. We would prefer a correct alignment and subsequent reordering, but in the end, we
achieved our goal of producing a correct translation.
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By using the same model parameters for all TMs, we avoid the need for tuning the up

to 30 parameters per system.

Experiment
development set test set

BLEU Unigrams METEOR BLEU Unigrams METEOR
baseline 18.82 51.62 23.80 16.96 49.39 21.68
relNP 19.20 51.68 24.14 16.76 49.12 21.86
relMin10 19.52 52.18 24.41 16.89 49.54 21.95
headMin10 19.17 51.94 24.09 16.89 49.46 22.07

Table 5.13: Results for filtered translation models. Statistically significant (p < 0.05)
differences from baseline BLEU score marked in bold.

The results obtained with these systems are shown in table 5.14 The systems are

mostly identical to those described in the last section, and will thus be directly com-

pared to them. The difference between the two approaches is that the decoder may use

translation options from the baseline model if the probabilities warrant it, even if the

factored TM contains translation options for the same phrase. In the backed-off system,

only translation options from the factored model are considered, if they exist.

The results are inconclusive as to whether systems with deterministic back-offs or

alternative decoding paths perform better, although both approaches significantly out-

perform the baseline system. Only in the systems with four translation paths does

backing-off offer a slight, albeit not statistically significant, advantage over the com-

bination through alternative paths. The most apparent difference lies in decoding time.

Systems with alternative paths are up to 10 times slower than the backed-off ones, since

more hypotheses are built up and scored.

We conclude that a deterministic back-off is not absolutely necessary to successfully

combine up to four different translation models. Nor is any of the other measures

taken indispensable, these being the discarding of rare phrase pairs in the factored

TM, mixed probabilities, and avoiding MERT by using baseline parameters for all TMs.

However, all of them led to small gains in performance, which in the end allowed the

combined systems to outperform the baseline system. We also want to highlight that
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Experiment
deterministic back-offs alternative paths

BLEU Unigrams METEOR BLEU Unigrams METEOR
baseline 19.39 51.58 24.25 19.39 51.58 24.25
relMin10 19.60 51.88 24.50 19.58 51.83 24.42
headMin10 19.62 51.79 24.44 19.61 51.81 24.41
headRelMin10 19.66 51.84 24.48 19.66 51.85 24.47
headRelMin10Mult 19.75 52.08 24.57 19.68 52.01 24.53

Table 5.14: Comparison between deterministic back-offs and alternative paths as meth-
ods to combine TMs. Statistically significant (p < 0.05) differences from
baseline BLEU score marked in bold.

using the same model parameters for all experiments results in a high comparability of

the systems. We can be certain that the improvement we observed is indeed caused by

the syntactically enriched translation models, and not by other confounding factors.

5.4 Syntactic Relation as Output Factor

5.4.1 Motivation

It has already been demonstrated that adding a POS language model improves trans-

lation quality (Koehn and Hoang 2007). We will illustrate the motivation for doing so

with an example: Let us assume that we want to estimate which word sequence is more

likely: der kleine Mann schläft or Mann kleine der schläft. Let us further assume that the

language model has not seen any of the bigrams in either of the candidates due to data

sparseness. As a consequence, both candidates will receive the same score from the lan-

guage model. The POS representation of the first candidate is ART ADJA NN VVFIN, the

one of the second NN ADJA ART VVFIN. Even without knowing the actual word forms,

a competent German speaker will be able to say that the first POS sequence is far more

frequent than the second. Also, we have better chances to see this sequence in a training

corpus: Even though neither of the word sequences occurs in the Europarl training set,

ART ADJA NN VVFIN does so 37,000 times; NN ADJA ART VVFIN does not. These num-

bers nicely illustrate that data sparseness is a far smaller problem on a POS-level. This
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means that larger n-grams can be evaluated by the language model so that an unnatural

word order is penalized more heavily.

The question is if the dependency labels provided by syntactic parsing can perform

the same function equally well or even better. In many ways, dependency labels are

similar to POS tags: First of all, both analyses are similarly fine-grained14: the words are

classified into 54 classes by POS tagging, and into 41 by parsing. In some cases, there

is an almost one-to-one correspondence between word class and syntactic functions,

as for articles. POS tagging is more fine-grained in the classification of verbs, using

12 classes for different verb forms. In contrast, dependency parsing assigns one of 8

different labels to a noun, according to its syntactic role15. Since roles are marked by

grammatical case, dependency labels serve as a partial morphological analysis of a text.

Grammatical number and gender is not determined in Pro3Gres parsing, although a

full morphological analysis was used in (Koehn and Hoang 2007). We will see if the

lack of a full morphological analysis is a deficiency, or if we can reach the amount of

improvement cited in (Koehn and Hoang 2007).

5.4.2 Method

In our experiment, the system will produce factored output which is then scored on two

language models: one language model evaluates the surface form sequence, another

the sequence of syntactic relations. The German Pro3Gres parser knows 29 relations,

its grammar being based on (Foth 2005), who provides a full list of the relations.

The main advantage of language models on syntactic relations is that data sparseness

is not a problem when we have only 29 types and a 30-million-words training corpus.

This allows us to increase the number of relations without detrimental effects. Koehn

and Hoang (2007) have used a language model over morphological factors to increase

intra-NP agreement. Pro3Gres does not provide a full morphological analysis, but case

14The following statements are based on the Pro3Gres grammar, which will be discussed in more detail
in the next section, and the STTS tagset (Schiller et al. 1999).

15These being subject, accusative object, dative object, genitive object, genitive modifier, predicate noun,
apposition and temporal modifier.

81



5 Experiments

information can be inferred from the grammatical function of nouns. We have modified

the determiner and attribute adjective relations to include the grammatical function of

their head. Furthermore, the syntactic relations are underspecified at points. There is

no difference in the parser output between finite verbs that are the root of a sentence,

tokens that are not attached to any head due to parsing errors, and punctuation marks.

We added mapping rules that distinguish between these phenomena and use different

relation labels for each. This allows for a more discriminative language model, as figure

5.4 shows. A language model trained on the unmodified relation labels will assign the

surface forms (f) relations (f)
den mann , der hund (0) detobja subj comma detsubj obja (0)
der mann sieht den hund (0) detsubj subj finverb detobja obja (10.511)

Figure 5.4: Hypothetical translation output for example 13, and frequency of each se-
quence in the training corpus.

same probability to the two sentences den mann , der hund and der mann sieht den hund,

since both are expressed by the same relation sequence det subj root det obja. After the

mapping, the grammatically correct sequence receives a higher probability from the

LM.16 The final number of relations used is 41.

The experimental system is different from the baseline in two aspects. Firstly, an

additional LM is used that works on German syntactic relations. Secondly, the TM is

factored on the target language side. Having factors only on the target language side

has the advantage that parsing is only needed during training, and not during decoding.

5.4.3 Results

As table 5.15 shows, the experimental model achieves a significant improvement of

0.4 points BLEU score on the development set, but no significant improvement on the

test set. Looking at the development set, the BLEU unigram score does not increase as
16It is not necessary that the sequence der mann sieht den hund is translated with the right relation labels.

Another possibility is that the surface forms in the translation are correct, but the relation labels
wrong.

82



5.4 Syntactic Relation as Output Factor

strongly as the full BLEU score, which indicates that fluency, not adequacy, is increased

by the additional LM. This is consistent with our expectation.

Experiment
development set test set

BLEU Unigrams METEOR BLEU Unigrams METEOR
Baseline 18.82 51.62 23.80 16.96 49.39 21.68
Factored output/LM 19.21 51.72 24.13 16.99 49.13 22.12

Table 5.15: Results for models with syntactic relation as output factor and in LM. Statis-
tically significant (p < 0.05) differences from baseline BLEU score marked
in bold.

Table 5.16 shows the translation of a sample sentence. For this sentence, the ex-

perimental system fails to produce a better translation than the baseline. The problem

is that die, while theoretically meeting case constraints, is either the wrong gender or

number for mann. Five randomly selected translations that differ between the baseline

and the experimental system are included in the appendix (table I.2).

source the dog sees the man .
reference der hund sieht den mann .

baseline der hund die menschen .
baseline 2 der hund sieht der mann .
factored output der hund betrachtet die mann .

Table 5.16: Segmentation of system translations into individual phrase translations.

The improvements reported in (Koehn and Hoang 2007) are small for the language

pair English–German: 0.2 BLEU score points. It is well possible, given better luck with

MERT, that we could have obtained similar results. On the other hand, our implemen-

tation was different in that we did not work with POS tags and morphological tags, but

with syntactic relations. We did not pursue this approach further since we are unlikely

to gain insights beyond what is already known, especially since Pro3Gres relations are

inadequate to enforce agreement within noun phrases.
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5.5 Reordered Models

5.5.1 Motivation

We have already seen that discontiguous phrases in German pose a major problem

for translation (see example 6 (page 29)). Source language reordering in prepro-

cessing mitigates this problem, and there has been successful research in this field

(Nießen and Ney 2004; Collins, Koehn and Kučerová 2005; Popović and Ney 2006;

Holmqvist et al. 2009). However, not all reordering problems can be solved by prepro-

cessing the source language.

If the translation direction in example 6 (page 29) is German–English, the source

phrase can be reordered, but not if it is English–German. A typical result of translating

with the baseline system is that the verb particle is lost in the translation. This may seem

minor and will not have a big influence on automatic measures of translation quality,

but the verb phrase is semantically very important. Incorrectly translating propose to

schlagen changes the meaning of the sentence to We beat a temporary Commission.

The usefulness of source language reordering has been well documented; we will not

try to reproduce earlier findings, but to investigate the feasibility and effect of target

language reordering.

5.5.2 Method

We have investigated two reordering algorithms. Our experiment with full reordering is

based on the heuristic described in (Collins, Koehn and Kučerová 2005). This heuristic

aims at reordering the German sentence so that word order is as parallel as possible to

its English counterpart. This includes always placing the subject directly before the verb

and putting all verbs in the verbal complex directly afterwards, even in subordinate

clauses, in which German verbs normally occur in clause-final position. For a second

experiment, only German verbal particles, which we identified as a phenomenon that

cannot be reordered in the English source text, are placed immediately after the verb.

84



5.5 Reordered Models

All models (translation model, reordering model and language model) are trained

on the reordered German corpus. As a result, our initial translation will ideally be Wir

schlagen vor eine provisorische Kommission for example 6. In other words, our system

only produces reordered German sentences. We train a second Moses model to trans-

late from reordered German sentences to un-reordered (i.e. original) ones. We thus

decompose translation into two distinct statistical translation steps (three if we count

the recaser).

5.5.3 Results

We obtained the best results by using the same model parameters as in the baseline

experiment, and hence report only test set scores. Table 5.17 shows the results of the

reordering experiments. We report scores after the initial translation step and after the

reordering step, both for full reordering and verbal particle only reordering. We can

thus observe how effective our second translation step is in restoring the correct word

order.

Experiment BLEU Unigrams METEOR
baseline 16.96 49.39 21.68
full; 1st step 16.03 49.75 21.18
full; final 16.21 49.73 21.31
verb part. only; 1st step 16.91 49.41 21.83
verb part. only; final 16.99 49.40 21.88

Table 5.17: Results for reordered models. Statistically significant (p < 0.05) differences
from baseline BLEU score marked in bold.

The full reordering system performs significantly worse than the baseline system.

Interestingly, the unigram scores are better, which means that the lower scores can

be fully attributed to a deterioration in n-gram scores of higher order. The second

translation step can remedy some of the word order problems of the first translation

step, but the final system is far from reaching the scores of the baseline system, the

difference being 0.75 BLEU point. One sentence taken from the Europarl corpus shows
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the typical differences between the baseline and the reordered system (table 5.18). Both

source
[. . .], not because they are less important,
but because I wanted to focus on them for a moment.

reference
[. . .], nicht weil sie am unbedeutendsten sind,
sondern weil ich einen Moment bei ihnen verweilen wollte.

baseline
[. . .], nicht, weil sie weniger wichtig sind,
sondern weil ich hierauf zu konzentrieren.

full; 1st step
[. . .], nicht weil sie sind weniger wichtig,
sondern weil ich möchte eingehen kurz auf sie.

full; final
[. . .], nicht weil sie sind weniger wichtig,
sondern weil ich möchte kurz auf sie eingehen.

Table 5.18: Sample translation for system with full target language reordering. Verbs
emphasised

clauses shown17 are subordinate clauses, which means that the inflected verbs (sind and

möchte/wollte, respectively) should be clause-final. We can see that the reordered model

does not correctly restore verb-final word order, but V2 order typical for main clauses.

The baseline system translates the first clause correctly, but lacks a main verb in the

second one. This supports our interpretation of the numeric results. Unigram precision

is slightly better in the reordered model, but word order is worse.

By looking at more translations of the reordered model, we propose two explanations

for the second translation step failing to reverse our initial reordering and restore the

correct word order. Firstly, the second translation step suffers from the same shortcom-

ings as the baseline system. The word and phrase alignment algorithms are unable to

deal with discontiguous phrases and can thus only correctly reorder over a short dis-

tance. Secondly, we throw away the distinction between main clauses and subordinate

clauses in the reordered model, and converting a reordered verb phrase to a clause-

final one is often impossible for the statistical model. A rule-based preprocessing of

the source phrase is far better at performing the long-distance reordering necessary be-

tween English and German. Target language reordering, on the other hand, does not

17The main clause is the same for all translations and left out for space reasons.
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source I endorse the rapporteur’s observations that [. . .]
reference Ich schließe mich dem Wunsch des Berichterstatters nach [. . .] an.
baseline Ich schließe mich den Auffassungen des Berichterstatters, [. . .]
verb p.; step 1 Ich schließe an mich den Auffassungen des Berichterstatters, [. . .]
verb p.; final Ich schließe mich an den Auffassungen des Berichterstatters, [. . .]
source The Commission proposal also makes provision for including [. . .]
reference Der Vorschlag der Kommission sieht darüber hinaus vor, [. . .]
baseline Der Vorschlag der Kommission sieht zudem vor, dass [. . .]
verb p.; step 1 Der Vorschlag der Kommission sieht vor zudem, dass [. . .]
verb p.; final Der Vorschlag der Kommission sieht zudem vor, dass [. . .]

Table 5.19: Sample translations for system with target language reordering of verbal
particles. Main verb and verbal particles emphasised.

overcome the problems inherent in SMT, but only shifts them to the second translation

step.

What is left to discuss is the system in which only verbal particles have been re-

ordered. Its results are not significantly different from those of the baseline system.

Looking at the translations in table 5.19, we find that the problems are the same as in

the fully reordered models. The second translation step only successfully restores word

order over short distances, generally in cases where the baseline approach is also suc-

cessful. Additionally, verbal particles typically occur immediately after the main verb.

Verbal particles that are at a greater distance from the main verb are rare: we observe

this phenomenon in only 2% of all sentences in Europarl.18 Consequently, the quan-

titative effect of any measures specifically trying to improve the translation of verbal

particles is low. While we still prefer the verbal particle to be in the wrong place in-

stead of missing, the positive effect is too small to warrant the time invested. We do not

rule out that target language reordering is profitable in some situations, for instance for

language pairs for which source language reordering is not possible.

18In total, verbal particles occur in 8% of all sentences.
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6.1 Contributions

Investigating SMT from English to German, we explored the strengths and weaknesses

of current phrase-based systems. Phrase-based SMT adequately considers local context

and contiguous phrases that are best translated as one unit, but fails when word choice

depends on long-distance words in the source text or syntactic roles, or when syntactic

phrases that constitute a unit of meaning are discontiguous. We proposed several ways

of overcoming these shortcomings, with varied success.

A syntactically enriched target text, combined with a language model on syntactic

relations, failed to yield any improvement. Since we found the Pro3Gres output ill-

suited for this purpose, and the approach has already been investigated in (Koehn and

Hoang 2007), we did not pursue it further.

We investigated target language reordering as a possible alternative to source lan-

guage reordering, and found the latter to be preferable. The two-step approach proved

to suffer from the same limitations as the one-step translation did. A correct word order

could not be restored since this would have involved aligning contiguous phrases with

discontiguous ones, which the Moses system is unable to. We also considered target

language reordering where source language reordering is not possible, as is the case for

German verbal particles. The positive effect was too small to be relevant in practice (or

even statistically significant), and the fact that the second translation step is deficient

also holds true in this case.

Syntactic enrichment of the source text produces better translation results in some

cases, but suffers from an increase in data sparseness. In consequence, we found a
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purely log-linear integration of a factored TM to be ineffective in our experiments. Re-

lated research on using syntax in factored, phrase-based SMT confirms the problems.

Birch, Osborne and Koehn (2007) conclude that “[using a log-linear model]makes find-

ing good weights difficult as the influence of the general model is greater, and its difficult

for the more specific model to discover good weights”. Avramidis and Koehn (2008) re-

port that they “tested several various combinations of [input factors]”, and that “some

combinations seem to be affected by sparse data problems”. A close investigation of the

log-linear combination of TMs, the identification of reasons why it may fail to obtain an

improvement over the baseline, and suggestions to overcome these problems, constitute

the main contributions of this thesis.

Firstly, our factored model yielded better results after we filtered out phrase pairs

with count(s)< 10, for which MLE does not estimate good probabilities (mostly due to

the noise introduced by word alignment and parsing). Secondly, we saw that the phrase

translation probability φ(s|t) and the lexical weight lex(s|t) may be several orders of

magnitude lower in the factored model than in the surface form model, which we con-

sider to be probematic for balancing the two models. Always using the values from

the surface form model for these two probabilities did not significantly improve perfor-

mance when a factored model was used on its own, but is beneficial when working with

alternative paths. Foremost, it allowed us to overcome the third problem we identified.

MERT overfitted model parameters in experiments with several translation models, and

we could not obtain good parameters. Instead, we decided to use baseline parame-

ters for all translation models, and successfully demonstrated an improvement over the

baseline scores. Lastly, we showed that a large number of translation models can be

combined by implementing a deterministic back-off system, and that performance ex-

ceeds that of using only two translation models. Our best system, combining all four

measures, obtained a significant improvement over baseline system scores (about 0.35

BLEU points). The improvement is not large by any means, but our experiments high-

light that, even if enriching TMs with more data fails to yield an immediate improve-

ment, this does not entail that the data is useless for translating. Rather, the detrimental
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effects of data sparseness may outweigh and thus mask the positive potential of data-

rich models.

6.2 Outlook

We have shown that our heuristics to integrate factored translation models yielded bet-

ter translation results in one specific setting: a phrase-based SMT system translating

from English to German, trained on 20 million tokens of European Parliament proceed-

ings, and enriched with syntactic information obtained by the Pro3Gres parser. There

are numerous other scenarios that are worth investigating.

English–German translations are notoriously difficult because of differences in word

order and the morphological richness of German. The problems we tried to address

with syntactic enrichment are dwarfed by errors introduced during word and phrase

alignment. We expect syntactic enrichment to be beneficial even when, and especially

when, word alignment is good, since our motivation for syntactic enrichment holds

true even if all other models are noise-free. Therefore, adapting the approach to other

language pairs might prove profitable.

It is unclear what effect the choice of training corpus, both in terms of size and genre,

has on the suitability of factored models. We know that SMT performance heavily de-

pends on training set size, but levels out at some point, so that a further increase in

size leads to marginal improvements. Since data sparseness has proven more serious

for syntactically enriched models, we expect an increase in training set size to be ben-

eficial even if an surface form system no longer profits from it. If, on the other hand,

smaller, task-specific corpora are used for SMT systems, approaches that mitigate data

sparseness will have more relevance than syntactic enrichment. Potential users of SMT

have good reason to favour a genre-specific corpus, even if it is significantly smaller

than Europarl. For instance, a system trained on Europarl is unable to translate casual

conversation, and will even fail to translate simple sentences such as Wie heißt du?.
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On a related note, we expect syntactic disambiguation to become more useful if the

training corpus is heterogeneous. Some word forms that are theoretically ambiguous

are used exclusively in one sense in Europarl, which reduces the need for word form

disambiguation. The most extreme example is floor, which is consistently translated as

Wort in Europarl, while literal translations are so rare that they only take up 2-3% of the

probability space.1 This strengthens our prediction that SMT systems based on large,

general-purpose corpora can profit more from syntactic enrichment than those based on

small, task-specific ones.

We claimed that parser selection, its underlying grammar and parsing errors have a

considerable effect on the performance of the factored models. However, we did not

contribute any hard numbers to back up this claim. While we cannot investigate the

effectiveness of our approach given perfect parsing, recreating the experiment without

the modifications to the parser output we suggested, with artificial noise added to pars-

ing, or with a different parser altogether, would help to illuminate the role of the parser.

More generally, having proposed improvements to systems using factored models, we

can investigate the inclusion of other linguistic features such as POS tags.

We avoided Minimum Error Rate Training for the systems combining up to four trans-

lation models by using the same model parameters for all models. While this did lead to

a small improvement over baseline scores, we are confident that these model parame-

ters are not optimal, and that there is further room for improvement. This would require

more efficient and reliable ways to optimize a large number of model paramaters, con-

siderably more time, and/or more computational capacity, than at our disposal.

We have proposed filtering out phrase pairs with count(s)< 10 (fewer than 10 obser-

vations of the source phrase during training), from all TMs except for the most general

one. We have demonstrated that this yields an improvement in our experiments, but it

is unclear in how far these findings can be transferred to other language pairs, corpus

sizes, and factors.

1This surprising alignment is caused by the dominance of the idiom take the floor, translated as das Wort
ergreifen, or variants thereof.
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6.2 Outlook

On a methodological level, we found the evaluation of translation quality in SMT far

from reliable. The variability caused by different model parameters (obtained through

MERT) proved to be far greater than that of the effects we wanted to measure. More-

over, by reaching a sizable improvement of 0.7 BLEU points by simply normalizing the

German complementizer dass/daß, we can add one more example to the list of measures

that improve evaluation scores, but not actual translation quality.

To recapitulate, we were able to show that a syntactic analysis of the source text

can improve translation quality. However, the difficulties we encountered during our

experiments, particularly the question how to best combine several translation models,

forced us to compromise and abandon the aim of fully optimizing the system. This

means that we have not yet fully explored the potential of syntactic enrichment, and

that further reasearch is likely to yield better results.
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I Sample Translations

source I would thank both of them for their magnificent efforts.
reference Ich danke beiden für ihren großartigen Einsatz.
baseline Ich danke auch für ihre enormen Anstrengungen.
experiment Ich danke sowohl von ihnen für ihre hervorragende Arbeit.
source I think the suggestion is worth looking into.
reference Ich halte den Vorschlag für diskussionswürdig.
baseline Ich denke, der Vorschlag geprüft wird.
experiment Ich denke, der Vorschlag geprüft.
source You have addressed the important question of contract compliance.
reference Sie haben die wichtige Frage der Vertragseinhaltung aufgegriffen.
baseline Sie haben die wichtige Frage der Vertrag.
experiment Sie haben die wichtige Frage des Vertrags.
source However the EPLP has strong reservations about the following areas.
reference Starke Vorbehalte hat die EPLP jedoch zu den folgenden Bereichen:
baseline Die EPLP hat folgenden Bereichen starke Vorbehalte.
experiment Die EPLP hat jedoch den folgenden Bereichen starke Vorbehalte.
source What are the basic strands which make up the content?
reference Welches sind nun die wichtigsten inhaltlichen Merkmale?
baseline Was sind die grundlegenden Elementen, die den Inhalt?
experiment Was sind die wichtigsten Bereiche, die den Inhalt?
source (The sitting was closed at 10.56 a.m.)
reference (Die Sitzung wird um 10.56 Uhr geschlossen.)
baseline (Die Sitzung wird um 10.56 Uhr wieder aufgenommen.)
experiment (Die Sitzung wird um 10.56 Uhr geschlossen.)

Table I.1: Five translations differing between baseline and best system with factored
input and deterministic back-off (see table 5.12). Random selection among
those short enough to fit on one line.
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I Sample Translations

source In fact, these appropriations are urgently needed!
reference Dabei sind diese Mittel dringend notwendig!
baseline Diese Mittel sind in der Tat dringend erforderlich!
experiment In der Tat, diese Mittel sind dringend erforderlich!
source At present, 1.2 million lorries cross the Brenner Pass every year.
reference Es rollen heute jährlich 1,2 Millionen Lkw über den Brenner-Paß.
baseline Über 1,2 Millionen Lkws über den Brenner pro Jahr.
experiment Derzeit 1,2 Millionen Lkws über den Brenner pro Jahr.
source Is that in any way related to aviation?
reference Betrifft sie den Luftverkehr?
baseline Das ist in keiner Weise im Luftverkehr?
experiment Ist das in keiner Weise im Luftverkehr?
source I think that you could allow me that much time.
reference Die können Sie mir zugestehen, glaube ich.
baseline Ich glaube, sie könnten, sehr viel Zeit.
experiment Ich glaube, sie könnten mir sehr viel Zeit.
source He proposes increasing the budget funding.
reference Er schlägt mehr Haushaltsmittel vor.
baseline Er schlägt vor, den Haushalt zu finanzieren.
experiment Er schlägt eine Ausweitung des Haushalts finanziert werden.

Table I.2: Five translations differing between baseline and system with factored output
(see table 5.15). Random selection among those short enough to fit on one
line.
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