
L IZENTIATSARBEIT

DER PHILOSOPHISCHENFAKULT ÄT

DER UNIVERSITÄT ZÜRICH

A CORPUSQUERY TOOL

FOR SYNTACTICALLY

ANNOTATED CORPORA

Author: Charlotte Merz
Supervisor: PD Dr. Martin Volk

May 2003

Contents

1 Introduction 1

2 Components of Corpus Query 3

2.1 Use and Types of Corpora .3

2.1.1 Corpus Design .3

2.1.2 Corpus Preprossessing .6

2.1.3 Part-of-Speech Tagging .10

2.1.4 Morphological Analysis and Lemmatization11

2.1.5 Parsing and Treebanks .13

2.1.6 Existing Corpora .16

2.2 Corpus Query .16

2.2.1 Corpus Query Languages .20

2.2.2 Corpus Query Tools .22

3 Database Systems 36

3.1 Introduction to Database Systems .36

3.1.1 Characteristics and Advantages of the Database Approach36

3.1.2 The Relational Data Model .37

3.2 Database Systems in Corpus Linguistics .37

3.2.1 Corsica .38

3.2.2 San Remo .38

3.2.3 ANNOTATE Database Format .39

i

CONTENTS ii

4 My Own Corpus Query Tool 41

4.1 Aim, Scope, and Technical Resources .41

4.2 Database Format .43

4.2.1 Entity-Relationship Model Approach43

4.2.2 N-table Approach .47

4.3 Corpora .51

4.3.1 Resources: ComputerZeitung and Tages-Anzeiger51

4.3.2 Corpus Transfer to Database .59

4.4 Query .65

4.4.1 Simple Query .65

4.4.2 Complex Query .67

4.4.3 Query Optimization Strategies .69

4.5 Interface Functions .70

4.6 Output Presentation .72

4.6.1 Simple Query Output: KWIC and Tag-Display72

4.6.2 Complex Query Output: Table with Syntactic and Semantic Structure . .74

5 Analysis and Evaluation 80

5.1 Interface Evaluation .80

5.2 Output Evaluation .81

5.3 Database Performance .82

5.3.1 Comparison of Database Formats .82

5.3.2 Database Performance .90

5.3.3 Database Evaluation .93

5.3.4 Suggestions for Improvement .94

5.4 Conclusion .96

Bibliography 98

Glossary 100

CONTENTS iii

A SGML-Tags in the CZ and TA Corpora 103

B List of Database Relations 105

B.1 Database Format Version 1 .106

B.2 Database Format Version 2 .109

C Simplified STTS Tagset 116

D PHP-programs on a Separate CD-ROM 117

Note on the Text

In order to make this thesis readable for persons who have not studied computational linguistics, I
have included a glossary of the most important terms used in the text. Terms which are explained
in the glossary on page 101 are printed inCAPITALS.

Examples or emphasized words are displayed initalicized font; names of entities in entity-
relationship models or names of tables in a relational database system are printed intype-
writer font.

The corpus query system programmed in this project is at the time of writing running on a
server of the Department of Computer Science at the University of Zurich. It can be tested at
http://www.ifi.unizh.ch/cl/chmerz/CorpusQuery/start.html . A login-name and password can
be obtained from the author.

iv

Chapter 1

Introduction

Corpus linguistics is a growing area of research in language studies as well as in computational
linguistics. Despite its increasing popularity, corpus linguistics still represents a question mark
for many scholars of traditional linguistics. This, on one hand, is due to the fact that the extent of
corpus linguistics is not comparable to the focus of any of the established linguistic fields such
as syntax, morphology or sociolinguistics. Corpus linguistics is rather a methodology which can
be applied to all linguistic paradigms. On the other hand, corpus linguistics makes extensive use
of computers for the analysis of specific problems. This leads to a certain degree of mistrust.
Allow me explore these two points and correct any misunderstandings about corpus linguistics
from the beginning.

Theoretical linguistics, as it is traditionally taught, emphasizes the study of language struc-
ture. It establishes systems which explain language as a theoretical model. A linguist can com-
pare language in use with these theories and make statements about the grammatical correctness
of a sentence or the order morphological components in a word. In Chomsky’s words, theoreti-
cal linguistics strives to achieveEXPLANATORY ADEQUACY in explaining a speaker’sCOMPE-
TENCE.

As opposed to this, corpus linguistics aims at achievingDESCRIPTIVE ADEQUACY of the
speaker’sPERFORMANCE. Corpus linguists study the actual patterns of use of language in nat-
urally occurring texts, thereby relying on large collection of texts in order to conduct empirical
analyses. This is based on the idea that language has to be explored as it is used and not re-
stricted to the domain covered by a theoretical model. The increasing use of computers allows
processing of large amounts of data, thereby increasing and accelerating the possibilities of cor-
pus linguistics immensely. It is important to note, however, that corpus linguistics is first of all a
methodology which can be applied in every branch of linguistics1.

This is the ideological gap which lies between theoretical and descriptive linguistics. Al-
though the positions taken up by these parties seem to be far apart, Meyer ([Meier 2002]:xiv)

1For an extensive list of the use of corpora in language studies see chapter 4 in [McEnery and Wilson 1996] or pp.
11-28 in [Meier 2002].

1

CHAPTER 1. INTRODUCTION 2

concludes:

[W]hile the goals of the corpus linguist and the generative grammarian are often
different, there is an overlap between the two disciplines and, in many cases, the
findings of the corpus linguist have much to offer to the theoretical linguist.

It is therefore important that corpus linguistics is seen as what it is: a complementary method-
ology from which many useful insights can be gained.

The other resentment against corpus linguistics is that its application is strongly based on
computers. If a linguist would like to conduct a quantitative study, the use of computers is
unavoidable. While being told about this project, a fellow student said: “So you are constructing
what I am not even capable of using?” I understand her concern. It is not that she does not know
how to handle computers or how to analyze empirical data. If confronted with conventional
corpus query systems, a linguist is at least challenged into learning a query language in order
to retrieve the data desired. This takes for granted some knowledge about the corpus structure
and the technical handling of the query. I am convinced that if confronted with a more intuitive
corpus query system, the enigma of this field would disappear quickly.

Having elaborated possible resentments against corpus linguistics, I would like to argue why
it should be included in linguistic studies as much as possible. The background of this discus-
sion is a project of the German Department at the University of Zurich. In this project, a team
is creating a CD-Rom which will be attached to the mandatory study book for all introductory
linguistic courses ([Linke et al. 1996]). The purpose of this CD-Rom is – among others – to op-
timize the process of studying through additional media and to stimulate the students’ analytical
capabilities as well as their critical access to linguistic theories2. It seems to me that this CD-
Rom will be a great opportunity to make corpus linguistics accessible to these students. Through
an intuitive interface students will be able to conduct their own researches on a corpus according
to the theory presently studied. It would allow them to test linguistic theories on real data and
enable them to gain more insights to the problems of the study of language in general.

The project described in this thesis is the construction of a corpus query tool designed for
beginners in corpus linguistics. Whether the CD-Rom will include a link to it is at this point of
time not decided. It will, however, serve as a corpus query tool for students in projects in corpus
linguistics and can be adapted to other purposes as well. Its main purpose is to allow a user to
retrieve data from corpora in an easy-to-handle way.

To construct such a system, several areas of research have to be explored. They include
questions of data storage, data retrieval and data output. For all of these steps, a decision had
to be made in order to implement a new corpus query tool. In this paper I will show how other
projects proceeded and which results they yielded. Based on this knowledge, I will argue my
position and present my corpus query system. Last but not least, this system will be analyzed
and evaluated, and suggestions for improvement made.

2For a more detailed description of this project see http://www.unizh.ch/∼lingucd

Chapter 2

Components of Corpus Query

When working withCORPORA, it is necessary to have some knowledge about the linguistic as
well as the technical resources involved. First of all, there are different kinds of corpora with
different kinds of uses. Depending on these uses, corpus query systems with different corpus
query languages are constructed. In this chapter, I would like to present a survey of corpus types
and formats. I will then move on to a theoretical part about corpus query languages and corpus
query tools which will be concluded by the presentation of some corpus query tools.

2.1 Use and Types of Corpora

2.1.1 Corpus Design

Commonly, a corpus is a machine-readable body of authentic texts. This definition, however,
needs to be improved because it does not state anything about the purpose or of the design of
the corpus. According to Biber ([Biber et al. 2000]:246), a corpus is “not simply a collection of
texts. Rather, a corpus seeks to represent a language or some part of a language.” An incoherent
compilation of texts therefore does not embody a corpus. Additionally, every corpus is con-
structed with the purpose of giving insights to one or several research questions. The answer to
these questions obviously influences the design of the corpus. Based on all these consideration,
corpora are best defined as collections of texts representing some part of a language in order to
answer specific research questions.

Whereas the purpose of a corpus is made out in the context of its research project, several
criteria are needed to distinguish among the various types and characteristics of corpora. These
criteria include linguistic factors as well as technical aspects. The following list of criteria is
gathered from several introductory books for corpus linguistics and does not claim completeness.
Rather, it gives an overview of the complexity of issues in corpus design. A discussion of the
keywords presented in the list follows in the subsequent paragraphs.

3

CHAPTER 2. COMPONENTS OF CORPUS QUERY 4

• size of corpus (number of signs, tokens, or sentences);

• text selection:

– written vs. spoken texts;

– date of texts (synchronic vs. diachronic);

– genre andREGISTERselection;

– multi-purpose vs. special-purpose text selection;

– representativeness of texts (balanced vs. unbalanced, homogeneous vs. heteroge-
neous);

– language(s) of texts (monolingual vs. multilingual text selection, parallel vs. compa-
rable text selection);

• additional linguistic information:

– plain text (unannotated) corpus;

– TAGGED corpus;

– tagged andPARSEDcorpus (so-calledTREE-BANKS);

– other kinds of tagging: semantically tagged, discourse tagged, pragmatic/stylistic
tagged, problem-oriented tagged corpus;

• additional context information:

– identity of author, speaker, or addressee (including sociolinguistic variables such as
gender, age, education, dialect, and social context);

– recordings of prosody, facial expressions, or gestures.

The first feature of a corpus is usually its size. It is declared in the number of words, sen-
tences, or tokens. Meyer ([Meier 2002]:32-34) states that the size of a corpus depends first of
all on the resources available (funding, research assistants, computing facilities) and only secon-
darily on the research question. It is clear, however, that research projects involving linguistic
structures which do not occur in as often as others (e.g. conditional clauses) rely on larger corpora
in order to gather the necessary amount of information about the feature observed. Contemporary
corpora vary from some hundred thousand words of spoken text (London-Lund corpus, British
National Corpus) to around half a billion words of written text (Bank of English Corpus). Most
corpora will be set somewhere in this range. Corpora of written texts are usually larger than
corpora of spoken text.

When collecting texts for a corpus, a first distinction is made between speech and writing.
It is obvious that written data is much easier to obtain. Although human communication is the
primary mode of communication, it involves a great amount of preprocessing to obtain a sample

CHAPTER 2. COMPONENTS OF CORPUS QUERY 5

of speech in a machine-readable (i.e. textual) format1. By means of the availability of corpora
and the interest in computational matters, the focus of this paper will be set on written data.

Other decisions for a particular text selection also depend on the research question which is
to be answered. If historical comparisons are pursued, a corpus must consist of texts with various
dates of origin. This is called a diachronic approach. Its counterpart is the synchronic approach
in which issues of language at one point in time are observed.

Even within texts of one language at one point of time the characteristics vary considerably
among their genre and register. The termgenrerefers to a text’s literary category;REGISTER

denotes “a language variety associated with a particular situation of use” ([Finegan 1999]:594).
Possible genres are fiction vs. non-fiction writing. Further distinctions within these genres such
as science fiction vs. romantic fiction or academic vs. press texts can be made. Possible registers
are spontaneous vs. prepared speech or telephone conversations with friends vs. face-to-face
conversations. The grade of distinction – which can be specified to an unlimited degree – depends
on the purpose pursued.

When compiling a corpus, decisions as to which genres and registers are included have to
be taken. A multi-purpose corpus seeks to cover a large part of natural language use in order
to serve as many research projects as possible and therefore includes a broad range of genres.
Examples for multi-purpose corpora are the ICE-Corpus and the British National Corpus. On
the other hand, a special-purpose corpus is developed to serve one distinct research area. For
example, the Penn Treebank contains 4.9 million words of different genres and serves as training
corpus for taggers and parsers. Although the genre of texts such as from the Penn Treebank may
influence the performance of taggers and parsers, the exact distribution of these genres is of less
importance than when observing sociolinguistic variables.

The representativeness of texts is concerned with the consistency of the text collection. A
corpus is balanced if it represents equal samples of different genres; an unbalanced corpus con-
tains a selection of texts with no importance paid to their genres. A homogeneous corpus consists
mainly of one genre of texts, whereas a heterogeneous corpus includes many different kinds of
texts. A balanced corpus is therefore usually heterogeneous.

Corpora may consist of texts of more than one language. Such a multilingual corpus allows
a linguist to study genre variations in two languages. In order to study issues of translation, the
texts in each language of the corpus need to be the same. Such a corpus which contains the
same text in different languages is called a parallel corpus. If sentences which correspond to one
another in different languages are specifically identified, the corpus is aligned.

As to the additional linguistic information which can be part of a corpus, subsections 2.1.2
to 2.1.5 are devoted to this topic. A paragraph on the semantic tagging of the corpora used in
this project can be found in subsection 4.3.1. Discourse and other kinds of tagging are only
mentioned for the completeness of the list but not explored any further because they are not part
of the corpus which is used in this project.

1For a more detailed survey of collecting samples of speech see pp. 56-61 and 69-78 in [Meier 2002].

CHAPTER 2. COMPONENTS OF CORPUS QUERY 6

Additional context information depends on its availability and necessity. Whereas the identity
of the author, speaker, or addressee will normally be known or reconstructed and included at
some point in the research project, recordings of prosody, facial expressions, or gestures require
additional technological methods, mostly video recordings. Since the number of such corpora is
very small and the focus of this paper is set on text corpora in machine-readable form, this kind
of context information will subsequently be neglected in this paper.

A table with an overview of the currently most important English and German corpora and
their characteristics can be found in section 2.1.6 on pages 17 and 18.

2.1.2 Corpus Preprossessing

It is obvious that more information can be extracted from a corpus enriched with interpreta-
tive and linguistic information than from a raw corpus. The information added to plain text is
called markup, and three different kinds of markup may be distinguished: structural markup
(descriptive information), part-of-speech markup (TAGGING), and grammatical markup (PARS-
ING). Since structural markup only transforms the textual structure of a corpus into a layout-
independent form – it refers to the SGML-markers which are inserted in place of text formatting
(e.g. headers, italicized text, etc.) – it is not part of the linguistic annotation but rather an essen-
tial element of corpus preprocessing. Sometimes structural markup is called “markup” by itself,
whereas a linguistically marked-up corpus is referred to as an annotated corpus.

The gathering of linguistic information could theoretically be done manually in countless
hours. Since corpus linguistics is interested in large amounts of data, the automatic or semi-
automatic annotation of corpora has developed into an area of research on its own. In this sub-
section, I will present how corpora are prepared by adding structural markup and which other
steps are necessary to bring the corpus into a format required for subsequent steps of linguistic
annotation.

Before explaining the various steps of marking up a corpus, I will make some general remarks
about the annotation of corpora. In Garside et al. ([Garside et al. 1997]:6-7), Geoffrey Leech lists
some standards for corpus annotation which are valuable to keep in mind while dealing with this
topic. The following list is a paraphrased version of his maxims:

CHAPTER 2. COMPONENTS OF CORPUS QUERY 7

• The annotated corpus should be revertible to its original state, that is, the raw corpus should
be recoverable.

• The annotation markers should be extricable independently from the corpus.

• The following issues concerning the annotation should be documented in a easy accessible
place:

– the guidelines of the annotation scheme;

– the identity of the annotator(s);

– indications to the quality of the annotation.

• Keep in mind that corpus annotation is not infallible.

• The analysis should be performed as theory-neutral as possible in order to guarantee a
wider acceptance and understanding.

• No annotation scheme is standard because they are created for practical reasons.

Keeping these standards in mind, the first step of a corpus annotation is structural markup.
A text may contain various formatting which will be lost when it is transformed into a machine-
readable format. Examples for such formatting are font type and size, italicization or boldface
fonts, sections, titles, and so forth. One way to keep the information included is to add SGML-
labels. The labels are marked by opening and closing brackets (<label>), and each element is
framed by a start- and end-label (<label> element< /label>).

The subsequently presented examples are based on the linguistic resources which will be
used for my corpus query tool. More information about the corpora can be found in section
4.3.1 on page 51. Their preparation and annotation was part of Martin Volk’s habilitation thesis
described in [Volk 2001]. Examples (2.1) and (2.2) show a reconstruction of the beginning of an
article in the ComputerZeitung before and after being structurally marked up.

CHAPTER 2. COMPONENTS OF CORPUS QUERY 8

(2.1) Example of the formatting in the ComputerZeitung

CZ 1+2/1997 S.1
Griechen haben Pech
Brüssel (kg)– Beim ersten Internet-Chat-in von EU-Kulturkommissar Marcelino
Oreja mußten die Griechen “leider draußen bleiben”.

(2.2) Example of the ComputerZeitung marked up with SGML-Tags

<LOC> CZ 1+2/1997 S.1< /LOC>
<H2>Griechen haben Pech< /H2>
<P><CITY>Brüssel< /CITY>
<AU ABBR>kg< /AU ABBR>
Beim ersten Internet-Chat-in von EU-Kulturkommissar Marcelino Oreja mußten
die Griechen “leider draußen bleiben”.< /P>

The tags which are inserted are<LOC> (location of the document within the newspaper
(volume and page numbers)),<H2> (Header),<P> (Paragraph),<CITY> (document anchor
city), and<AU ABBR> (author abbreviation). Each of them encloses a section and marks its
end with the corresponding tag which includes a slash (e.g.< /LOC>). A detailed list of all the
tags which have been inserted by Volk into the ComputerZeitung as well as the Tages-Anzeiger
corpus can be found in Appendix A.

A committee of scholars called Text Encoding Initiative (TEI) developed a set of guidelines
as to how SGML (Standard Generalized Markup Language) is to be used to encode a vast range
of text types and textual features. For example, TEI divides the text into a header and the text
itself, whereas the header contains meta-information about the text such as author, title, date,
etc.2 It seems, however, that nowadays most frequently used standard for text encoding has
become XML (Extensible Markup Language). XML is a subset of SGML and due to its smaller
complexity easier to handle. In the year 2000, a document type definition for the standardized
encoding of corpora in XML called Corpus Encoding Standard (XCES) was established.3 Please
note, however, that the SGML-tags presented in the above example and in the ComputerZeitung
and Tages-Anzeiger corpora are not TEI-conform.

Besides labelling the structure of a corpus, additional steps are normally necessary to shape a
corpus into the form required by a tagger, namelyTOKENIZATION and sentence boundary recog-
nition. Tokenization refers to the segmentation of a text into words. A token is automatically
recognized as the unit usually enclosed by two blank characters or punctuation marks. The in-
tention is that each token represents one morphosyntactic unit. Several cases are problematic:

2The TEI-Guidelines can be found at http://www.tei-c.org
3XCES can be found at http://www.cs.vassar.edu/XCES/

CHAPTER 2. COMPONENTS OF CORPUS QUERY 9

Figure 2.1: Verticalized sentence of the ComputerZeitung with SGML-tags and
clause boundaries

Beim
ersten
Internet-Chat-in
von
EU-Kulturkommissar
Marcelino
Oreja
mußten
die
Griechen
“
leider
draußen
bleiben
”
.
<CB>

mulitwords (e.g. “in spite of” is one preposition), mergers (e.g. “it’s” are two tokens “it” and
“is”), compounds (e.g. “post-Cold War” is not to be analyzed as “post-Cold” and “War”). Such
exceptions are usually explicitly listed or separately dealt with.

Another task of tokenization is the isolation of punctuation marks. Each punctuation mark
is intended to represent one token. One possible procedure is to separate all punctuation marks
from the text and to reunite tokens which have been wrongly separated (e.g. numbers (200 ’ 000)
or internet addresses (www . ifi . unizh . ch)). In many cases, full stops pose problems because
they are multi-functional – they represent sentence boundaries and are constituents of abbrevia-
tions, numbers, and much more. TEI provides SGML-tags for six types of full stops, including
a stop used to end an abbreviation (<stop.abbr>), a stop used to end a sentence (<stop.sent>),
and a stop used to both end an abbreviation and to end a sentence (<stop.abse>).4 While disam-
biguating full stops for tokenization, each recognized sentence can be framed by the TEI-conform
SGML-tag (<s>). For further processing reasons, the corpus can be verticalized by positioning
one token per line.

The result of these preprocessing steps should be a cleaned corpus consisting of a finite
number of tokens. Figure 2.1 shows the last part of the sentence in examples (2.1) and (2.2) after
tokenization, verticalization, and clause boundary recognition as it has been conducted for the
corpora used in this project. Clause boundaries are marked with<CB>.5 For a more detailed
description of the difference between clause and sentence boundaries, see section 4.3.1.

In such a format, the corpus is ready to be tagged. There is one final remark to be made
4More details about the TEI-encoding of punctuation marks can be found at http://www.tei-

CHAPTER 2. COMPONENTS OF CORPUS QUERY 10

about preprocessing. Preprocessing seems to be a rather trivial matter. Mistakes, however, will
percolate through the whole corpus analysis. If, for example, a sentence boundary is marked
incorrectly, the parse of a sentence may be wrong and a correct syntax analysis will never be
found. It is therefore a significant matter to have clean and correct data to work with.

2.1.3 Part-of-Speech Tagging

When TAGGING a corpus, a part-of-speech tag is automatically assigned to each token. The
range of possible tags is determined by the selection of aTAGSET. A tagset constructed for com-
putational purposes will usually look different than one intended for manual analysis. This is due
to the fact that a tagger relies on the immediate local context of a word and cannot take remote
information into account (e.g. a distinction between the English indicative and subjunctive is not
possible without further context information because both verb forms are the same). Tagsets in-
tended for computerized use may distinguish between different subclasses of larger word classes,
thereby increasing the number of tags. Such a tagset allows for example a distinction of different
pronouns such a possessive pronouns (e.g.my) and personal pronouns (e.g.I). It has been found
out that – despite one’s intuition might differ – a larger tagset does not influence tagging accuracy
negatively but rather leads to increased correctness ([Meier 2002]:91). Current tagsets vary from
30 to 200 members.

There are two kinds of tagging algorithms: probabilistic tagging and rule-based tagging.6

Probabilistic tagging (also called stochastic or statistical tagging) works with Hidden Markov
Models which determine the most likely tag in a given context. Rule-based (e.g. Brill taggers)
assign a tag to each word and in a next step go through a set of rules extracted from a training
corpus to correct the mistakes. Both algorithms rely on a training corpus to generate the rules.

Generally, taggers assign the correct tag in about 95% of all cases. Volk and Schneider
([Volk and Schneider 1998]) found that in a comparison of a stochastic and a rule-based tagger
the stochastic tagger achieved slightly better results for German texts.

After having been tagged with a tree-tagger for German ([Schmid and Kempe 1996]) ap-
plying the Stuttgart-T̈ubingen tagset ([Schiller et al. 1999]), the sentence presented in examples
(2.1) and (2.2) and in figure 2.1 looks as in figure 2.2.

Figure 2.2 shows how the STTS distinguishes between different types of nouns (NN are reg-
ular nouns (e.g.EU-Kulturkommissar); NE are proper nouns (e.g.Marcelino Oreja)), different
types of verbs (VMFIN labels the infinitive of a modal verb form(e.g.mußten); VVINF the in-
finitive of a regular verb form (e.g.bleiben)), and punctuation marks (e.g.$(and$.). Unknown
words, however, always pose a problem to a tagger. In this example,Internet-Chat-inis marked
as an adjective although it should have been recognized as a noun. The following subsection

c.org/P4X/CO.html#COPU
5The TEI-conform SGML-tag for clause boundary is<cl>.
6For a general introduction to tagging and tagging algorithms see [Jurafsky and Martin 2000]:287-321.

CHAPTER 2. COMPONENTS OF CORPUS QUERY 11

Figure 2.2: Verticalized sentence of the ComputerZeitung with SGML-tags, clause
boundaries, and part-of-speech tags

Token Pos-tag

Beim APPRART
ersten ADJA
Internet-Chat-in ADJD
von APPR
EU-Kulturkommissar NN
Marcelino NE
Oreja NE
mußten VMFIN
die ART
Griechen NN
“ $(
leider ADV
draußen ADV
bleiben VVINF
” $(
. $.
<CB>

about morphological analysis and lemmatization shows in more detail how this mistake hap-
pened.

The part-of-speech tagging in figure 2.2 is similar to the part-of-speech tagging of the corpora
used in this project.

2.1.4 Morphological Analysis and Lemmatization

Depending on the purpose of a corpus analysis, the annotation may additionally include informa-
tion to the morphological components and theLEMMAS of the words. Both are usually obtained
from a morphological analyzer and may contribute – besides adding linguistic information – to
a more refined analysis of the syntactic structure.

Figure 2.3 shows how each word of the example sentence is enriched with morphological
information and aLEMMA . A lemma is the base form of a word representing all word forms
belonging to the same word (e.g.begin, began, andbeginningare lemmatized tobegin). This
information can be used to study the overall behavior of a word based on all its different forms.

The morphological analysis in figure 2.3 was done by GERTWOL.7 GERTWOL is a system
for the morphological analysis of German words based on two-level morphology. It segments

7For more information about GERTWOL see http://www.lingsoft.fi/cgi-bin/gertwol/

CHAPTER 2. COMPONENTS OF CORPUS QUERY 12

Figure 2.3: Verticalized sentence of the ComputerZeitung with SGML-Tags, clause
boundaries, tags, morph, and lemma

Token Pos-tag Morpho.-tag Lemma

Beim APPRART PR̈AP ART DEF SG
DAT MASK

bei-der

ersten ADJA NUM ORD SG DAT
MASK

erst

Internet-Chat-in ADJD Internet-Chat-in (1+)
von APPR pre PR̈AP Dat von
EU-Kulturkommissar NN S MASK SG DAT EU-Kultur#kommissar
Marcelino NE Marcelino (?)
Oreja NE Oreja (?)
mußten VMFIN V IND PR̈AT PL 3 müss∼en
die ART ART DEF PL NOM die
Griechen NN S MASK PL NOM Griech∼e
“ $(
leider ADV ADV
draußen ADV ADV
bleiben VVINF V INF bleib∼en
” $(
. $.
<CB>

the words into their principal stem and the surrounding morphemes. The following segmentation
boundaries are possible:

strong segmentation (#)separates elements which can exist as independent words (e.g.Berg#wiese,
Schreib#maschine);

weak segmentation (–)separates prepositions, prefixes, and dependent elements which can never
exist as independent words (e.g.Vor–Schule, geo–morpho–log∼isch);

joining element (\) occurs either at the boundary of a compound or in front of a suffix. The stem
of the word is usually on the left hand side of the joining element. (e.g.Ein#famil∼ie\n#haus,
Friede\ns#freund);

suffix (∼) a suffix is a morphological element which is added at the end of a word, contributing
information to either flexion or derivation (e.g.Lehr∼er, buchstab∼ier∼en).

A morphological analyzer also produces information about part-of-speech tags which can be
used to correct tagger outputs. Cases in which GERTWOL overruled the tagger are marked as
follows:

CHAPTER 2. COMPONENTS OF CORPUS QUERY 13

(?) GERTWOL does not recognize the word form. The word form becomes the lemma and the
part-of-speech tag from the tagger is kept. In figure 2.3 this was the case with proper nouns
MarcelinoandOreja.

(1) GERTWOL supplies exactly one part-of-speech tag which does not correspond to the part-
of-speech tag of the tagger. GERTWOL overrules the tagger; the lemma and the GERT-
WOL part-of-speech tag are used. This case does not occur in figure 2.3.

(1+) GERTWOL supplies more than one part-of-speech tag but none of them corresponds to the
part-of-speech tag of the tagger. If the part-of-speech tag of the tagger is close enough to
one of the GERTWOL tags, the tag is replaced by GERTWOL’s tag. If this is not possible,
a random GERTWOL part-of-speech tag is selected. The corresponding lemma is in all
cases taken from GERTWOL. In figure 2.3, this is the case with the wordInternet-Chat-in.
Since the word was not known to GERTWOL and no part-of-speech tag similar to the tag
proposed by the tagger was found, a random GERTWOL part-of-speech tag was selected.
In this case, the selection was completely wrong.

In the corpora used in this project, each word was analyzed by GERTWOL as described
in this subsection. The only difference between the annotation presented in figure 2.3 and the
annotation of the ComputerZeitung and Tages-Anzeiger corpora is that the morphological tags
were not in included in the corpora used for this project.

2.1.5 Parsing and Treebanks

There are various manners toPARSE a tagged corpus. The goal of parsing is to find syntactic
functions and constituents of a text. The decision as to which type and level of grammatical enti-
ties are retrieved is left to the annotator, and various theories and stages are possible. Compared
to tagging, parsing is a much more time-consuming undertaking because it involves the analysis
of complex and often ambiguous sentence structures. Consequently, an automatic parser achieves
accuracy rates around 70-80 percent depending on type of text and definition of correctness.

The fifth item of Leech’s maxims (see section 2.1.2 on page 7) declared that the annotation
should be a as theory-neutral as possible; in reality, this is not the case. In parsing, this is difficult
to achieve because a parser always reflects the concepts of an underlying grammatical theory.
Accordingly a wide range of formats for syntactical annotation is available. Similar to taggers,
parsing algorithms are either probabilistic or rule-based. Corpora are often semi-automatically
annotated in order to guarantee both efficiency and correctness. A more detailed discussion of
parsing algorithms would, however, exceed the scope of this paper.8

A special kind of corpus consisting of a collection of syntactically annotated sentences is
called aTREEBANK. The name refers to the encoding of the sentence structure which usually

8For a more detailed introduction to syntactical analysis and parsing see [Carstensen et al. 2001]:203-245.

CHAPTER 2. COMPONENTS OF CORPUS QUERY 14

resembles a tree. There are manually as well as automatically annotated treebanks containing
partial up to complete syntactic structures. The correctness of these structures depends on the
parsing method used. The syntactic structure of a manually annotated corpus is prone to incon-
sistencies based on the differing interpretation of syntactical ambiguities by human annotators or
human errors due to the lack of concentration. An automatically annotated corpus may be consis-
tent in the type of parsing errors but all syntactic structures can be recognized and processed. The
annotation of a manually annotated corpus is after all always more correct than the annotation of
an automatically annotated one. Data from manually annotated treebanks is used to train parsers
and to extract lexical information. Beside these two disciplines, a number of research projects
in linguistics also relies on large amounts of annotated material (e.g. the automatic resolution of
prepositional phrase attachment ambiguities).

The most important English treebank is the Penn Treebank; the most important German
treebanks are the NeGra and the TIGER corpus, whereas the TIGER corpus is a continuation
of the NeGra corpus. Figure 2.4 shows how a sentence from the TIGER Corpus is displayed in
TIGERSearch. More information about TIGERSearch can be found in subsection 2.2.2.

CHAPTER 2. COMPONENTS OF CORPUS QUERY 15

Figure 2.4: TIGER treebank

CHAPTER 2. COMPONENTS OF CORPUS QUERY 16

Figure 2.4 shows the sentence from figures 2.1 to 2.3 with its syntactic tree structure. The
root of the tree is the sentence nodeS which branches off into different syntactic constituents
until it reaches the words which function as leaves. Each word is annotated with a STTS part-
of-speech tag and morphological information and a lemma from GERTWOL. In the ovals, each
node is supplied with a tag describing the syntactic constituent. The edges are labelled according
to their function within this syntactic constituent. The graphic representation of figure 2.4 is
exported from TIGERSearch.

Figure 2.4 shows a complete syntactic annotation of a sentence. One corpus used in this
project is annotated likewise; the remaining two are only partial treebanks, meaning that they
contain several trees of syntactic constituents which are not necessarily connected to one sen-
tence. More information about the syntactic annotation of the corpora used in this project can be
found in subsection 4.3.1 starting on page 51.

2.1.6 Existing Corpora

There is a large number of corpora, some of them commercially available, some of them for
purely academic purposes and of restricted use for the respective department only. Copyright
issues are always an obstacle to the public availability of corpora. The following tables on
pages 17 and 18 gives an overview of the currently most prominent corpora in English and
German. The table includes information to their size, characteristics, and annotation. Another
row indicates corpus query tools which are available to extract linguistic information from the
respective corpus. The information about the corpora was gathered in February 2002 from the
internet pages listed in the last row.

2.2 Corpus Query

When in possession of an annotated corpus, the focus will shift from adding information to
and encoding to retrieving data from it. Information can be retrieved by using a programming
language such as Perl to write programs designed for a particular query purpose. A number of
corpus query systems has been built to serve a wider range of uses. They vary considerably in
their design, performance, and user-friendliness. In this section, I will show the possibilities of
corpus query and corpus query languages. This is followed by a list of five English and German
corpus query systems in which information about their system architecture, data storage, query
options, and output functions is collected.

There are, however, a number of prerequisites which each corpus query system has to ob-
serve. The following list shows which are necessary.

CHAPTER 2. COMPONENTS OF CORPUS QUERY 17

Ta
bl

e
2.

1:
O

ve
rv

ie
w

of
E

ng
lis

h
C

or
po

ra
N

am
e

S
iz

e
C

ha
ra

ct
er

is
tic

s
A

nn
ot

at
io

n
C

or
pu

s
In

fo
rm

at
io

n
(in

Q
ue

ry
S

ou
rc

e
W

or
ds

)
To

ol
(s

)
B

an
k

of
E

ng
lis

h
C

or
pu

s
41

5
m

io
.

sp
ee

ch
an

d
w

rit
in

g
fr

om
va

rio
us

ge
nr

es
w

or
db

an
k

(n
o

lin
gu

is
tic

an
no

ta
tio

n;
st

ru
ct

ur
al

m
ar

ku
p)

C
ol

lin
s-

C
O

B
U

IL
D

ht
tp

://
tit

an
ia

.
co

bu
ild

.c
ol

lin
s.

co
.u

k/
bo

e
in

fo
.h

tm
l

B
N

C
(B

rit
is

h
N

at
io

na
l

C
or

pu
s)

10
0

m
io

.
10

m
io

.
sp

ok
en

w
or

ds
,

90
m

io
.

w
rit

te
n

w
or

ds
P

os
-T

ag
s

S
A

R
A

B
N

C
W

eb
ht

tp
://

w
w

w
.h

cu
.o

x.
ac

.u
k/

B
N

C
/

B
rit

is
h

N
at

io
na

l
C

or
pu

s
S

am
pl

er
(B

N
C

S
am

pl
er

)

2
m

io
.

sa
m

pl
er

of
sp

ee
ch

an
d

w
rit

in
g

re
pr

es
en

tin
g

th
e

B
N

C

P
os

-T
ag

s
S

A
R

A
B

N
C

W
eb

ht
tp

://
w

w
w

.h
cu

.o
x.

ac
.u

k/
B

N
C

/

B
ro

w
n

C
or

pu
s

of
S

ta
nd

ar
d

E
ng

lis
h

1
m

io
.

w
rit

te
n

te
xt

s
di

vi
de

d
in

to
20

00
-w

or
d

sa
m

pl
es

fr
om

va
rio

us
ge

nr
es

w
or

db
an

k
ve

rs
io

n/
ta

gg
ed

ve
rs

io
n

W
or

dS
m

ith
ht

tp
://

w
w

w
.h

it.
ui

b.
no

/
ic

am
e/

cd
/

In
te

rn
at

io
na

lC
or

-
pu

s
of

E
ng

lis
h

1
m

io
.

60
0’

00
0

sp
ok

en
w

or
ds

,
40

0’
00

0
w

rit
te

n
w

or
ds

m
an

ua
lly

ch
ec

ke
d

tr
ee

-
ba

nk
in

cl
ud

in
g

co
m

pl
et

e
sy

nt
ax

st
ru

ct
ur

es
IC

E
te

am
s

fo
r

15
E

ng
lis

h-
sp

ea
ki

ng
co

un
-

tr
ie

s

IC
E

U
P

III
ht

tp
//w

w
w

.u
cl

.a
c.

uk
/e

ng
lis

h-
us

ag
e/

ic
e/

Lo
nd

on
-L

un
d

C
or

pu
s

50
0’

00
0

sp
ok

en
B

rit
is

h
E

ng
lis

h
fr

om
va

rio
us

ge
nr

es
pr

os
od

ic
fe

at
ur

es
W

or
dS

m
ith

ht
tp

://
w

w
w

.h
it.

ui
b.

no
/

ic
am

e/
cd

/

P
en

n
T

re
eb

an
k

4.
9

m
io

.
A

m
er

ic
an

w
rit

te
n

E
ng

lis
h

P
os

-T
ag

s
an

d
(s

ke
le

ta
l)

sy
nt

ac
tic

al
an

no
ta

tio
n

tg
re

p
on

lin
e

ht
tp

://
w

w
w

.c
is

.u
pe

nn
.

ed
u/
∼

tr
ee

ba
nk

/
ho

m
e.

ht
m

l

CHAPTER 2. COMPONENTS OF CORPUS QUERY 18

Ta
bl

e
2.

2:
O

ve
rv

ie
w

of
G

er
m

an
C

or
po

ra
N

am
e

S
iz

e
C

ha
ra

ct
er

is
tic

s
A

nn
ot

at
io

n
C

or
pu

s
In

fo
rm

at
io

n
(in

Q
ue

ry
S

ou
rc

e
W

or
ds

)
To

ol
(s

)
ID

S
-T

ex
tk

or
po

ra
11

81
m

io
.

co
lle

ct
io

n
of

va
rio

us
co

r-
po

ra
of

sp
ok

en
an

d
w

rit
te

n
G

er
m

an

m
ai

nl
y

w
or

db
an

ks
C

O
S

M
A

S
w

w
w

.id
s-

m
an

nh
ei

m
.d

e/
kt

/
co

rp
or

a-
ge

s.
sh

tm
l

F
ra

nk
fu

rt
er

R
un

ds
ch

au
C

or
pu

s

34
m

io
.

G
er

m
an

ne
w

sp
ap

er
te

xt
s

P
os

-t
ag

s,
ca

se
,l

em
m

as
ht

tp
://

je
ns

.z
or

ba
.d

k/
co

rp
/p

ag
e1

8.
ht

m
l

N
E

G
R

A
C

or
pu

s
(N

eb
en

l̈au
fig

e
gr

am
m

at
is

ch
e

Ve
ra

rb
ei

tu
ng

)
Ve

rs
io

n
2

35
5’

09
6

(2
0’

60
2

se
n-

te
nc

es
)

G
er

m
an

ne
w

sp
ap

er
te

xt
s

(s
el

ec
tio

n
fr

om
th

e
F

ra
nk

fu
rt

er
R

un
ds

ch
au

C
or

pu
s)

m
an

ua
lly

ch
ec

ke
d

tr
ee

-
ba

nk
w

ith
P

os
-t

ag
s,

m
or

ph
ol

og
ic

al
an

al
ys

is
,

sy
nt

ax
(a

llo
w

in
g

cr
os

si
ng

ed
ge

s)

w
w

w
.c

ol
i.u

ni
-s

b.
de

/
sf

b3
78

/n
eg

ra
-c

or
pu

s/
ne

gr
a-

co
rp

us
.h

tm
l

T
IG

E
R

C
or

pu
s

35
’0

00
se

nt
.

(g
oa

l:
55

’0
00

se
n-

te
nc

es
)

w
rit

te
n

G
er

m
an

m
an

ua
lly

ch
ec

ke
d

tr
ee

-
ba

nk
w

ith
P

os
-t

ag
s,

m
or

ph
ol

og
ic

al
an

al
ys

is
,

sy
nt

ax
(a

llo
w

in
g

cr
os

si
ng

ed
ge

s)

T
IG

E
R

-
S

ea
rc

h
ht

tp
://

w
w

w
.u

ni
-

st
ut

tg
ar

t.d
e/

pr
oj

ek
te

/
T

IG
E

R

CHAPTER 2. COMPONENTS OF CORPUS QUERY 19

CompletenessThe corpus query system must guarantee that every occurrence which matches a
query is retrieved;

Efficiency The time of retrieval must be limited to a reasonable interval;

Result Reproduction The results of a query must be displayed in a meaningful way which
allows a user to find the important structures easily. Basic statistical information such as
the number of hits per corpus size is necessary.

Reconstructability The location of retrieved data must be clearly discernible (e.g. corpus, sen-
tence, etc.).

According to Stefan Evert and Arne Fitschen in [Carstensen et al. 2001] (375-376), there are
three types of corpus query systems.

1. concordancing systems;

2. pattern-based query systems;

3. systems for statistical analysis.

Concordancing programs retrieve items from a corpus and display the results by showing
their immediate context. Items can be words, word forms, phrases, or words restricted by a tag,
just to name a few of the most common. The graphical output is often in the form of a KWIC-list
(Key Word In Context). A KWIC representation resembles a table containing a left-hand column
with context of the given item to the left, a right-hand column with the context to the right, and
the key word in a center column in between both contexts.

Pattern-based query systems allow a user to specify regular expressions which find certain
patterns. Since these systems allow more complex queries, they are usually used to search for
syntactical constituents. The regular expression in example (2.3) shows what a query for noun
phrases could look like.

(2.3) (DET)? ((ADV)? ADJ)* NN

The expression matches every instance of a noun (NN) which is preceded by zero or one
determiner (DET) and zero or more occurrences of the combination of an adverb (ADV) and an
adjective (ADJ), whereas the adverb may occur once or not at all. Depending on the encoding of
a corpus, pattern-based query systems may also work with XML-structures.

CHAPTER 2. COMPONENTS OF CORPUS QUERY 20

Systems for statistical analysis are usually based on concordancing programs and give ad-
ditional information about the frequency of terms in the context of the keyword. They may
calculate co-occurrence rates of repeatedly occurring words or part-of-speech tags or find word
clusters.

Contemporary corpus query systems usually include one or more components of these three
corpus query system types. The type of retrieval is in most cases based on the annotation of
a corpus; a part-of-speech tagged corpus will usually result in the retrieval of concordances,
whereas it makes more sense to search a treebank with a pattern-based query language. Extensive
corpus query systems will make use of both methods. Systems designed purely for statistical
analysis are rare because statistical information is an essential part of both concordancing as
well as pattern-based query systems.

Stefan Evert and Arne Fitschen in Carstensen et al. ([Carstensen et al. 2001]:375-376) notice
a trend of corpus query systems towards a client-server architecture. This makes sense insofar
that large amounts of corpus data can be stored on a high-performance server instead of occu-
pying workspace on a local machine. Local systems also have the disadvantage of having to
be platform-independent, whereas a client-server architecture allows access by a standard web
browser.

2.2.1 Corpus Query Languages

When retrieving data from a corpus, a corpus query language may be used. A corpus query lan-
guage is a formal construct designed especially for retrieval of corpus structures. Corpus query
languages vary considerably depending on the format of the corpus and the queries intended.
Some corpus query systems do not make use of corpus query languages but rely on other means
of retrieval.

Corpus query languages usually consist of elements to describe the following matters:

• symbols denoting constituents (words, phrases, part-of-speech tags, markup-tags, syntactic
constituents, etc.);

• symbols to describe the sequence of these constituents;

• boolean operators to combine (sequences of) constituents;

• further options such as case-sensitiveness, number, etc.

Three of the five corpus query systems presented in the next subsection (ICEUP III, SARA,
and TIGERSearch) have designed their own corpus query language. An additional paragraph to
each entry of these systems will treat the corpus query language so that the different interpretation
of the above-mentioned elements can be seen in the respective corpus query system. In my

CHAPTER 2. COMPONENTS OF CORPUS QUERY 21

corpus query tool, I will not make use of a corpus query language but instead work with input
fields which are transformed into SQL query statements.

Another query language which can be said to belong to the group of corpus query languages
but which occurs independently of any specific corpus query project istgrep. Tgrep is a Unix
query based on grep but specifically designed to retrieve data from tree structures. The advantage
of tgrep over grep is that grep only searches single lines whereas tgrep looks for bracketed tree
structures. Tgrep is not designed to be especially user-friendly but focuses on fast retrieval times.

Tgrep can only be used with an encoded corpus file. This encoding is achieved by another
Unix utility called t g r e p. The bracketed tgrep syntax structure of a sentence is displayed in
example (2.4).

(2.4) (TOP (S (NP-SBJ my best friend)
(VP gave

(NP me)
(NP chocolate)
(NP-TMP yesterday))

.))

Tgrep enables a user to specify a pattern consisting of nodes and relationships between nodes.
As a next step, this pattern is matched against the corpus. To formulate a query, a user types
a Unix command of the format displayed in example (2.5) (italicized expressions indicate the
position of a parameter).

(2.5) tgrepoptions‘pattern’ corpus-file.crp

Theoptions-statement sets user-defined configurations about query execution and result out-
put. As an example, the option -w prints the whole sentence instead of only the matching part.

The ‘pattern’-statement is a combination of node names and expressions to specify their
position. A pattern consists of node names and symbols to describe the order of these nodes.
For example, the symbol> marks a parent-child relationship, whereas the child stands on the
left hand side of the operator. Similarly,>> stands for an ancestor relationship. Besides their
vertical order, the horizontal sequence of nodes can also be specified. A dot . marks a node
followed by its sibling node which stands on the right of the dot.9

The last parametercorpus-file.crpdefines a corpus file which will be searched. Examples
(2.6) and (2.7) show two different tgrep query statements which retrieve a match in sentence
(2.4) (My best friend gave me chocolate yesterday).

9See http://www.ldc.upenn.edu/ldc/online/treebank/ or a Unix-manual to read more about tgrep query statements.

CHAPTER 2. COMPONENTS OF CORPUS QUERY 22

(2.6) tgrep -w ‘chocolate’ corpus.crp

(2.7) tgrep -w ‘(NP . NP)> VP’ corpus.crp

The tgrep query statement in example (2.6) matches all instances of the wordchocolate.
The query statement in example (2.7) retrieves a sentence containing a verbal phrase VP which
immediately dominates two nominal phrases NP in a sibling relationship. In sentence (2.4) this
is the case with VPgaveand NPsmeandchocolate.

Tgrep is a very powerful and fast corpus query tool for the Unix operating system requiring
some basic programming skills. It is therefore suitable for experienced corpus linguists pursuing
research of complex syntactic structures and working on a Unix computer.10

There is, however, a wide range of corpus query tools which are more suitable for begin-
ning or intermittent users. The following section presents a selection of five corpus query tools
developed for but not limited to English and German corpora and treebanks.

2.2.2 Corpus Query Tools

The selection of corpus query tools presented in this section is based on their quality, availability,
and the availability of documentation papers. The following corpus query tools are some of the
currently finest systems in this field. All of them focus on one or several goals, including but
not restricted to user-friendliness, efficiency, versatility, and design. Each entry is divided into
several subparagraphs about the topics system architecture, data storage, corpus query language,
query options, output functions, and a conclusion. If information to one or several topics is not
available, the paragraph is omitted.

10Persons who would like to give tgrep a try may do so at http://www.ldc.upenn.edu/ldc/online/treebank/ where the
Penn Treebank can be searched online with tgrep.

CHAPTER 2. COMPONENTS OF CORPUS QUERY 23

SARA

SARA (SGML-Aware Retrieval Application) is a query system for the British National Corpus
and the BNC Sampler.11 Developed in 1996, its goal was “to make the corpus available and
usable as widely as possible” ([Burnard 1996]:1). It has become a convenient program for an
intermittent user which can be downloaded as a trial version one month for free or purchased for
one year. SARA is specialized to acknowledge the SGML-structure of the BNC, thus allowing
queries for SGML-tags or in distinct SGML-sections.

Architecture SARA is designed in a client/server-architecture. It offers platform-specific
client programs which interact with the SARA protocol and a server program. The SARA
protocol transforms (if necessary) user queries into a Corpus Query Language (CQL) which
is subsequently processed by the server program.

Data storage Data from the BNC is stored in files and indexed through hashing techniques.
The position of each token (including SGML-tags) and its respective part-of-speech tag is stored
in an index-file, and for particularly frequent used elements a secondary index is kept in an
accelerator-file. According to Burnard ([Burnard 1996]:2), the performance achieved by this
proceeding “provides equally good retrieval times for any kind of query”, although McEnery and
Rayson ([McEnery and Wilson 1996]:204) criticize that “types of query, which do not match the
way the index is organized [...] are much slower”. With regards to the size of the BNC (100
million tagged words, six and a quarter million sentences), SARA achieves fast retrieval times.
One has to note, however, that the BNC does not contain lemmas or syntactic information.

SARA Corpus Query Language (CQL) The designers of SARA developed a corpus query
language to retrieve data from the BNC. Burnard ([Burnard 1996]:3) characterizes CQL as “a
fairly typical Boolean style retrieval language, with a number of additional features particularly
useful for corpus work. It is emphatically not intended for human use.” Its elements are atomic
queries, unary and binary operators, and scope delimiters. Examples of CQL are displayed in
(2.8) to (2.11).

11Information about SARA can be found in the internet at http://sara.natcorp.ox.ac.uk/ or in [Burnard 1996] or
[McEnery and Wilson 1996]:204-206

CHAPTER 2. COMPONENTS OF CORPUS QUERY 24

(2.8) friend, “my best friend”, “friend”=NN1

(2.9) @ friend

(2.10) my * friend

(2.11) my * friend /4

Example (2.8) shows three samples of atomic queries in CQL. An atomic query can be a
word, a delimited string, or a word and part-of-speech pair. Other atomic queries are punctu-
ation marks, SGML-tags (e.g.<pause> searches for pause-tags in spoken texts), patterns (e.g.
“colo?r” retrieves all instances ofcolour andcolor), or wildcard characters (e.g.my friend
matchesmy best friendas well asmy only friend). Example (2.9) shows the CQL unary operator
header (@) which searches for matches in the header as well as in the body of SGML-tagged
documents. Other unary operators are case-sensitiveness ($) and negation (!). Example (2.10)
shows a binary operator combining two atomic queries. The join operator (*) matches cases
where both queries are satisfied in the order specified (i.e. query (2.10) finds occurrences of ‘my’
followed by ‘friend’ at any distance within the<body> of a text). Other binary operators are the
sequence operator (blank space between two queries), the join operator # which matches cases
where both queries are satisfied in either order, and the disjunction operator| which matches
cases where either query is satisfied. Example (2.11) shows the use of a CQL scope delimiter.
A join followed by a / operator and a number matches cases where the joined query is satisfied
within the number of atoms specified (e.g. “my * friend /4” findsmy very best friendbut notmy
ever so needed friend).

Query options SARA offers the following query possibilities: word query, phrase query, pat-
tern query, part-of-speech query, and SGML-query. Queries can be expressed in the SARA Cor-
pus Query Language as explained in the table above or chosen from a graphical query interface.
The most helpful tool to create complex queries is the SARA Query Builder. It comprises on the
left hand side a so-called scope node which delimits the query to the scope of a SGML-element.
On the right hand side there is the content node which allows to formulate any of the mentioned
queries.

Output SARA returns the results to a query in the KWIC-format, thereby either presenting all
matches or one sentence per page. A user may chose between four different formats of sentence
formatting, namely plain, POS, SGML, and custom. Plain offers no markup, POS allows the user
to configure different colors for part-of-speech tags, SGML returns SGML-tags uninterpreted,
and custom describes a user-defined mixture of the preceding modes.

SARA conclusion SARA offers useful query options for the British National Corpus, includ-
ing SGML-aware retrieval. Due to the lack of syntactic annotation is its overall complexity rather

CHAPTER 2. COMPONENTS OF CORPUS QUERY 25

small. Although it offers a formal query language, not every search option is possible. A delex-
icalized search for a part-of-speech tag without specifying a word is not available because the
BNC is not indexed for part-of-speech-tags. Output options are limited to KWIC-format and
colors. It seems that SARA – as one of the earliest web-based query systems – is a useful tool
but has been improved by BCNWeb, an addition to it offering more features.

CHAPTER 2. COMPONENTS OF CORPUS QUERY 26

BNCWeb

Based on SARA, the SGML-Aware Retrieval Application for the British National Corpus (see
previous subsection), BNCWeb offers extended query options for this corpus. BNCWeb’s devel-
opers focused on user-friendliness and efficiency and achieved both goals. BNCWeb is currently
available in its second version.12

Architecture: BNCWeb is a web-based query system. It relies on a UNIX-server with a fully
installed SARA server program and some other resources. An intermittent user will therefore
not seek full installation but rather try to get permission for the web-based access to an already
installed system.

Data storage The file structure of the BNC and the SARA query functions remain the same;
BNCWeb is an extension to these features. Whereas SARA only allowed downloads of 2000
sentences, BNCWeb does not restrict the number of hits. Moreover, while BNCWeb displays the
first fifty hits, the rest of the results are downloaded in the background. BNCWeb also makes
use of a relational database system (MySQL) to extend the functionality of SARA to enable
post-query options which do not rely on SARA directly.

Query Options BNCWeb offers a wide range of query option and statistical corpus analysis.
The most important query functions are query for word, query for lemma, and a corpus browsing
function. Queries for word are stated either in the SARA CQL (cf. subsection 2.2.2 for exam-
ples) or in regular expressions. Examples (2.12) and (2.13) show possible regular expressions;
examples (2.14) and (2.15) show lemma queries.

(2.12) {critici[sz]e}

(2.13) {spr[ˆeo]ngs?i?n?g?}

(2.14) fly VERB

(2.15) fly SUBST

In BNCWeb, regular expressions are indicated with curly brackets. Example (2.12) finds
criticise andcriticize; example (2.13) findsspring, springs, sprang, sprung, andspringingbut
not sprengor sprong. For a lemma query, the user types in the lemma and selects the lemma
type from a list. In examples (2.14) and (2.15), the lemma type is capitalized. Example (2.14)
finds all verbal word forms belonging to lemmafly, namelyfly, flies, flew, andflying. If lemma

12More information about BNCWeb can be found at the project’s homepage at http://homepage.mac.com/bncweb/-
home.html or in a discussion by Rolf Kreyer and Joybrato Mukherjee at www.linguistlist.org/issues/13/13-2840.html

CHAPTER 2. COMPONENTS OF CORPUS QUERY 27

type SUBST is selected as in example (2.15), the query retrieves all instances of word forms
belonging to the nounfly, namelyfly andflies.

Besides the queries for words and lemmas, texts and genres can be restricted or browsed. Ad-
ditionally, BNCWeb contains a set of post-query options such asthin, sort, collocations, delete,
andsave-functions. It also offers detailed descriptive statistics about the distribution of a key-
word.

Output The results of searches are displayed sentence by sentence or in the KWIC-format.
Several options are available to arrange the data, including frequency counts and collocation
analysis.

BNCWeb Conclusion BNCWeb is a powerful and versatile tool in corpus query, unfortunately
yet limited to the use with the BNC World edition.13 Due to its use of regular expressions
and a number of select-options, the functionality of SARA has been profusely extended. Since
BNCWeb is still relies on the original SARA indexing structure, a delexicalized search is still
not possible.

13BNC Word Edition refers to the second edition of the BNC.

CHAPTER 2. COMPONENTS OF CORPUS QUERY 28

ICEUP III

ICEUP (currently in its third version) is a query system originally developed for the British com-
ponent of the International Corpus of English (ICE-GB). The ICE seeks to represent the language
of currently fifteen English-speaking countries by equally designed but separate components for
each country. Each ICE component consists of one million words from both spoken as well as
written texts which are fully tagged and parsed and even hand-checked.14 All components of the
ICE can be searched with ICEUP.15

Architecture ICEUP III is sold as a full version including the complete ICE-GB which can be
installed on a personal computer (the program is tested for Windows). There is, however, a free
download package with complete query software and a selection of ten texts from the ICE-GB
(20’000 words) available.

Data Storage Data from the ICE is stored in files. All features stored in the files are indexed
thus allowing fast queries on large and complex corpora. The entry for the spoken sentenceWell
you know Chapel Streetis stored as displayed in example (2.16).

(2.16) [<#5:1:A><sent>]
PU, CL(main, montr, pres)

DISMK, CONNEC(ge) {Well}
SU, NP()

NPHD, PRON(pers) {you}
VB, VP(montr, pres)

MVB, V(montr, pres) {know}
OD, NP()

NPHD, N(prop, sing) {Chapel Street}
[<#B>]

After an identification line with the sentence number, the sentence is classified as a main
clause (CL) in the present tense. The discourse marker (DISMK)well precedes the subject (SU),
a verbal clause (VB) and a direct object (OD). The subject consists of a noun phrase (NP) whose
head (NPHD) is a personal pronoun (PRON(pers))you. The verbal clause consists of a verb
phrase (VP) in present tenseknow; the direct object of a noun phrase whose head is a singular
proper noun (N(prop, sing))Chapel Street.

14Find more information about the ICE corpora at http://www.ucl.ac.uk/english-usage/ice/index.htm
15Find more information about ICEUP III at http://www.ucl.ac.uk/english-usage/ice-gb/iceup.htm

CHAPTER 2. COMPONENTS OF CORPUS QUERY 29

Figure 2.5: ICEUP III Tree Structure

Corpus Query Language ICEUP developed a grammatical query methodology for parsed cor-
pora called Fuzzy Tree Fragments (FTF). FTFs are descriptive formal representations of syntax
trees consisting of nodes and text unit element (such as words, pauses, or punctuations). Text unit
elements are always at the leave position of a FTF. FTFs in corpus query are abstract grammat-
ical subtrees which match parts of the complete syntax trees. To specify the position of a node
or text unit element, FTFs include unary operators. Binary operators determine the positions of
nodes and text unit elements in relation to another.

When transformed into Fussy Tree Fragments, example sentence (2.16) looks as displayed in
figure 2.5.

Query Options ICEUP III offers a graphical query interface which enables a user to draw
FTFs. Due to its intuitive graphical abstraction of FTFs, it is designed for experienced corpus
linguists as well as for beginners. ICEUP III also provides a Creation Wizard which allows
cyclic corpus exploration, i.e. the results of a query can be examined and their structure re-used
to define a refined query.

Output Query results are displayed as syntactic trees in which the FTF is highlighted or in a
line-based concordance view in which a queried node is focused.

CHAPTER 2. COMPONENTS OF CORPUS QUERY 30

ICEUP III Conclusion ICEUP III is a very useful and fast corpus query tool. Installing it
is simple and includes a tutorial which explains how to use ICEUP III. FTFs allow a user to
formulate complex queries in an intuitive way. Unfortunately, ICEUP is restricted to the use
with the ICE.

CHAPTER 2. COMPONENTS OF CORPUS QUERY 31

TIGERSearch

TIGERSearch is a corpus query tool developed in connection with the TIGER Project.16 This
project aims at the creation of a large syntactically annotated German Corpus, involving the
participation of the Computational Linguistics Departments of the Universities of Saarbrücken,
Stuttgart, and Potsdam.17 It is a continuation of the NeGra project, with the goal of extending
the NeGra corpus and its annotation scheme. The following list describes the main components
of the TIGER corpus query system.

TIGER-XML TIGER-XML is a XML-based representation format for syntactically annotated
corpora. All existing corpus formats should be convertible into this theory-neutral ex-
change format which can be processed by TIGERSearch. An example of an annotated
sentence in the TIGER-XML format can be found in section 4.3.1. TIGER-XML is de-
scribed in [Mengel and Lezius 2000].

TIGERRegistry TIGERRegistry is the tool to convert the currently most common corpus for-
mats into TIGER-XML which can be processed by TIGERSearch. Corpora which are
already in the TIGER-XML format are indexed and imported to TIGERSearch.

TIGERSearch The TIGER corpus and other syntactically annotated corpora in the TIGER-
XML format can be accessed through the TIGERSearch Corpus Query Tool. It consists of
a query interface programmed in Java allowing queries for all kinds of word-specific infor-
mation (e.g. part-of-speech tag, lemma, morphological information, and semantic class)
but also to dominance, precedence, and arity of the non-terminal nodes in the syntactic
tree. Queries are formulated in the TIGER query and description language or designed by
the graphical input tool called TIGERin.

TIGERin TIGERin is the graphical input tool for queries with TIGERSearch. Instead of having
to learn the TIGER query and description language, a user can construct queries with the
help of graphical representations which resemble the structure of the TIGERSearch output.
Each node is represented by a box which contains the necessary constraints. Dominance,
precedence, and arity relationships between boxes are indicated by different connectors
between the boxes. A graphical query is automatically translated into the TIGER query
and description language. TIGERin is described in [Voormann and Lezius 2002].

Corpus Query/Description Language Since the TIGER project aims at the creation of its
own annotated corpus, a scheme for syntactic annotation of German texts had to be developed.

16A short introduction about TIGERSearch can be found in [Lezius and König 2000] or on the TIGER website,
located at http://www.ims.uni-stuttgart.de/projekte/TIGER/.

17Before becoming involved in the TIGER project, the IMS of the University of Stuttgart constructed two different
corpus query systems named IMS Corpus Workbench and Verbmobil. Since these projects are older and Stuttgart’s
new focus lies on TIGER, I will not present the other two systems.

CHAPTER 2. COMPONENTS OF CORPUS QUERY 32

It is of special interest to the TIGER people to create an annotation scheme which is as theory-
independent as possible in order to be of wide acceptance and re-usability. The representation
language will be used as query language as well and therefore requires to be intuitive to the user
as well as efficient. The TIGER representation language describes syntactic trees with labelled
edges. Crossing edges are allowed in the annotation scheme. There are three levels to this TIGER
language: the node level, the node relation level, and the graph description level. On the bottom
level, the nodes are filled with feature value pairs and can be combined with Boolean expressions,
as examples (2.17) and (2.18) show.

(2.17) [word=“fly”]

(2.18) [word=“fly” & pos=“NN”]

Example query (2.17) finds all instances of the wordfly, whereas example query (2.18) finds
only instances of the wordfly as a noun.

Node relations are represented by the following key operations: dominance (>), precedence
(.), and siblings ($). The set of these operation is of course extended to enable the description of
every possible node relationship. On the graph description level, Boolean expressions (excluding
negation) are used to combine node relations. Example (2.19) shows how a query for a verbal
phrase VP immediately dominating two nominal phrases NP in a linear precedence relationship
in TIGERSearch is formulated.

(2.19) “1”: [cat=“VP”] &

“2”: [cat=“NP”] &

“3”: [cat=“NP”] &

“1” > “2” &

“1” > “3” &

“2” . “3” &

In example (2.19), a number is assigned to each node, namely “1” for the verbal phrase VP,
“2” for the first noun phrase NP, and “‘3” for the second noun phrase NP. Verbal phrase “1”
dominates both NPs “2” and “3”. The first NP “2” stands before NP “3”. This query would
match the sentence displayed in example (2.4) (My friend gave me chocolate yesterday).

Query options TIGERSearch, the corpus query tool of the TIGER project, is programmed in
Java in order to support all platforms. It includes features for the selection of a corpus which
will be searched, a query window, and folders helping to pose queries. The query is expressed in
terms of the TIGER representation language described above.

CHAPTER 2. COMPONENTS OF CORPUS QUERY 33

Output The output is graphically displayed in a program called GraphViewer, where each
match to the query is highlighted. The matches can also be exported. The design of the output
can be seen in figure 2.4 on page 15.

TIGERSearch Conclusion The TIGER project is by far the most important project in German
corpus linguistics. TIGERSearch offers a powerful corpus query language and graphical query
output. TIGERSearch is not restricted to one corpus format because TIGERRegistry includes
filters to convert the most common corpus formats to TIGER-XML. Users may also write their
own filters.

CHAPTER 2. COMPONENTS OF CORPUS QUERY 34

Gsearch

The four system presented before are corpus query tools for annotated corpora. The Gsearch
system, however, includes an annotation and a query tool for unparsed corpora in which users
can define their own grammar or annotation scheme. GSearch is therefore not only a corpus
query system but also a corpus annotation tool.18

The aim of Gsearch is to provide access to large amounts of text for the investigation of lexical
and syntactical phenomena. Corley et al. ([Corley et al. 2001]) argue that the interest in large
syntactically annotated corpora increases with the availability of digitalized texts in the world
wide web so that a tool which adds syntactic structures to large numbers of texts is indispensable.
It is not the intent of GSearch, however, to return perfect syntactical analyses but rather to process
large amounts of data. For this reason, GSearch works highly overgenerating, often supplying
more than one analysis per sentence.

Architecture GSearch is a platform-dependent program running only on Unix machines. It is
designed as a modular system consisting of a corpus in a uniform input format, a bottom up chart
parser, and a uniform output format. This allows users to define their own filters in order to pro-
cess any corpus in the way which they desire. GSearch additionally provides filters for the most
commonly used annotated corpora, namely for the British National Corpus, the Brown Corpus,
the SUSANNE Corpus, the Wall Street Journal Corpus, the Frankfurter Rundschau Corpus, and
the NeGra corpus, so that queries on these corpora can also be conducted.

Query Options Queries on any corpus in the GSearch format are posed in the form of a Unix-
command. The general command is of the form displayed in example (2.20) (italicized expres-
sions indicate the position of a parameter; square brackets indicate an optional parameter).

(2.20) gsearch [options] corpus grammar goal

The argumentcorpusdetermines the corpus in which the query is executed. The argument
grammarspecifies a context-free grammar file according to which the corpus will be parsed.
The argumentgoal is the query statement consisting of a sequence of terminal and non-terminal
symbols corresponding to the grammar which was chosen. Corley et al. ([Corley et al. 2001])
provides the following example query.

(2.21) gsearch bnc GrammarBNC np pp pp

The query in example (2.21) retrieves all sentences which contain a nominal phrase followed
by two prepositional phrases in the GSearch sampler corpus from the British National Corpus.

18The project’s homepage can be found at hhtp://www.hcrc.ed.ac.uk/gsearch

CHAPTER 2. COMPONENTS OF CORPUS QUERY 35

In its original, the BNC is only part-of-speech tagged. With the help of a context-free grammar
stored in fileGrammarBNCGSearch performed a syntactical analysis. Other query options
for complex queries are available, including regular expressions, conjunctions, and negation.
GSearch provides no operators concerning dominance relations of nodes.

Theoptions-parameter in the query statement defines the output of the results. A user may
specify which fields of the sentence are to be displayed. The options-statement also includes
variables which affect parser and context output.

Output GSearch’s default output is a full sentence marked up with SGML-tags. This textual
output may be visualized by one of two graphical programs called Viewtree and Thistle which
are included in GSearch.

GSearch Conclusion The intention of GSearch is different from the corpus query tools which
allow queries on annotated corpora. Whether the results of the automatic annotation of raw text
conducted by GSearch are useful depends on the grammar specified and the demands of the user.
GSearch is, however, not suitable for corpus linguists without knowledge of the Unix operating
system because the parameters have to be configured individually in order to run GSearch. Addi-
tionally, the user needs to have a clear-cut idea as to how the corpus is to be annotated, i.e. which
grammar is to be used. This requires a strong background in syntactical theories. The advantage,
however, is that one may specify one’s own grammars and is not forced to use a pre-set annota-
tion scheme. GSearch therefore remains a tool for experienced computational linguists who rely
on large amounts of automatically annotated data.

Chapter 3

Database Systems

3.1 Introduction to Database Systems

Database systems are software systems which store large amounts of data. Elamsri and Navathe
([Elmasri and Navathe 2000]:4) define a database as “a collection of related data. By data, we
mean known facts that can be recorded and that have an implicit meaning.” Traditionally de-
signed for industrial purposes, it seems that database concepts may be used to store linguistic
data as well.

Databases are administered by DATABASE MANAGEMENT SYSTEMS (DBMS). DBMS al-
low a user to define, construct, and manipulate a database for various purposes. Some DBMS are
commercially available (e.g. Oracle, IBM DB2, Microsoft Access, etc.), others are freeware (e.g.
MySQL, SAP DB1). DBMS constructed for heavy-use applications are usually a costly venture.
Database and DBMS combined are calledDATABASE SYSTEM.

3.1.1 Characteristics and Advantages of the Database Approach

A database approach is characterized by a list of features which I will cover briefly. First of
all, data stored in a database is combined with a set of meta-data which describes its definition,
structure, and constraints. The encoding of the data will therefore always be reconstructible. Oth-
erwise, data stored in a database is independent of application programs. This independence is
accomplished by data abstraction. A conceptual model serves to abstract data by allowing a user
to communicate with the data without explicitly accessing physical data storage. Additionally,
database systems allow multiple views of the data and multiuser transaction processing.

There are several advantages which arise from these characteristics. First and most impor-
tantly, a database system helps to control redundancy. Since all data is modelled according to a

1cf. http://www.sapdb.org

36

CHAPTER 3. DATABASE SYSTEMS 37

scheme, redundancy can be avoided or deliberately employed to improve performance. Since ac-
cess to the database can be controlled and data is independent of application programs, multiple
uses may be pursued, each being controlled according to the different needs of the application.
Moreover, a database systems enforces integrity constraints of the data and provides backup and
recovery features for worst-case scenarios.

3.1.2 The Relational Data Model

Before storing data in a database, data has to be modelled according to a scheme. Several data
models have been proposed, among them the network data model, the hierarchical data model,
the object-based data model, and the relational data model. The relational data model is cur-
rently the most widely used. This is due to its relatively simple mathematical foundation and its
implementation by the most important database system producers.

The relational data model is based on mathematical relations. A relation resembles a table
but – since relations represent mathematical sets – its fields are not in a fixed order. Operations
on relations are similar to operations in set theory. The two main categories of operations car-
ried out on relations are retrievals and updates, whereas updates include inserts, deletions, and
modifications of the database and retrievals specify selection, projections, renames, and joins.

Each relation consists of a set of columns called attributes and a set of rows called tuples. A
minimal subset of attributes must be chosen to form an unambiguous identification of each tuple.
This subset is called a primary key. To combine two relations, the primary key of one table must
be identical to a subset of attributes in another relation. This subset is called a foreign key.

Probably the most important advantage of relational database systems is a standardized query
language for the relational data model called SQL (Structured Query Language). SQL is based
on relational algebra but is easier to use than complex mathematical operations. It is a descrip-
tive, set-oriented language which can be used independently as well as embedded in other host
languages (e.g. COBOL, PASCAL, C, PHP, etc.). SQL defines statements for data definition and
data manipulation. A basic database query in SQL looks as displayed in example (3.1).

(3.1) SELECT<list of attributes>
FROM<relations>
WHERE<conditions>

Having these means of data storage and retrieval at disposal, we will now see how database
systems have been used in corpus linguistics.

3.2 Database Systems in Corpus Linguistics

It seems that relational database systems are seldom used in corpus linguistics. This may be
due to the increasing popularity of the encoding in XML which has become standardized for

CHAPTER 3. DATABASE SYSTEMS 38

corpora and allows efficient data processing for corpus query (cf. section 2.1.2). But why should
a concept designed to store large amounts of data not be used and succeed in linguistics as well?
Within German corpus linguistics, I am aware of three projects exploring the use of database
systems.

3.2.1 Corsica

In his Magister thesis, Marco Zierl ([Zierl 1998]) is pursuing the goal of designing and imple-
menting a database system to store and process corpora. In a first step, he transforms any textual
corpus into a TEI-conform SGML-format, going through the preprocessing steps of tokenization
and sentence boundary recognition as described in section 2.1.2. Each document is supplied with
a TEI-header in which information about the text is encoded.

Zierl, however, does not make use of a commercially available database system but constructs
his own. He assigns a number to each word of the text, whereas identical word forms are mapped
to the same number. Each token is therefore accessible by an integer of the same size. These
integers are indexed to allow faster access. Zierl makes use of binary trees and special search
algorithms to retrieve data from the corpus. One of his goals is to ensure that linguistic attributes
can be added as well as removed from the corpus, thus allowing the user to chose between any
kind of annotation. In the database, information from the TEI-header is stored independently
from the text.2

The query language used to retrieve data is based on the query language used for the IMS
Corpus Workbench. This language is a precursor of the TIGER query and description language
and thus shares certain features with it. It specifies nodes and operators and also allows regular
expressions to match a query.3 Corsica is programmed in C++.

3.2.2 San Remo

In his Magister thesis, Thomas Künneth ([K̈unneth 1998]) poses the question of whether com-
mercial database systems are suitable for use in corpus linguistics. Instead of programming a
complete corpus query system, he tests the use and efficiency of a relational database system for
corpus import and export, corpus storage, and corpus query. He argues that relational database
systems are due to their availability, portability, and proven stability preferable to proprietary
systems, and that SQL is a suitable query language for corpora.

There are, however, a few restrictions to using SQL in corpus query systems: Since learning
SQL is for most corpus-users not an option, a query language needs to be constructed which

2Since the TEI-header information is very complex, only a part of it is processed in this project.
3For more information about the IMS Corpus Workbench consult Oliver Christ “A Modular and Flexible Architecture
for an Integrated Corpus Query System” in Proceedings of COMPLEX-94, pp.23-32.

CHAPTER 3. DATABASE SYSTEMS 39

maps user commands to SQL query statements. After retrieval, SLQ-output needs to be dis-
played in a KWIC-table. Also, additional tools for the import and export of corpora need to
be programmed. K̈unneth therefore proposes a three-layer model for corpus database systems
based on relational database management systems: The top-most level consists of communica-
tion programs between the user and SQL, including a query language, result output, and import
and export filters. The second level manages the exchange of information between the database
and the user by translating user commands from the top level into SQL-statements. The bottom
level is the relational database itself.

According to K̈unneth’s results, the data scheme underlying the relational database is crucial
for the system’s performance. His basic idea is to map corpus positions (e.g. words) onto at-
tributes. Since he tests his systems with the British National Corpus, the only attribute available
is the word’s part-of-speech tag. It is possible, however, to add more attributes, although Künneth
does not explore the connection between the number of attributes and performance. With this
basic proceeding, a word occurring more than once will be stored several times, thus causing
redundancy.

A next step is to keep a running index but map repeatedly occurring word forms onto the
same position. A word is therefore characterized by a unique index plus a storage position.
Although this approach avoids redundancy, Künneth notes that it causes slow retrieval times
with large corpora. If the corpus is small, however, retrieval times are improved compared to the
first experiment.

To be able to save textual information such as text boundaries, author, or text genre, additional
tables are necessary. Künneth describes the use of the n-table structure in which an additional
table is created for each text saving the words which belong to it.

Künneth dedicates a subsection of his Magister thesis to the optimization of corpus queries.
The most obvious optimization, generating an index, is costly to maintain with the n-table struc-
ture. Künneth therefore omits creating an index file besides the indices which are internally
generated by the DBMS. He adds, however, a list in which he saves the number of occurrences
of each word and the section of the corpus in which it occurs. This strategy especially improves
retrieval times for low-frequency words and still guarantees easy import of additional corpora.

Künneth chose to work with IBM DB2 and Perl. To test San Remo, he programmed an
import filter for the SGML-based British National Corpus and tested his system on it. He judged
the retrieval times – which depended strongly on the database scheme – as acceptable. The use
of relational database system in corpus linguistics is therefore possible.

3.2.3 ANNOTATE Database Format

ANNOTATE is a program to support manual or semi-automatic annotation of corpora with syn-
tactical information.4 It is part of the NEGRA project whose goal is to build a large treebank

4Find more information about the ANNOTATE project at http://www.coli.uni-sb.de/sfb378/negra-
corpus/annotate.html

CHAPTER 3. DATABASE SYSTEMS 40

for German. Plaehn ([Plaehn 1998]) discusses the pros and cons of the use of text files versus
relational database systems for data storage. Since the NEGRA annotation format allows cross-
ing edges as well as secondary edges, he decided in favor of a relational database system. The
relational database management system he chose is Mini SQL.

The emphasis of Plaehn’s paper lies on the description of the database scheme. It is de-
signed to support morphological and syntactical information as well as part-of-speech tags. A
designated corpus consists of a few thousand to ten thousand sentences. Since the ANNOTATE

database scheme has served as basis for my own database scheme, I will describe it in more
detail in section 4.2.

Chapter 4

My Own Corpus Query Tool

4.1 Aim, Scope, and Technical Resources

The goal of the project described in this paper is to develop a corpus query tool which enables a
user to query partially as well as fully syntactically annotated corpora and presents the query’s
results. The demands on this corpus query tool are, on the one hand, that its observes all prereq-
uisites listed in section 2.2, namely completeness of query result retrieval, efficiency in retrieving
the data, result reproduction, and reconstructablity of the results’ origins. On the other hand, the
corpus query tool is in a final version required to store large, automatically annotated corpora.
For this project, however, the aim is set on a prototype version running on syntactically annotated
corpora of at the most 20’000 sentences. It will be the task of another project to optimize and
improve my corpus query tool to access corpora exceeding 100’000 sentences.

The designated user of this corpus query tool is a beginner in corpus linguistics. This is, on
one side, due to a project of the German Department at the University of Zurich in which a tutorial
CD-ROM is developed which might include a glimpse on corpus linguistics. Students would be
able to answer simple research questions with an easy-to-handle corpus query tool. On the other
side, the corpus query tool will make use of a relational database. Instead of requiring a user
to learn SQL (which is the standard query language of relational database systems), the corpus
query tool includes an interface with different pre-set query types. Each query type is designed
as a sequence of commented input fields which constitutes a different query. Other query types
than the one proposed in the current version are available by updating the query interface. For
the query interface, the emphasis is set on intuitive operation and user-friendliness.

As mentioned before, the corpora will be stored in a relational database. The choice of
database management system is MySQL because it is fast and available for free as well as on
a server at the Department of Computer Science at the University of Zurich. MySQL supports
most features of ANSI SQL.1 Some SQL features, however, were deliberately omitted to improve

1SQL was standardized by a joint effort of the American National Standards Institute (ANSI) and the

41

CHAPTER 4. MY OWN CORPUS QUERY TOOL 42

HTML)

PHP Module

(PHP and

FILES

(transformation

into HTML)

Apache Webserver

Browser

(MySQL)

DATABASE

CLIENT

SERVER

Figure 4.1: Overview of System Components

speed. MySQL is very fast in comparison with other relational database management systems
because it stores its data in a B-tree-indexing structure.2

The implementation was done in HTML and PHP. PHP is a scripting language designed
retrieve data from MySQL database systems and display embedded HTML on a web page. PHP’s
syntax is oriented towards the programming language C but is also influenced by elements of
Java (object oriented programming) and Perl (string processing and regular expressions). The
acronym PHP alternatively stands forPersonalHomepage Tools orPHPHypertextPreprocessor.

International Standards Organization (ISO). ANSI SQL refers to the SQL standard defined in 1992
([Elmasri and Navathe 2000]:244 and [Reese et al. 2002]:7).

2A B-tree is a balanced tree structure designed for fast queries in a dynamic situation. The balancedness of a B-tree
is kept by retaining a number of spare tree nodes which take up nodes after insertion. Searching or inserting a node

CHAPTER 4. MY OWN CORPUS QUERY TOOL 43

Figure 4.1 shows a schematic overview of the architecture of my corpus query tool. It is based
on a client/server structure in which the client accesses the server through a regular internet
browser and the world wide web. The server is equipped with an Apache web server which
includes a module to interpret PHP-scripts.3 The PHP-scripts may contain SQL-statements to
manipulate the MySQL database. In the corpus query system, a user triggers the respective
SQL query statements to retrieve information from the database by submitting elements in a
HTML-form to the server. The results of a query are processed in PHP. Instead of displaying
the PHP-source code, the result of this conversion is displayed in a HTML-page which is then
submitted to the client.

In the subsequent sections of this chapter, each component of my corpus query tool is treated
separately and in more detail. The core component of the corpus query tool is its database format.
For testing purposes, this database is filled with three different corpora whose characteristics are
described in another section. This is followed by a description of query proceedings and interface
functions. As a last component, the result output is presented.

4.2 Database Format

In the following section, I will present two different database formats for my corpus query sys-
tem. The first approach follows the textbook model to produce a relational database by means of
the entity-relationship model; the second is an adaption and extension of Oliver Plaehn’s database
model designed for corpus storage as described in [Plaehn 1998] which I will call N-table ap-
proach.

4.2.1 Entity-Relationship Model Approach

When designing a database, a database administrator will follow a sequence of four steps which
result in the implementation of a database. The four steps arerequirements analysis, conceptual
design, logical design, andphysical design. The following subsection comments on these steps
and shows the resulting data models based on the database format of my own corpus query tool.

Requirements Analysis As a first step of database modelling, a database designer has to ana-
lyze the purpose and requirements of the database application. The goal of this step is to gather
information and to clear misunderstandings so that the designer has a set of correct facts to work
with.

in a B-tree constituted of N nodes takes a time of the order oflogN . It is one of the most efficient data structures for
large amounts of data.

3For more information about Apache web servers see http://www.apache.org.

CHAPTER 4. MY OWN CORPUS QUERY TOOL 44

The task of my corpus query tool is to retrieve linguistic data from a relational database.
The information which is to be stored in the database is defined by the annotated corpus files.
Retrieval times should be of reasonable speed; database updates while the system is running are
of no concern because once a corpus is transferred to the database system no more changes will
be made. The only update operation performed is to remove or upload a whole corpus, and this
occurs very seldom.

The persons involved with the usage of my corpus query system are one system administrator
and a number of users. The system administrator is granted all permissions to update or delete
from the database. The users are only allowed to read from the database and perform no other
operations. Their access to the database is restricted to the queries which can be submitted from
the web-based query interface. The number of users is not limited because a relational database
system is designed to allow multiple users.

A natural language description of the information in the corpus database might look as fol-
lows: A corpus consists of words, and several words together form sentences. Each word is
associated with a part-of-speech tag. Additionally, a word may be annotated with a morpho-
logical tag and semantic information. The semantic information is composed of semantic name
tags or semantic type tags. There may also be a partial or complete syntactic structure for each
sentence. The graph of the syntactic structure is a tree consisting of a root node, edges, nodes,
and leaves. The leaves of the syntactic tree are the words of the sentence. The nodes represent
syntactic constituents which are annotated with parentlabels; the edges are annotated with their
syntactic functions called edgelabel. With the exception of the root node, every node has exactly
one parent node. If a sentence is fully syntactically annotated, there is exactly one syntax tree; if
the syntactic structure is only partially annotated, more than one syntax tree or partial tree exist.

Conceptual Design The conceptual design of a database includes all data requirements and
constraints but is independent of any implementation or DBMS. The most widely used concep-
tual data model for relational database applications is the entity-relationship model. It specifies
entity types and their relationships to one another. Such an entity type most closely resembles an
independent “thing” in the real word. It can be described by a set of attributes. Relationships may
also have attributes but are moreover specified by their degree, i.e. the number of participating
entity types.

Based on the above text about the corpus database, three entity types can be made out, namely
word , sentence , andparent . Each one of them is a separate linguistic entity. Entityword
is described by the attributes part-of-speech tag, morphological tag, and semantic tag. A seman-
tic tag can either be a named entity or a semantic type tag and is therefore in an entity-relationship
model represented as compound attribute. Entitysentence has no attributes, and entitypar-
ent is described by a parentlabel.

The relationship betweenword andsentence is that each word belongs to exactly one
sentence and each sentence contains one or more words, whereas word is used in the meaning
of token, i.e. the same word form may appear more than once in the same sentence. The same

CHAPTER 4. MY OWN CORPUS QUERY TOOL 45

applies to the relationship betweenparent andsentence . Each parent belongs to exactly
one sentence, and each sentence contains zero or more parents, depending on the completeness
of the syntactic annotation. The relationship betweenword andparent also depends on the
annotation. If the sentence is annotated with a complete syntactic structure, eachword has
exactly oneparent node and the tree ends in exactly one root node. In partially annotated
sentences, the syntactic structure is rather a set of nodes and partial trees, meaning that each
word does not necessarily have aparent . The attribute edgelabel describes the relationship
betweenword andparent . Additionally, there is a recursive relationship betweenparent
and parent . In completely annotated sentences, eachparent except the root node has a
parent node; in partially annotated sentences, aparent may or may not have a parent, thus
forming a set of subtrees.

In an entity-relationship schema diagram, entities are represented by rectangles and rela-
tionships by diamond-shaped rhombi. Attributes are displayed as ovals which are connected
to the entity or relationship which is described by them. Primary key attributes (or identifying
attributes) are in bold-face print.

Entities and relationships are connected with lines which may be labelled with their cardi-
nality. The cardinality of a relationship describes the number of associated entity instances in
the relationship. The basic types of cardinality are one-to-one, one-to-many, and many-to-many.
In diagram 4.2, the cardinality is split up in two parts so that each part can be displayed as a
bracketed expression between the participating entity and the relationship diamond next to the
relationship. The first number within the brackets specifies the minimal, the second the maximal
number of participants.

Figure 4.2 shows how my corpus database may be modelled according to the entity-relation-
ship model.

Logical Design The next step in designing a database is to transform the conceptual data model
into a logical model. The logical model of a database depends on the choice of a DBMS because
it makes use of the DBMS’s particular constructs. There are rules which allow a precise transfor-
mation of an entity-relationship model to a logical model called relational model for relational
DBMS.

Instead of listing every rule which is needed to achieve the transformation from an entity-
relationship model to a relational model4, I will comment on a selection of the most important
correspondences. An entity type is transformed into a relation. Graphically, a relation corre-
sponds to a table by the name of the entity type. Attributes are added as columns. In the corpus
database, this results in the three relationsword , sentence , andparent with the respective
attributes. Relationships between entity types are included in these relations by foreign keys re-
ferring to the corresponding attributes in the other relations. The degree of the relationships may
be included.

4For a complete listing of the rules for entity-relationship to relational model mapping see
[Elmasri and Navathe 2000]:290-294.

CHAPTER 4. MY OWN CORPUS QUERY TOOL 46

word

id
pos-tag

contains contains

id

subsumes

edgelabel

morph-
tag

annotat.
sem.

sem-
type

parent

edgelabel

subsumes

label
parent-id

(1,1) (1,1)

(1,N) (0,N)

(0,1)(1,1)
(1,1)

(0,1)

sentence

named
entity

Figure 4.2: Entity-relationship model of the corpus database

A transformation of 4.2 based on these rules results in the three relations displayed in figure
4.3. The name of a relation is in bold-face print. Primary keys are underlined; foreign keys
are italicized and are connected to the respective attribute in another relation by an arrow. The
relations infigure 4.3 can directly be implemented in a relational DBMS. They constitute the first
version fo the database format of my corpus query tool.

Physical Design The last step of database modelling named physical design refers to the task
of organizing data storage on a computer hard disk. Internal storage structures, access paths, and
file organizations are specified and database queries optimized. Although most commercially
available DBMS take care of this matter, some optimizations may be achieved manually. In case
of MySQL, frequently accessed attributes are indexed in order to accelerate response time.

CHAPTER 4. MY OWN CORPUS QUERY TOOL 47

Id

Sentence Word

Id

WordText

MorphTag

PosTag

Edgelabel

SemType

ParentId

SentenceId

Parent

Id
(1,1)

(1,1)

(0,1)

(1,1)

(1,1)

SentenceId

Parentlabel

Edgelabel

ParentId
(1,1)

(0,1)

(1,1)

NamedEntity

Figure 4.3: Database format (version 1) of the corpus database

4.2.2 N-table Approach

When observing the data which will be stored in the relationsword , sentence , andparent ,
one will notice that many attribute values are redundant. Each finite full verb, for example, is
annotated with the five-letter part-of-speech tag VVFIN. This redundancy can be avoided if each
part-of-speech tag is associated with a unique number. The correspondences between numbers
and part-of-speech tags can be stored in a separate table or even in a PHP-script. Since there
are only fifty-four distinct part-of-speech tags, the number will in the worst case take up storage
space of two digits and can be represented in one byte.

In the N-table approach, an additional table is created for each attribute and the attribute value
replaced with an identifying number. Oliver Plaehn’s ANNOTATE database format is based on
this system ([Plaehn 1998]). He distinguishes thirteen different tables includingword , sen-
tence , parent , part-of-speech tag , and other replacement tables. I decided to adapt
this database format and adjust it to the requirements of my corpus query tool.

Figure 4.4 on page 48 shows the database format of my corpus query tool. All attributes of
tableWord have been sourced out to additional tables.

The database scheme in figure 4.4 relies heavily on Plaehn’s documentation of the ANNO-
TATE database. There are, however, a number of changes which have been made in order to
specifically suit my project.

CHAPTER 4. MY OWN CORPUS QUERY TOOL 48

Id

NodeTxt

Description

Parentlabel

(1,1)

(1,1)

Word

Id

SentenceId

TagId

ParentId

EdgelabelId

SemTypeId

LemmaId

MorphTagId

(1,1)

(1,1)

Edgelabel

Id

Txt

Description

(0,1)

(1,1)

(1,1)

Tag

Id

Txt

Description

Id

Txt

Description

(1,1)

(1,1)

Id

Txt

Description

SemType

Txt

Description

(1,1)

(0,1)

(1,1)(0,1)

Lemma

Id

Txt

(0,1)

(1,1)

MorphTag

Id

Txt

Description

(1,1)

(0,1)

(1,1)

(1,1)
(0,1)

TagSimpleId

TagSimple

Id

Corpus Database

Name

DBName

MaxSentNr

Language

Corpus Corpus Information Database

Parent

ParentId

ParentlabelId

EdgelabelId

SentenceId

Id

Text

Id

Txt

Sentence

Id

(0,1)

(1,1)(1,1)

(0,1)

(1,1)

(1,1)

TextId

NamedEntityNamedEntityId

Figure 4.4: Database format (version 2) of the corpus database

CHAPTER 4. MY OWN CORPUS QUERY TOOL 49

• Some tables of the ANNOTATE database scheme are not included in my scheme because
they contain information specific to the use of the ANNOTATE tool. The omitted tables are
Origin , Status , SentComment , WordComment, SecDependencies , andSe-
cEdgelabel .

• Many attributes in the tables of the ANNOTATEdatabase scheme are not necessary for the
ComputerZeitung and the Tages-Anzeiger Corpora or refer to tables which are omitted
as mentioned in the entry above. The following list shows the omissions in detail by
specifying a table followed by colon and the omitted items.

– Sentence: OriginId, EditorId, LastEdited , DepStatusId ,
TagStatusId , SentComment

– Word: WordComment

– Tag: ToBeBound

– Tag, Morph, Edgelabel, Parentlabel: Shortcut

– Parent: MorphId

• Two new tablesNamedEntity andSemType for the semantic annotation and the cor-
responding links are introduced. The distinction between two different types of semantic
annotation is made so that each type can be retrieved separately .

• Each table is supplied with an identification number which serves as primary key. In the
ANNOTATE database, identification numbers of words and parent nodes are calculated by a
special formula which includes the sentence identification number in order to identify the
sentence number of each word and parent node. Plaehn ([Plaehn 1998]) adds, however,
that a more elegant database format would abandon the calculations and instead introduce
an additional foreign key in tablesword andparent which relates each word to a specific
sentence. Although the storage space of the keys in the respective tables is doubled and
SQL queries complicated, the time for calculations is reduced. In my corpus database, an
additional foreign keySentenceId is introduced in tablesword andparent .

• Since my corpus query tool is designed for beginners in corpus linguistics, an additional
tableTagSimple containing a simplified version of the Stuttgart-Tübingen tagset is in-
troduced. This simplified version contains a reduced number of tags which cover broader
structural categories. Each STTS-tag is supplied with an identifying number of one of
these simplified tags. A list showing which STTS-tags are mapped onto which simplified
tags can be found in Appendix C.

Plaehn distinguishes between a program-specific database and a corpus database. The cor-
pus database includes the information discussed up to this point; the program-specific database
contains information about the corpus itself. It lists its name, editor(s), number of sentences,
language, and the date of its last revision. Since this obviously adds a great deal of information,
I will organize my database in the same way.

A detailed list of all the tables used in my corpus query tool can be found in Appendix B.

CHAPTER 4. MY OWN CORPUS QUERY TOOL 50

Database Format: Conclusion Kuenneth noted that the design of the database greatly influ-
ences the performance of a corpus query tool ([Künneth 1998]). In this section, I have presented
two different designs of database formats which can be used for the corpus database, namely the
database format based on the entity-relationship model as shown in figure 4.3 and the database
format based on Plaehn’s N-table approach as shown in figure 4.4. Instead of making assump-
tions about their performance, I will in the subsequent sections show how I implemented the
second database format. It has for a long time been the sole basis of my corpus query tool. A
comparison of the performance of the two models will follow in chapter 5.

CHAPTER 4. MY OWN CORPUS QUERY TOOL 51

4.3 Corpora

4.3.1 Resources: ComputerZeitung and Tages-Anzeiger

The following list of corpora shows three syntactically annotated corpora which were used to
test my corpus query tool. Further descriptions of their characteristics will be supplied in the
subsequent paragraphs.

• 3000 sentences from the ComputerZeitung 1997 automatically annotated corpus;

• 3000 sentences from the ComputerZeitung 1996 manually annotated corpus;

• 20’000 sentences from the Tages-Anzeiger 2000 automatically annotated corpus.

ComputerZeitung 1997 automatically annotated ComputerZeitung is a weekly published
computer magazine. Its articles are of similar length as articles of daily newspapers. The focus
of the ComputerZeitung, however, is set on topics from information technology. Linguistically,
these semi-technical articles are characterized by an increased use of abbreviations and company
and product names. It is not a scientific publication but addresses computer professionals. The
ComputerZeitung automatically annotated corpus contains 3000 sentences from the year 1997.

The ComputerZeitung corpus was automatically annotated to serve Martin Volk’s project of
resolving prepositional phrase attachment ambiguities based on unsupervised learning methods.
All annotation steps described in the subsequent paragraphs were planned and conducted by him.
More information about the procedures can be found in [Volk 2001]:53-88.

For the automatic annotation of the ComputerZeitung corpus, the texts were preprocessed as
described in section 2.1.2. Sentence boundaries were recognized and marked with separate lines
containing BOS- (beginning of sentence) and EOS-tags (end of sentence). In order to preserve
the newspaper formatting, SGML-tags were added to the plain text. The complete list of the
inserted tags can be found in Appendix A. A sentence from the ComputerZeitung automatically
annotated corpus at this stage looks as displayed in figure 4.5. The sentence is repeated from
section 2.1.2.

In a next step, named entities were recognized and classified. This step was completed before
part-of-speech tagging because it reveals important information about the category of the words
which helps to improve part-of-speech tagging. In the automatically annotated ComputerZeitung
corpus, person names, geographical names, and company names were distinguished and marked
with an SGML tag. Since most named entities are compounds, a number ascending with each
component is added to the tags. The table 4.1 shows which tags for named entities were applied.

Subsequently, the ComputerZeitung corpus was part-of-speech tagged and lemmatized. As
mentioned in section 2.1.3, the part-of-speech tagging was conducted with the Tree-Tagger
by Helmut Schmid ([Schmid and Kempe 1996]), making use of the Stuttgart-Tübingen tagset

CHAPTER 4. MY OWN CORPUS QUERY TOOL 52

Figure 4.5: Verticalized sentence of the ComputerZeitung automatically annotated
corpus with SGML-tags and sentence boundaries

#BOS 6
Beim
ersten
Internet-Chat-in
von
EU-Kulturkommissar
Marcelino
Oreja
mußten
die
Griechen
“
leider
draußen
bleiben
”
.
<P>
#EOS 6

Table 4.1: Tags for named entities in the ComputerZeitung automatically annotated
corpus

person name <PERS>
geographical name<GEO>
company name <FA>

([Schiller et al. 1999]). Likewise, the corpus was lemmatized by using GERTWOL.5 Although
morphological information was available, it was not included in the final version of the auto-
matically annotated ComputerZeitung corpus because it did not contribute to the analysis of
prepositional phrase attachment ambiguities.

Figure 4.6 shows the previous sentence after corpus preparation, named entity recognition,
tagging and lemmatization. A person nameMarcelino Orejahas been recognized and the tags
<PERS1> and<PERS2> added to its components. As already noted in section 2.1.4, the noun
Internet-Chat-inhas been tagged incorrectly because it is unknown to the tagger.

Since a complete syntactical analysis of a corpus is always a time-consuming and error-prone
matter, Volk decided to conduct a chunk parsing for noun and prepositional phrases. He made use
of a pattern matcher which recognizes most common forms of noun and prepositional phrases up
to the depth of two levels. The patterns include adjective and conjoined noun phrases.

5For more information about GERTWOL see http://www.lingsoft.fi/cgi-bin/gertwol.

CHAPTER 4. MY OWN CORPUS QUERY TOOL 53

Figure 4.6: Verticalized sentence of the ComputerZeitung automatically annotated
corpus with SGML-tags, sentence boundaries, named entities, part-of-speech tags,
and lemmas

#BOS 6
Beim APPRART bei
ersten ADJA erst
Internet-Chat-in ADJD Internet-Chat-in (1+)
von APPR von
EU-Kulturkommissar NN EU-Kultur#kommissar
Marcelino NE Marcelino (?) <PERS1>
Oreja NE Oreja (?) <PERS2>
mußten VMFIN m̈uss∼en
die ART
Griechen NN Griech∼e
“ $(
leider ADV
draußen ADV
bleiben VVINF bleib∼en
” $(
. $.
<P>
#EOS 6

In a next annotation step of the ComputerZeitung automatically annotated corpus, prepo-
sitional phrases were semantically classified. The semantic categories investigated were local
and temporal prepositional phrases. Local prepositional phrases describe a direction or posi-
tion in space (e.g.far from home); temporal prepositional phrases describe a point or duration
in time (e.g.during their vacation). Their recognition was carried out with the help of a list of
prepositions, adverbs, and nouns which are always or often part of a prepositional phrase of this
semantic type. Table 4.2 shows which tags for semantic prepositional phrase types were applied
in the ComputerZeitung automatically annotated corpus.

Table 4.2: Tags for semantic prepositional phrase types in the ComputerZeitung
automatically annotated corpus

temporal PP <temp>
local PP <loc>

As a last annotation step, clause boundaries were inserted. Volk ([Volk 2001]:75) defines a
clause as “a unit consisting of a full verb together with its (non-clausal) complements and ad-
juncts.” A clause therefore contains exactly one full verb which need not be finite. It is important
to note that there is a distinction between clause boundary recognition and clause recognition.
Clause recognition determines the full extent of a clause including its discontinuous elements.

CHAPTER 4. MY OWN CORPUS QUERY TOOL 54

Figure 4.7: Sentence 6 of the ComputerZeitung automatically annotated corpus in
the NeGra Export format with SGML-tags, sentence boundaries, named entities,
part-of-speech tags, lemmas, NP and PP chunks, and clause boundaries

#BOS 6
Beim APPRART - - - - 0 %%bei
ersten ADJA - - - - 0 %%erst
Internet-Chat-in ADJD - - - - 0 %%Internet-Chat-in (1+)
von APPR - - AC 501 %%von
EU-Kulturkommissar NN - - NK 501 %%EU-Kultur#kommissar
Marcelino NE - - PNC 500 %%Marcelino (?)<PERS1>
Oreja NE - - PNC 500 %%Oreja (?)<PERS2>
mußten VMFIN - - - - 0 %%m̈uss∼en
die ART - - NK 502
Griechen NN - - NK 502 %%Griech∼e
“ $(- - - - 0
leider ADV - - - - 0
draußen ADV - - - - 0
bleiben VVINF - - - - 0 %%bleib∼en
” $(- - - - 0
. $. - - - - 0
<P> - -
<CB> - - - - 0
#500 MPN - - - - 0
#501 PP - - - - 0
#502 NP - - - - 0
#EOS 6

Clause boundary recognition only detects boundaries between clauses but does not identify dis-
continuous or nested elements. It seems obvious that clause recognition is a much more diffi-
cult task and therefore destined for more incorrectness. In the ComputerZeitung corpus, clause
boundaries are marked by the SGML-tag<CB>.

The final representation of the ComputerZeitung corpus is based on the NeGra Export format
for annotated corpora as described in [Brants 1997]. Figure 4.7 shows the above sentence in its
final stage in the NeGra Export format.

The NeGra Export format displayed in figure 4.7 stores one word per line and adds the in-
formation of each annotation category in a new column. The order of columns is defined as
a word followed by its part-of-speech tag, its morphological tag, and if syntactically annotated
its edge label and the number of the parent node dominating it. The last column stores a com-
ment field marked by two percent signs (%%). Since there is no separate column for lemmas or
semantic information in the NeGra export format, these annotation categories are stored in the
comment section following the two percent signs. Morphological tags and product names are
omitted in the final annotation of the ComputerZeitung corpus. Clause boundaries and #BOS-

CHAPTER 4. MY OWN CORPUS QUERY TOOL 55

and #EOS-markers take up separate lines.

The word lines of a sentence are followed by a list of phrase nodes. Each node occupies
one line and is is identified by its number. The numbers of the phrase node start at 500 in each
sententce in order to be distinguished from the numbering of the words which starts at 1. The
columns following phrase nodes are of the same order as the word lines. The number of a phrase
node is thus followed by its tag (i.e. the parentlabel), its morphological tag, and if further part
of syntactical annotation its edge label and the number of the parent node dominating it. Nested
syntax structures can thus be stored and identified.

Each sentence in the NeGra export format is surrounded by a line marking the beginning of
sentence (#BOS) and a line marking the end of the sentence (#EOS). If a position is not known,
the field is filled with two minus signs (- -).

In Volk’s project, the NeGra Export format has been used for historical reasons. A more
transparent and portable annotation format using XML has been proposed in the TIGER project.
Transformed into TIGER-SML, the sentence in figure 4.7 in TIGER-XML looks as displayed in
figure 4.8 on 56.

ComputerZeitung 1996 manually annotated The ComputerZeitung manually annotated cor-
pus contains 3000 sentences from the year 1996 which include at least one full verb and one
sequence of a noun followed by a preposition. The reason for these selection criteria lies in the
fact that Volk needed sentences which contain an ambiguously positioned prepositional phrase
so that its attachment to either verb or noun phrase could be determined.

The characteristics of the texts are the same as described for the ComputerZeitung automat-
ically annotated corpus. The difference between the two corpora is that the manually annotated
corpus is supplied with a complete syntactic structure which is hand-checked.

The annotation was conducted in a semi-automatical manner. In a first phase, the corpus was
automatically preprocessed, part-of-speech tagged, and chunked for nominal and prepositional
phrases. This annotation was subsequently manually checked, if necessary corrected and finally
completed to a full syntactic sentence structure. Lemmas, morphological tags, clause bound-
aries and semantical information were not included in the ComputerZeitung manually annotated
corpus.

Figure 4.9 on page 57 shows a sentence from the ComputerZeitung manually annotated cor-
pus in the NeGra export format. A tree display of the same sentence can be seen in figure 4.10
on page 58.

Tages-Anzeiger 2000 The Tages-Anzeiger is a daily newspaper based in Zurich covering all
regions in Switzerland. It runs approximately 750’000 copies. The texts cover topics from
international and national news, local news, weather, culture, sports, and life-style. A daily
television program guide and tips for leisure-time activities are also included.

CHAPTER 4. MY OWN CORPUS QUERY TOOL 56

Figure 4.8: Sentence 6 of the ComputerZeitung automatically annotated corpus in
TIGER-XML format
<s id=“s6”>
<terminals>
<t id=“s6 1” word=“Beim” lemma=“bei-der” pos=“APPRART”/>
<t id=“s6 2” word=“ersten” lemma=“erst” pos=“ADJA”/>
<t id=“s6 3” word=“Internet-Chat-in” lemma=“Internet-Chat-in (1+)” pos=“ADJD”/>
<t id=“s6 4” word=“von” lemma=“von” pos=“APPR” />
<t id=“s6 5” word=“EU-Kulturkommissar” lemma=“EU-Kultur#kommisar” pos=“NN”/>
<t id=“s6 6” word=“Marcelino” lemma=“Marcelino (?)” pos=“NE”/>
<t id=“s6 7” word=“Oreja” lemma=“Oreja (?)” pos=“NE”/>
<t id=“s6 8” word=“mußten” lemma=“m̈uss∼en” pos=“VMFIN”/>
<t id=“s6 9” word=“die” lemma=“die” pos=“ART”/>
<t id=“s6 10” word=“Griechen” lemma=“Griech∼en” pos=“NN”/>
<t id=“s6 11” word=“”” lemma=“- -” pos=“$(”/>
<t id=“s6 12” word=“leider” lemma=“- -” pos=“ADV”/>
<t id=“s6 13” word=“draußen” lemma=“- -” pos=“ADV”/>
<t id=“s6 14” word“=bleiben” lemma=“bleib∼en” pos=“VVINF”/>
<t id=“s6 15” word=“”” lemma=“- -” pos=“$(”/>
<t id=“s6 16” word=“.” lemma=“- -” pos=“$.”/>
<t id=“s6 17” word=“</P>” lemma=“- -” pos=“- -”/>
</terminals>
<nonterminals>
<nt id=“s6 500” cat=“MPN”>
<edge label=“PNC” idref=“s66” />
<edge label=“PNC” idref=“s67” />
</nt>
<nt id=“s6 501” cat=“PP”>
<edge label=“AC” idref=“s64” />
<edge label=“NK” idref=“s65” />
<edge label=“NK” idref=“s6500” />
</nt>
<nt id=“s6 502” cat=“NP”>
<edge label=“NK” idref=“s69” />
<edge label=“NK” idref=“s610” />
</nt>
</nonterminals>
</s>

CHAPTER 4. MY OWN CORPUS QUERY TOOL 57

Figure 4.9: Sentence 13 of the ComputerZeitung manually annotated corpus in the
NeGra Export format

#BOS 13
Nach APPR - - AC 510
einer ART - - NK 510
Befragung NN - - NK 510
unter APPR - - AC 509
den ART - - NK 507
100 CARD - - MO 500
größten ADJA - - HD 500
werbetreibenden ADJA - - CJ 505
Unternehmen NN - - NK 507
, $, - - - - 0
Agenturen NN - - CJ 508
sowie KON - - CD 508
Zeitschriften NN - - CJ 501
und KON - - CD 501
Sendeanstalten NN - - CJ 501
wird VAFIN - - HD 512
dem ART - - NK 506
Thema NN - - NK 506
“ $(- - - - 0
neue ADJA - - NK 502
Medien NN - - NK 502
“ $(- - - - 0
auch ADV - - MO 503
in APPR - - AC 503
Zukunft NN - - NK 503
ein ART - - NK 504
großer ADJA - - NK 504
Stellenwert NN - - NK 504
einger̈aumt VVPP - - NK 511
. $. - - - - 0
#500 AP - - CJ 505
#501 CNP - - CJ 508
#502 NP - - APP 506
#503 PP - - MO 511
#504 NP - - SB 512
#505 CAP - - NK 507
#506 NP - - DA 511
#507 NP - - CJ 508
#508 CNP - - NK 509
#509 PP - - MNR 510
#510 PP - - MO 511
#512 VP - - OC 512
#512 S - - - - 0
#EOS 13

CHAPTER 4. MY OWN CORPUS QUERY TOOL 58

Figure 4.10: Sentence 13 of the ComputerZeitung manually annotated corpus displayed as tree

CHAPTER 4. MY OWN CORPUS QUERY TOOL 59

The annotation of the Tages-Anzeiger was done along the lines of the automatically annotated
ComputerZeitung corpus. The only deviation from this procedure was that the format of the
Tages-Anzeiger was already marked up with SGML-tags. A complete list of these tags and their
meanings can be found in Appendix A.

4.3.2 Corpus Transfer to Database

In order to establish a MySQL-database in the format described in section 4.2, a database has to
be created on a MySQL-server and a corpus file has to be parsed and filled into this database.
The following programs accomplish this task:

create db.php creates a MySQL-database on a server;

fill db.php and fill db manually annotated.php take a corpus in the NeGra export format and
fill it into an existing MySQL-database.

The program to create a database establishes a connection to a MySQL server through the
PHP-function mysqlconnect(). This function returns an integer which functions as connection
handler and is taken up by the PHP-function mysqlcreatedb($mysqldb, $dbhandler) which
creates a database with the name of the PHP-variable $mysqldb. If an error occurs, the pro-
cess is interrupted and the PHP-function mysqlerror() returns the respective error message, thus
allowing the user to find a mistake in this subtle matter promptly.

The same procedure is chosen for any data which is transferred to the database by means to
the function sendsql($mysqldb, $sql). This function first of all transfers an SQL-query $sql
to a database $mysqldb by means of the PHP-function mysqldb query($mysqldb, $sql). It
additionally includes the above-mentioned PHP-function mysqlerror() in order to facilitate the
search for mistakes.

The data transfer to this database occurs in three steps, whereas the first of them is found in
the program createdb.php and the two ones in filldb.php. The three steps are the following:

1. create MySQL-table structure;

2. fill in annotation scheme (e.g. tags, tag simple, etc.);

3. fill in data from a corpus in the NeGra export format.

1. create MySQL-table structure Each of the thirteen MySQL-table structures which can be
seen in figure 4.4 on page 48 is created by a call of the function sendsql($mysqldb, $sql) with a
different SQL command. All SQL commands of this step are of the format displayed in example
(4.1).

CHAPTER 4. MY OWN CORPUS QUERY TOOL 60

(4.1) CREATE TABLE Edgelabel (
Id int(2) NOT NULL,
Txt varchar(4) NOT NULL,
Description varchar(60) NOT NULL,
PRIMARY KEY (Id),
UNIQUE Txt (Txt))

The SQL command in example (4.1) creates a table namedEdgelabel with three columns,
Id , Txt , andDescription respectively. The column namedId must consist of an integer
value with an maximum length of2; columnsTxt andDescription consist of varied char-
acters, mainly text. According to the SQL-commandNOT NULL, all fields must be filled with
a value. ColumnId is indexed as primary key of this table, and columnTxt may only contain
unique values in order to prevent double entries. SQL keywords are capitalized to be distin-
guished from user-defined names.

If the thirteen MySQL-tables specified in the database scheme as displayed in figure 4.4 are
established, step one is completed.

2. fill in annotation scheme The data transfer of the second step is similar to the first one.
Instead of creating tables, however, step two reads information from additional text files which
contain lists with the data of the annotation scheme. If a corpus is annotated in a different format,
only a simple update of these text files is required to adapt the changes. An excerpt from the text
file which lists the edgelabels and their identification numbers and abbreviations used in this
project is displayed in example (4.2). It could be filled into tableEdgelabel created with the
SQL-command presented in example (4.1).

(4.2) 1,AG,Genitivattribut
2,APP,Apposition
3,CM,Vergleichskonjunktion
4,MNR,postnominaler Modifikator
5,MO,Modifikator

Each line in this text file represents a row in a table, whereas the column boundaries are rec-
ognized by a column separator, in this case a comma. TableEdgelabel , to which this excerpt
belongs, will therefore be completed with a continuous identification number in the first column,
an abbreviation of the edgelabel in the second column, and a description in the third column. Text
files of this sort exist for tablesEdgelabel , Parentlabel , Semname, Semtype , Tag, and
TagSimple . The SQL command used to fill data from input files into MySQL tables is shown
in example (4.3).

(4.3) LOAD DATA INFILE ’$file loc/edgelabel.txt’
INTO TABLE Edgelabel
FIELDS TERMINATED BY ’,’

CHAPTER 4. MY OWN CORPUS QUERY TOOL 61

The SQL-command in example (4.3) reads a file from a location specified in the PHP-variable
$file loc into a table. A column separator terminating fields is also indicated; here it is a comma.
The values of general variables such as $fileloc are stored in a separate file called mydata.php
to guarantee a faster adaption to a different computer. The excerpt of tableEdgelabel at the
end looks as displayed in table 4.3.

Table 4.3: TableEdgelabel
Edgelabel Id Txt Description

1 AG Genitivattribut
2 APP Apposition
3 CM Vergleichskonjunktion
4 MNR postnominaler Modifikator
5 MO Modifikator

If all data from the text files is transferred to tablesEdgelabel , Parentlabel , Sem-
name, Semtype , Tag, andTagSimple , step two is completed.

3. fill in data from a corpus in the NeGra export format By far the most complicated step
is number three. Information from a corpus in the NeGra export format has to be extracted and
filled into the database, whereas the difficulty lies in the fact that the information needs to be
extracted from the file and additionally transformed into the form required by the database.

PHP-function fopen($file, $modus) opens a specified text file – in this case a corpus in the
NeGra export format – and returns a file handler $fp. PHP-variable $modus is set to “r” to grant
read-only access of the file. At the end of the procedure, PHP-function fclose($fp) closes the
file. As always, each step is framed by functions whose sole purpose is to output a corresponding
message in case of an error.

A loop with the PHP-function fgets($fp, $maxlength) reads line per line from the file. There
are five different types of lines which are distinguished:

1. If the line begins with #BOS, a new sentence begins. Extract the sentence number.

2. If the line begins with #EOS, the end of a sentence is reached. The line is ignored.

3. If the line begins with<CB>, it is a clause boundary marker. A clause boundary is treated
like a word and inserted into the respective SQL-table.

4. If the line begins with # and a number (e.g. #500), it is a node information line which
needs special treatment. After removing the character #, PHP-function explode($separator,
$string) transforms the line string into an array, using the tabulator as separator between
the fields.

CHAPTER 4. MY OWN CORPUS QUERY TOOL 62

5. All other cases are word information lines. The major part of the information of the corpus
is found in these lines. PHP-function explode($separator, $string) transforms the line string
into an array, using the tabulator as separator between the fields.

Out of these five cases, two have to be observed more thoroughly, namely node information
and word information lines.

node information lines Table 4.4 recalls the node information lines in the NeGra Export for-
mat as shown in figure 4.9 on page 57.

Table 4.4: node information lines from the ComputerZeitung Corpus
#500 AP - - CJ 505
#501 CNP - - CJ 508
#502 NP - - APP 506
#503 PP - - MO 511
#504 NP - - SB 512
#505 CAP - - NK 507
#506 NP - - DA 511
#507 NP - - CJ 508
#508 CNP - - NK 509
#509 PP - - MNR 510
#510 PP - - MO 511
#511 VP - - OC 512
#512 S - - - - 0

The number in the first column represents the identification number of the node, the second
is the label of this node, the third contains morphological information (which was not included
in the corpora used in this project), the fourth represents the label of the edge going forth from
this node, and the fifth gives the identification number of the parent node.

This line is converted into an array in which each field corresponds to one piece of informa-
tion in the order described above. The first piece of information, the number of the parent node,
is therefore easily extracted. The second, however, poses more problems insofar as the label will
not be stored in the form of its abbreviated letter but rather with the corresponding digits. This
is displayed in table 4.5 which shows five rows from tableParent in which the data from the
node information lines shown in table 4.4 is inserted.

Regardless of the identification numbers for node and parent which can directly be extracted
from the node information line, an identification number is assigned to each parentlabel and
edgelabel tag. In the case of my corpus query tool, this number is extracted from the MySQL
database. This is done by an SQL SELECT statement as displayed in example (4.4).

CHAPTER 4. MY OWN CORPUS QUERY TOOL 63

Table 4.5: the corresponding lines from tableparent
Parent Id SentenceId EdgelabelId ParentlabelId ParentId

500 13 36 2 505
501 13 36 9 508
502 13 2 20 506
503 13 5 21 511
504 13 27 20 512
505 13 6 5 507
506 13 14 20 511
507 13 36 20 508
508 13 6 9 509
509 13 4 21 510
510 13 5 21 511
511 13 7 24 512
512 13 0 23 0

(4.4) SELECT Parentlabel.Id
FROM Parentlabel
WHERE Parentlabel.NodeTxt=‘$parentlabel’

PHP-variable $parentlabel takes the value of the abbreviated parentlabel from the corpus file.
The identification number in tableParentlabel (“Parentlabel.Id”) of the line which contains
the same letters as in variable $parentlabel is extracted and stored in the current place in table
Parent . In SQL, a column of table is referred to as the name of the table followed by a full
stop and the name of the column.

With this procedure all information from the node information lines is gathered and inserted
into tableparent . Example (4.4) stands on behalf of all other numbers which have to be
extracted in this way.

word information lines The word information lines basically pose the same problem as the
node information lines, although with a slight twist in the extraction of the comment section in
the last column. This comment section contains the word’s lemma and semantic information and
is preceded by two percent signs. A word information line looks as in table 4.6.

The word information lines, first of all, have been transformed into a PHP-array. The infor-
mation from each column is stored in one array field. The problem with the comment section can
be seen in table 4.6 with the example of the named entityMarcelino Oreja. This field contains the
word’s lemma as well as the named entity tag. The field containing both information is therefore
split into two parts by separating the string delimited by the character<. This is accomplished

CHAPTER 4. MY OWN CORPUS QUERY TOOL 64

Table 4.6: Word information lines from the ComputerZeitung Corpus
Beim APPRART - - - - 0 %%bei
ersten ADJA - - - - 0 %%erst
Internet-Chat-in ADJD - - - - 0 %%Internet-Chat-in (1+)
von APPR - - AC 501 %%von
EU-Kulturkommissar NN - - NK 501 %%EU-Kultur#kommissar
Marcelino NE - - PNC 500 %%Marcelino (?)<PERS1>
Oreja NE - - PNC 500 %%Oreja (?)<PERS2>

by a number of PHP-functions which extract a substring matching the pattern from the comment
string.

The identification numbers of word-texts, tags, edgelabels, semantic name tags, and seman-
tic type tags are extracted with an SQL command similar to the one shown in example (4.4).
Identification numbers of words and lemmas, however, have to be created first. Each word is
stored in a PHP-variable and compared to the word-texts already stored in MySQL-tableText .
If the word can be found in the table, its identification number is extracted. If the word is not yet
known, a new entry is added to tableText . The same procedure is chosen for lemmas which
are stored in and extracted from tableLemma.

The information thus gathered is inserted into tableWord which looks as displayed in table
4.7.

Table 4.7: The lines corresponding to figure 4.4 in tableWord
Word Id Sen-

tence-
Id

TextId TagId Parent-
Id

Edge-
labelId

Sem-
Name-
Id

Sem-
TypeId

Lem-
maId

42 6 42 5 0 0 0 0 19
43 6 43 1 0 0 0 0 20
44 6 44 2 0 0 0 0 21
45 6 11 4 501 10 0 0 11
46 6 45 17 501 6 0 0 22
47 6 46 18 500 41 1 0 23
48 6 47 18 500 41 2 0 24

As can be seen in table 4.7, sentence number 6 begins with the42th word of the Comput-
erZeitung automatically annotated corpus. This word has been replaced by a number whose
corresponding text can be found in tableText . The only word form which occurred before is
vonwith the identification number 11.

Since the manually annotated corpus does not contain a comment section and therefore no
lemmas or semantic information, a special program called filldb manuallyannotated.php is

CHAPTER 4. MY OWN CORPUS QUERY TOOL 65

available. The only difference between this program and filldb.php is that the first leaves out
the comment section. If a user of the corpus query tool would like to input another corpus in a
line-based corpus format, an additional program similar to filldb.php has to be written.

4.4 Query

A query statement extracts all sentences which contain a specified element from the requested
corpus database. In my corpus query tool, the query input origins from a web-based query
interface which is described in section 4.5. The requests from the interface are transformed
into an SQL query statement and applied to the MySQL database. The results are edited and
displayed in various output functions which are described in section 4.6. In this section, I will
comment on the various query possibilities of my corpus query tool (namely simple and complex
query), the formulation of SQL query statements, and query improvement strategies.

Since my corpus query tool does not rely on a flexible corpus query language but instead
makes use of HTML-based forms to formulate queries, only a selected range of queries is pos-
sible. Each type of query is fixed as a series of HTML form input fields. By pressing the
“query”-button, the information from these fields is sent to a PHP-program which transforms it
into an SQL query statement. Broadly speaking, the information received from the query in-
terface consists of the choice of corpus, the range of sentences which are to be searched, the
maximal number of hits, and the searched element(s). If there is more than one searched ele-
ment, the order of the items is also specified. In some cases the distance between two elements
can be specified. It is either a fixed number of words which stand between two elements or a
minimal or maximal number of words which may come in between.

4.4.1 Simple Query

As a first step, an SQL SELECT statement retrieves the relevant sentence numbers from the
database. In the case of a query for one word, the basic SQL query statement looks as displayed
in example (4.5). It includes aJOIN between tablesWord andText to extract the word form
matching the number stored asTextIdin tableWord.

(4.5) SELECT DISTINCT Word.SentenceId
FROM Word, Text
WHERE Text.Txt=‘$word’
AND Word.TextId=Text.Id

The SQL keyword DISTINCT removes all duplicate rows for every group of rows which are
identical. If the query were formulated without the keyword DISTINCT, sentences which contain
more than one match would be represented more than once in the final representation.6 Variable

6For the calculation of the number of hits, however, keyword DISTINCT is omitted to count all matches. See section
4.6 for more information about statistics.

CHAPTER 4. MY OWN CORPUS QUERY TOOL 66

$word contains the letters of the word which is searched. A natural language description of the
SQL SELECT statement in example (4.5) might therefore look as follows: Retrieve all sentence
identification numbers from tableWord where the letters of the word match the letters of variable
$word, and delete all duplicates.

The basic query statement can be extended to suit every query type. One query option, for
example, allows a user to restrict the scope of sentences queried by specifying a beginning and
an ending number. For this query type, the following lines of SQL code are added to the query
statement.

(4.6) AND SentenceId>= $firstsent
AND SentenceId<= $lastsent

PHP-variable $firstsent epitomizes the first sentence, $lastsent the last sentence of the search
space. The result will therefore only contain sentence identification numbers which are either
greater than $firstsent or smaller than $lastsent.

The next step of a query consists of retrieving all words and their annotation which belong to
the marked sentence numbers. The extent of the extraction of annotation depends on the output
format desired. In my corpus query tool, the output can be simple or complex. A complex
output displays the syntactic structure of the sentence as well as the word’s part-of-speech tag,
the lemma, and its semantic annotation, whereas a simple output only requires the word’s STTS
and simplified part-of-speech tags.

Whereas up to this point the procedure was absolutely identical for both corpus database
formats presented in section 4.2, a clear difference can now be seen. If no syntactic information
is requested, all data is readily available in tableWord of the first database format. In the second
version, tableWord has to be joined with tablesText andTag in order to find the word’s text
and part-of-speech tag. For the simple output format, fourJOINS are necessary. Assuming that
the marked sentence numbers are stored in a temporary table calledTmp7, an SQL SELECT
statement which retrieves the information for a simple query output looks as in example (4.7).

(4.7) SELECT Tmp.SentenceId, Text.Txt, Tag.Txt, TagSimple.Txt
FROM Tmp, Word, Text, Tag, TagSimple
WHERE Tmp.SentenceId = Word.SentenceId
AND Word.TextId = Text.Id
AND Word.TagId = Tag.Id
AND Tag.TagSimple = TagSimple.Id

7An experienced user of SQL might wonder why I am working with temporary tables instead of views or nested
SELECT statements. Unfortunately, MySQL does not support either of these two ANSI SQL standards so that other
solutions such as temporary tables have to be used (see [Stoll and Leierer 2000]:258 about differences between
ANSI SQL and MySQL).

CHAPTER 4. MY OWN CORPUS QUERY TOOL 67

Id

Word

ParentId

Id

SentenceId

EdgelabelId

ParentlabelId

ParentId

Id Id

SentenceId SentenceId

EdgelabelId EdgelabelId

ParentlabelId ParentlabelId

ParentId ParentId

EdgelabelId

SentenceId

Parent1 Parent2 Parent3

TextId

Figure 4.11: joined tables for syntactical structure

The five tablesTmp, Word, Tag, andTag Simple are joined by means of their foreign keys
to result in a table which contains all information needed for the simple output format. A natural
language description of the above SQL SELECT statement would look as follows: retrieve the
sentence identification number, the word’s text, its part-of-speech tag, and its simplified part-of-
speech tag from a joined table ofTmp, Word, Text , Tag, andTag Simple of all sentence
numbers which contain a hit to the query.

Instead of retrieving all data from the MySQL-database, it is possible to store the information
to match the indentification numbers in hash tables. The advantage of working with hash tables
is that the number of time-consuming database access operation can be reduced. On the other
hand, if data is permanently stored in programming files, the usage of the database as declarative
source of information is flawed. In my corpus query tool, I have not explored the solution with
hash tables or other information sources. It is, however, thinkable that this way of data retrieval
is faster than perfoming operations in the database and needs to be explored further.

4.4.2 Complex Query

A complex query is in every case an even more costly matter than a simple query because the
output requires additionally to the word’s part-of-speech tag its lemma, syntactic structure, and
semantic information. Due to the recursive manner of the syntactic structure, a different pro-
cedure to extract the syntactic tree structure has to be found. SQL does not provide recursive
programming structures, so other means have to be explored. The solution to this problem is that
tables can be joined with themselves. Figure 4.11 shows a visualization of this idea.

In figure 4.11, tableWord is joined to tableParent by means of their shared keys Sen-
tenceId and ParentId. TableWord already contains the information about the word’s parent
identification number and the edgelabel connecting the word and the parent node. Through the
JOIN, additional information about the label of the parent node, the edgelabel connecting the
parent node to another parent that is one syntax level above, and the identification number of this

CHAPTER 4. MY OWN CORPUS QUERY TOOL 68

upper parent node are known. One join therefore adds one level of syntax. In order to keep all
records of tableWord, LEFT OUTER JOINS8 are used.

The resulting table calledSyntax is added to the corpus database. An excerpt of it is
displayed in table 4.8. It shows the syntactic structure of the first part of sentence number 13
from the manually annotated ComputerZeitung corpus which was displayed in figure 4.9 on
page 57 (Nach einer Befragung unter den 100 größten werbetreibenden Unternehmen).

Table 4.8: Table Syntax
Syntax Word-

Id
Sen-
tence-
Id

Parent-
Id1

Node-
Txt1

Parent-
Id2

Node-
Txt2

Parent-
Id3

Node-
Txt3

Parent-
Id4

Node-
Txt4

298 13 510 PP 511 VP
289 13 510 PP 511 VP
300 13 510 PP 511 VP
301 13 509 PP 510 PP 511 VP
302 13 507 NP 508 CNP 509 PP 510 PP
303 13 500 AP 505 CAP 507 NP 508 CNP
304 13 500 AP 505 CAP 507 NP 508 CNP
305 13 505 CAP 507 NP 508 CNP 509 PP
306 13 507 NP 508 CNP 509 PP 510 PP
307 13 0

Edgelabels are omitted in table 4.8 because they are not required in the output format. In
order to further simplify a query statement, identification numbers of parentlabels have been
replaced by the letters called NodeTxt from tableParentlabel . This required four more
joins which can be saved in the query statement.

The four columns contain on their left-hand side the parent identification number and the
label of this parent. In the corpus database, four more columns is added to tableSyntax so that
eight levels of syntax are discernible. This level is exploited by manually annotated sentences
only. Although the syntactical structure of this sentence is correctly reproduced, a graphical
output poses problems because elements of syntactic phrases are not necessary positioned in the
same column. The constituents of prepositional phrase number 510, for example, are found in the
first, second and again in the fourth column. The aligning of these constituent requires complex
algorithms which are described in section 4.6.

Besides syntactical information, the complex output of a sentence structure also requires
the word texts from tableText , the lemmas from tableLemma, the part-of-speech tags from
tableTag, the semantic annotation from tablesNamedEntity andSemType, and finally the
relevant sentence numbers from tableTmp. A total of seven joins is altogether necessary for the
complex query output. It seems obvious that such complicated retrieval actions cannot be fast
and possibly need to be optimized.

8A LEFT OUTER JOIN keeps all records of a table on the left regardless of empty records in the table on the right.

CHAPTER 4. MY OWN CORPUS QUERY TOOL 69

4.4.3 Query Optimization Strategies

Reese et al. ([Reese et al. 2002]:84-93) include a subsection about MySQL query tuning. The
main goal of MySQL query tuning is to minimize the number of input and output operations.
They list two approaches: indexing and EXPLAIN SELECT, although the second one is rather a
tracing device than an optimization strategy.

An index organizes an attribute of a table into a tree structure so that the matching record can
be found without having to check every field of the table. It is crucial that all columns of the tables
in the corpus database referenced to in a WHERE-clause of a SELECT statement are indexed.
Additionally, Reese et al. ([Reese et al. 2002]) suggest to use unique indexes wherever possible
because MySQL conducts even more optimization assumptions based on this knowledge. In my
corpus database, all relevant columns are indexed. The only disadvantage of indexing is that they
are costly to maintain when a table is altered. Since the corpus database – once it is created – is
updated infrequently, this is of no concern here.

The other query tuning strategy is a MySQL utility called EXPLAIN SELECT which verifies
if a query is executed as expected. It does not improve a query on its own but exposes efficiency
flaws in SQL-queries. The main issues which are looked at are the use of indexes and the order of
joins. The EXPLAIN SELECT utility does not execute a query but lists in a table – besides other
information – which keys are used and how many rows have to be examined. The difference
between the execution of a query with or without indexing the relevant columns is immense. It
seems that with the use of an index structure MySQL optimizes the corpus queries by itself.

In the programming of my corpus query tool, I have explored one other strategy to accelerate
the execution of a query, namely delimiting the number of results which are retrieved. So far
a query retrieves and displays all instances of the corpus database which match a query. It is,
however, not desirable to display more than ten results per HTML page because the page –
depending on the number of hits – becomes very large and takes up too much time for loading.
For some complex queries matching a large number of instances it is not even possible to be
displayed because the browsers are set on a time limit which is by far exceeded.

SQL offers a command to limit the scope of queries. The line in example (4.8) is added to
the end of a SELECT statement.

(4.8) LIMIT start, rows

Parameterstart determines the record number at which the query is started; Parameterrows
states the number of results which are to be retrieved. The LIMIT statement therefore allows the
presentation of any ten query results from the pool of hits. The managing of the parameters in
my corpus query tool is done in PHP.

The limiting of the number of query results per page does not optimize the query itself but
improves loading times immensely. The larger the starting parameter grows, the slower becomes
the retrieval because all results up to this point have to be calculated. This is, however, of no
noticeable importance and duty of the DBMS to perform in a reasonable manner.

CHAPTER 4. MY OWN CORPUS QUERY TOOL 70

Figure 4.12: Screen Shot Wortsuche

4.5 Interface Functions

The elements of my corpus query tool described so far are not discernible to the user. The only
part with which a user is confronted is the query interface and the presentation of the output.
Figure 4.12 shows a screen shot of the design of the query interface.

Instead of using one large input field for all query types, the corpus query interface consist
of a fixed succession of form input fields. If a new query type is desired, it has first to be im-
plemented. The momentary interface is divided into four linguistic query categories and one
browsing function. Each linguistic category comprises one or more specific query types belong-
ing to this field. An extension of these categories as well as query types is possible as long as the
query statement can be formulated in SQL.

The selection of query types in the version of my corpus query tool includes only the most
basic queries. Besides formulating a number of SQL-query statements for one linguistic element
of different categories, I have also explored the query for two elements in variable distance. This
of course complicates the SQL-query statements immensely especially if distance operators such
asat the most, at least, andexactlyare included. I have been able to show, however, that these
request can be translated into SQL.

The following list shows an overview of the query categories and the respective query types
implemented in the current version of my corpus query tool.

• Query for word:

– Query for one word (simple query);

– Query for word followed by word in variable distance up to ten;

CHAPTER 4. MY OWN CORPUS QUERY TOOL 71

• Query for part-of-speech tag:

– Query for simplified part-of-speech tag;9

– Query for word with a simplified part-of-speech tag;

– Query for a STTS part-of-speech tag followed by a STTS part-of-speech tag in vari-
able distance up to ten;10

• Query for syntactical constituents:

– Query for syntactical constituent

• Query for lemma:

– Query for lemma

• Corpus-browsing:

– Query for sentence number

In order to facilitate queries which involve a set of expressions such as part-of-speech tags
or syntactical constituents, the input terms do not have to be typed in but can be chosen from a
list. The list is generated by reading the parameters from the corresponding tables in the MySQL
database and embedding them into a HTML select list. Changes in the tagset or annotation
scheme can therefore be carried out without having to make changes in the query interface; an
update of the respective MySQL table is all it takes.

At the top of the query interface shown in figure 4.12, a number of query parameters can be
specified. First, a corpus must be chosen. This is done by choosing a title from a select list. The
connection to the database will automatically be set to this corpus database. If a user desires
to have more information about a corpus, an information file is accessible through a link at the
bottom of the left-hand frame.

The remaining query options concern the part of the corpus which is to be searched. A query
can be restricted to a section limited by a beginning and an ending sentence number. Additionally,
the number of maximal hits can be specified.

For any problems with the corpus query, an extensive help file is available through a link on
the bottom of the left-hand frame. It lists query strategies, descriptions of the different query
types, and a list with descriptions to the simplified tagset, the STTS-tagset, and the syntactical
categories.

To support students who are beginners in corpus linguistics, the interface includes several
functions to reject erroneous inputs. If, for examle, a user requests to search more sentences than

9For a list of the simplified part-of-speech tags see Appendix C
10For a list of the Stuttgart-T̈ubingen tagset see [Schiller et al. 1999].

CHAPTER 4. MY OWN CORPUS QUERY TOOL 72

Figure 4.13: Screen shot of the KWIC output

the number of sentences available in the chosen corpus, a statement points to this divergence and
the number of sentences is automatically set to the number of sentences in this corpus. The input
in the field of the searched element is also controlled and if not matching certain restrictions –
such as being a number if a sentence number is searched – rejected with a adequate comment.

4.6 Output Presentation

As mentioned in section 4.4, there are two different kinds of result output presentation, namely
simple and complex output. The type of output is determined by the characteristics of the query
type. The output of queries involving more than one constituent or syntactic structures is dis-
played in a table with syntactic and semantic structure; the output of queries for one element or
part-of-speech tags are displayed in the KWIC output which can be used interchangeably with
the tag-display.

4.6.1 Simple Query Output: KWIC and Tag-Display

The output of a simple query includes two different graphical representations: the sentence is
either displayed in a KWIC table or in a line-based format with the word’s simplified part-of-
speech tag underneath it. A button allows a user to switch from one output format to the other.
This is possible because the information required for both representations is retrieved with the
same query statement. Figures 4.13 and 4.14 show screen shots of the simple query outputs.

The three buttons at the top of the result display page are for the navigation within the corpus
query tool. The first button named “Neue Suche” (new search) reloads the query interface so that

CHAPTER 4. MY OWN CORPUS QUERY TOOL 73

Figure 4.14: Screen shot display with pos-tags

a new query can be posed. The second button named “Suche modifizieren” (modify search) also
reloads the query interface but displays query parameters which have already been specified so
that a query does not have to be started from scratch again. The third button named “Darstellung
mit Tags” (display with tags) or “Darstellung im KWIC-Format” (display in the KWIC-format)
depending on the current output type changes from one output format to the other.

The maximum number of sentences displayed on one page is ten. If the number of results
exceeds ten sentences, buttons for result scrolling are displayed at the end of the page. The
number of maximum sentences is arbitrary and can easily be changed by assigning a different
value to the PHP variable $limit.

Below the navigation buttons, an information sentence can be found. It displays information
about the query, the scope of the query, the number of results, and the numbers of the hits
displayed on this page. The information sentence enables a user to check the submitted query
and keep track of the result navigation. If the output includes part-of-speech tags, a link to the
help-file in which the tags and their linguistic functions is included.

The only statistical information which my corpus query tool provides is the frequency of
the queried feature per one million words. In order to calculate the frequency per one million
words, the number of hits and the number of words which were queried has to be known. This is
accomplished with the help of two different PHP-functions. The first function counts all sentence
numbers in the corpus which contain an instance which matches a query. If there are two or
more hits in the same sentence, the sentence number is counted repeatedly. It would be wrong to
estimate the frequency of the number of hits based on the number of words in the corpus because
the corpus may be delimited by several scope delimiters. A second PHP-function therefore
counts all words over which the query was conducted. The frequency per one million words is

CHAPTER 4. MY OWN CORPUS QUERY TOOL 74

calculated based on the formula of one million divided by the number of words times the number
of hits. The resulting number is rounded to the next integer.

The HTML page displaying the results is supplied with a number of hidden input fields which
contain the values of the queried element and the query options. Triggered by the pressing of a
button, the information from the hidden input fields is transferred to another HTML page. There
it can be processed to display the next ten sentences or the same sentences in a different output
format. The statistical information mentioned in the above paragraph is also submitted in the
same manner. Each time when a user reaches a new output page, a PHP-functions checks if the
frequency per million words is already available. A large corpus is therefore only scanned once
for the number of all results so that subsequent result display pages take less time for loading
because the information is already known.

In the representation of the sentence the queried element is highlighted by a red-colored font.
The highlighting is performed by a pattern-matching algorithm which compares the queried item
to every word and in case of a match changes the font color to red. If the queried object is a word,
it is often the case that the letters of the query term do not exactly match all instances retrieved
because the pattern-matchers operates case-sensitively. This occurs most commonly if the word
is capitalized because it occurs at the beginning of a sentence. The queried word is therefore
transformed into three different typeface forms, namely first letter uppercase, all letters upper
case, and all letters lower case form. This makes the recognition and highlighting of all queried
elements possible.

The disadvantage of the pattern-matching strategy to highlight queried elements is that it
is highly over-generating. If, for example, the query asks for a certain word directly followed
by another one, and the word occurs twice in the same sentence but only once followed by the
second word, the pattern matcher regardlessly marks the word twice. A more complex marking
algorithm would improve this flaw.

4.6.2 Complex Query Output: Table with Syntactic and Semantic Struc-
ture

For queries which involve several elements or syntactic structures, the output is displayed as
a table which contains a verticalized sentence and its lemmas, part-of-speech tags, syntactic
annotation, and semantic information. This table looks as displayed in figure 4.15.11

The format of the table displayed in figure 4.15 resembles the NeGra Export format but is due
to the use of table frames and colors easier to read. In the first column, each word of a sentence is
displayed on a new line. The second column shows the part-of-speech tag for each word. If the
corpus has been annotated with lemmas, a third column with lemmas is added; else this column
is omitted.

11The format of this table was originally designed by Simon Clematide for the presentation of annotated sentences in
the NeGra Export format.

CHAPTER 4. MY OWN CORPUS QUERY TOOL 75

Figure 4.15: Screen shot: table with syntactic and semantic sentence structure

CHAPTER 4. MY OWN CORPUS QUERY TOOL 76

The next block of columns varies in its breadth depending on the levels of syntax displayed.
Syntactic constituents are represented as vertical bars labelled with their function name. The
scope of a constituent can be seen in its vertical length. The leaves of the syntactic tree structure
are the words on its left hand side; the root node is the constituent bar on the right hand side of
this table. Parent nodes can be found if the table is read horizontally from left to right. Syntactic
constituents are dominated by the constituent on the same line on their right hand side. In figure
4.15, the root node is constituentS.

In order to distinguish the constituents with the same labelling, each constituent is colored in a
different shade. This is not only of importance if constituents with the same name occur, but also
if a constituent has discontinuous elements. The different parts of a discontinuous constituent
are always placed in the same column but also marked in the same color so that they can be
distinguished from other constituents. In figure 4.15, constituent VP in the second column from
the right has three discontinuous elements, at the end even interrupted by constituent NP. In this
representation, a user can easily see which parts belong together.

Recalling figure 4.8 on page 68, we note that the syntactic constituents were not vertically
aligned in columns but distributed in their horizontal order per line. The length of a line in
relationSyntax therefore varies according to the number of constituents dominating this word.
In figure 4.15, syntactic constituents vary in their horizontal depth so that they can be displayed
column-wise. The following list shows the four steps taken to transform relationSyntax into
the HTML-table with aligned syntactic constituents. Detailed descriptions of these steps and
figures illustrating them will be supplied in the subsequent paragraphs.

1. create PHP-array with syntactical constituents;

2. calculate column number for each constituent and insert it into array;

3. calculate horizontal width for each constituent and insert it into array;

4. transform the PHP-array into HTML-code, observing empty and occupied table fields.

In a first step, an associative PHP-array12 of the following format is created:

〈sentence number〉〈constituent number〉 {name of constituent, start, end, column, width}

The entry indexed with the sentence number refers to associative arrays indexed with their
constituent number. The constituent number is the same number as in the NeGra Output format
starting at 500. Each of these constituent arrays contains the information needed to position a
syntactical constituent, namely its label, its starting position, its ending position, its column, and
its width. In the first step, only the framework of this complex array listing all constituents under
their respective sentence number is created and the starting and ending position of each element

12Note that in PHP associative arrays take up the function of what is in other programming languages called hash
tables.

CHAPTER 4. MY OWN CORPUS QUERY TOOL 77

500

501

502

503

504

505

506

507

508

509

510

511

512

13

AP 303 304

PP

NP

NP

PP

PP

VP

CNP

NP

CAP

NP

CNP

S

310 312

317 318

320 322

323 325

303 305

314 318

302 306

302 312

301 312

298 312

298 312

326298

wc

c

c

c

c

c

c

c

c

c

c

c

c

w

w

w

w

w

w

w

w

w

w

w

w

Figure 4.16: Syntax array after completion of step 1

filled in. The starting and ending position are found with the help of a continuous index which
numbers each word. If a syntactic constituent occurs for the first time, the index is inserted in
the array position of the starting and ending number. Each time the constituent appears again,
its former ending position is replaced with the current one, thus finding the end regardless of
constituent length. The other entries of the array are so far left open. At the end of step one, the
array is sorted so that the syntactic constituents are in numerical order for each sentence. For
sentence number 13 from the ComputerZeitung manually annotated corpus the array looks as
displayed in figure 4.16. An excerpt from the corresponding MySQL tableSyntax has been
shown in table 4.8 on page 68. Column number and horizontal width are marked withc andw
respectively.

In the second step, a column number is assigned to each constituent. The left-most column is
column number one. The first constituent with the lowest constituent number is placed in column
one. If the starting and ending positions of the second constituent do not overlap with the first
one, it is also placed in column one; otherwise, the column number is increased by one. This
procedure is applied to all constituents and the final number of columns stored.

CHAPTER 4. MY OWN CORPUS QUERY TOOL 78

In the third step, the horizontal width of each syntactic constituent is calculated. For each
constituent, the column number of the constituent on the left of it is searched. This number
is compared to the column number of the constituent. The horizontal width is the difference
between these two numbers. The maximal width is stored in the array. After completion of steps
two and three, the syntax array displayed in figure 4.16 looks as in figure 4.17. Changes are
marked in bold-face print.

500

501

502

503

504

505

506

507

508

509

510

511

512

13

AP 303 304

PP

NP

NP

PP

PP

VP

CNP

NP

CAP

NP

CNP

S

310 312

317 318

320 322

323 325

303 305

314 318

302 306

302 312

301 312

298 312

298 312

326298 8

7

6

5

4

3

2

2

1

1

1

1

1 1

3

1

6

1

7

5

1

1

1

1

1

1

Figure 4.17: Syntax array after completion of steps 2 and 3

A special problem pose discontinuous constituents as for example verbal phrase VP in the
seventh syntax column in figure 4.15. Since they have more than one starting and ending point,
additional arrays starting with different constituent numbers are created. In order to recognize the
different parts of a discontinuous constituent, numbers based on its original constituent number
increased in steps of 100 are chosen. Constituent number 511 is therefore supplemented with
two additional constituents numbered 611 and 711. The column number and horizontal width
are taken over from the first part of the constituent. Figure 4.17 is completed with the information
displayed in figure 4.18.

The fourth step is concerned with the transformation of this array into HTML-code. A con-
stituent is triggered if its starting position corresponds to the position of the word. Its vertical
length and horizontal width are directly inserted into the HTML table field commandsrowspan

CHAPTER 4. MY OWN CORPUS QUERY TOOL 79

611

711

VP 314 322

326 326

13
7

7 1

1

VP

Figure 4.18: Discontinuous elements in syntax array

andcolspan. For each row, the number of table fields which are not occupied by a constituent
has to be calculated so that the rows can be filled. This is achieved by a number of conditions
which are checked for all columns. Another function assigns a different background color to
each constituent number. In the end, the syntactical output looks as displayed in figure 4.15.

If the corpus is semantically annotated, the semantic constituents are displayed in the last
section of the table for complex outputs. The procedure to calculate the positions of seman-
tic constituents is similar to the one described for the syntactical structure, although much less
complex. Since there are two types of semantical constituents, namelynamed entitiesandprepo-
sitional phrase types, the maximal number of columns is two and the constituent width is always
one. The only information needed is therefore the semantic constituent’s label and its starting
and ending position.

Conclusion In this chapter, I have presented my corpus query tool. All PHP-programs are
included in Appendix D on a separate CD-ROM. The next chapter is concerned with an analysis
of the system. Since I have presented two different database formats, I will evaluated both and
draw a conclusion based on these results.

Chapter 5

Analysis and Evaluation

A running version of the corpus query tool described in the previous chapter is available on a
server at the Department of Computer Science at the University of Zurich. It is, however, impor-
tant to conduct a thorough analysis to estimate the strengths and weaknesses of my corpus query
tool. There are several aspects which need to be considered. Obviously, it needs to be checked
whether the prerequisites for corpus query established in section 2.2 have been observed. Addi-
tionally, the influence of the database format needs to be evaluated by comparing the performance
of the two versions of a database format presented in the previous chapter. If one database format
yields a better performance at reasonable cost, it will be preferred in the final implementation.
Another series of considerations will have to consider the influence of corpus size and estimate
the possibilities and limits of my corpus query tool in this respect. The goal of the analysis of
all these aspects is to evaluate the status quo of the corpus query system but also to produce
suggestions for improvement which may eventually be included at a later stage if the project is
continued.

5.1 Interface Evaluation

When comparing the query interface of my corpus query tool with query interfaces of other
corpus query tools, the prominent difference is that my corpus query tool provides a number of
query types instead of an input field in which allows all sorts of queries. Only a limited set of
queries can be posed, and each query needs a particular sequence of input fields which can be
translated into SQL query statements. The corpus query systems presented in section 2.2.2 make
use of a corpus query language or other formal constructs so that several types of queries can
be posed. A possibility to directly formulate SQL query statements to retrieve linguistic data,
however, is undesirable for linguists doing research with corpora.

The constrained set of query type is an advantage as well as a disadvantage of my corpus
query tool. The advantage is that query types are assessable and therefore rather simple to handle.

80

CHAPTER 5. ANALYSIS AND EVALUATION 81

Beginners of corpus linguistics are confronted only with a limited set of query types which are
easy to understand because the query title already explains what can be retrieved with each query
type. On the other hand, an experienced corpus user is restricted to these query types. For an
advanced research project in corpus linguistics, new query types will certainly have to be added.
It is, however, possible to formulate many types of linguistic queries in SQL and program the
respective query interface.

It is not possible at the current stage of the project to give suggestions about the improvement
of the interface without confusing the original strategy of the corpus query tool. As a far-fetched
suggestion, a query language which could be translated into SQL-statements would certainly
bring more flexibility. This hypothetical language would include restricted natural-language el-
ements (e.g.find all prepositions which are followed by a conjunction) resembling SQL-query
statements. This is, however, subject of a different area of research.

5.2 Output Evaluation

Two of the prerequisites of corpus query established in section 2.2 address result display, namely
result reproductionandreconstructability. Result reproductionrefers to the necessity of display-
ing the query results in a meaningful way to the user and offer basic statistical information about
the number of hits and the corpus size.Reconstructabilityrequires that the location of the re-
sult must be clearly discernible. Location refers to the corpus name, sentence number, or other
convenient information of the result’s origin so that the original context can unambiguously be
reconstructed. The fulfillment of these two tasks is accomplished by the output presentation of
my corpus query tool.

Result Reproduction As I have presented in section 4.6, there are three different types of
result reproduction in my corpus query tool. All of them serve a different purpose: the first
output format displays the results in the KWIC format so that a broad overview of concordances
can be gained quickly, the second output format lists each sentence with its part-of-speech tags
glossed below it so that the sentence’s part-of-speech structure can be discerned easily, and the
third output format shows the complete annotation information including part-of-speech tags,
lemmas, and the syntactical and semantic annotation of the sentence. The third output version
suits a query type which is interested in detailed syntactic or semantic structures, its disadvantage
being that it is too elaborate for a fast analysis of a large number of sentences. The type of result
reproduction therefore depends on the user’s interest and the query type.

For queries which ask for simplified part-of-speech tags or single items, my corpus query
tool allows a choice between the KWIC output format and the output with part-of-speech tags.
For queries comprising two queried items at variable distance or syntactical constituents, the
output is presented in the table displaying all annotation information. This distribution of output
formats based on the query type seeks to display the results in a meaningful way to the user.

CHAPTER 5. ANALYSIS AND EVALUATION 82

Additionally, each output format is supplemented with an information sentence which tells
a user about the query and the number of hits which have been retrieved. It also includes a
statement about the frequency of the queried item per one million words.

The above statements about output formats and the information sentence show that the pre-
requisite ofresult reproductionis fulfilled in my corpus query tool. There are, however, sug-
gestions for improvement. One improvement of my corpus query tool with regards to output
reproduction is that a user should be able to chose among all three output formats, allowing the
definition of “meaningful” output format to the persons using the corpus query tool themselves.
Additionally, a graphical output would complete the choice of output formats. This is, however,
beyond the scope of the original project.

Reconstructability Since the corpora are stored in database relations which include an iden-
tifying word number as well as a sentence number,reconstructabilityis of no difficulty for my
corpus query tool. In the information sentence which appears at the top of each result repro-
duction page, the corpus from which a sentence was taken is indicated. At the beginning of
each sentence, its number is displayed. The origin of the sentence is therefore unambiguously
reconstructible.

5.3 Database Performance

The database system is the core of my corpus query tool. Its evaluation is therefore an important
matter because the efficiency of the whole tool depends on the format of the data which is stored
in the database system. There are several aspects which will be analyzed in this section. In a
first analysis, I will test the difference between the two versions of the corpus database format
which I have presented in section 4.2. Subsequently, I will try to predict the performance of
my corpus query system for the intended operation with large automatically annotated corpora.
In a concluding step, I will check whether the database of my corpus query systems fulfills the
prerequisites set for a corpus query system in section 2.2 concerning the retrieval of data from
the corpus database.

5.3.1 Comparison of Database Formats

In section 4.2 I have presented two different database formats for my corpus query tool. The first
version is based on the textbook approach which observes the four steps of database modelling
and results in an entity-relationship model which can be transformed into a relational database.
The second version is an adaptation and extension of Oliver Plaehn’s database model described in
[Plaehn 1998] designed to store corpora in the NeGra export format for the ANNOTATE project.
The first version of the database format stores the information from the corpus files in three tables
Sentence , Word, andParent . The second model makes use of an N-table structure which

CHAPTER 5. ANALYSIS AND EVALUATION 83

reduces redundancy by assigning an identifying number to all annotation data and storing only
the number in place of a text.1

Reflecting on these facts, one may assume that the first version of the database format pos-
sibly results in shorter data retrieval times because a smaller number of joins between tables
has to be executed in order to gather the information required by the output formats. There is,
however, a trade-off between shorter retrieval times and storage space. By which factor can the
corpus query system be accelerated through the database format, and how does this improvement
affect storage space? In order to answer these questions, I have conducted a series of measuring
experiments with both database formats.

For the experiments measuring data retrieval times, the time which is needed to browse a
corpus database and retrieve the instances matching a query is observed. The timing experiments
were set up in the following way: a query was posed from the query interface and resulted - in-
stead of displaying sentences - in outputting the time which was needed to retrieve the requested
data. The SQL-query statements were supplied with a time stamp function which measured the
time before beginning and after completing the correspondence with the MySQL database. The
PHP-function microtime() which outputs the current time stamp in the format of seconds and
microseconds accomplished this. The period of time which was needed to retrieve a result from
the MySQL database was calculated by subtracting the start time from the end time. Addition-
ally, the SQL-query statement was slightly modified. Since we are interested in knowing the
retrieval time of all hits, the LIMIT-clause which constrains the number of hits was removed and
the query results not passed on to the outputting function.

The time for each query was measured three times in order to prevent experimental inaccura-
cies or irregularities in the operation of the network system. Since the MySQL corpus database
runs on a server at the Department of Computer Science which is also used for other purposes,
some deviations in retrieval times could be made out. Additionally, a database management
system is able to copy several data blocks from the hard disk into the cache of the main mem-
ory (Random Access Memory). If the same query is posed twice in a row, the retrieval time is
much shorter for the second query. When conducting the experiments measuring data retrieval
times, queries were alternated to handle the buffering of results. The final time was calculated
by averaging the three results and is presented in seconds.

Simple Query Tables 5.1, 5.2, and 5.3 show a comparison of retrieval times of simple queries
in both database format versions. The query types evaluated arequery for wordandquery for
a word directly followed by another word. For the experiments with thequery for word, five
words were chosen which occur in the corpora with different frequencies. Depending on the
corpus, the first wordMenschoccurs between 32 and 57 times per one million words2; the most
frequent word, the full stop (.), occurs between 45’831 and 46’619 times per one million words.

1A complete list of the relations used in both database formats can be found in Appendix B.
2There are several reasons for the large difference in the number of occurrences of the wordMenschin the corpora
observed: Since the corpora are relatively small, a word occurring seldom has more impact which is not levelled
out as in a random distribution of large corpora. Additionally, different text genres (such as the difference between

CHAPTER 5. ANALYSIS AND EVALUATION 84

Table 5.1: Database Format Comparison of the TagesAnzeiger Corpus: Simple Query
Queried Number TagesAnzeiger TagesAnzeiger Factor
word of hits (database version 1) (database version 2) DB2:DB1
Mensch 18 0.14 s 0.37 s 2.64
hat 1091 1.26 s 3.31 s 2.63
von 2653 2.95 s 7.85 s 2.66
die 9022 7.74 s 19.68 s 2.54
. 45878 13.66 s 34.79 s 2.55

er hat 23 0.29 s 0.44 s 1.52
, dass 967 1.61 s 1.83 s 1.14
, die 1253 1.79 s 1.80 s 1.01

Table 5.2: Database Format Comparison of the ComputerZeitung Automatically Annotated Cor-
pus: Simple Query

Queried Number ComputerZeitung ComputerZeitung Factor
word of hits autom. annotated autom. annotated DB2:DB1

(database version 1) (database version 2)
Mensch 2 0.08 s 0.30 s 3.75
hat 139 0.21 s 0.72 s 3.43
von 446 0.53 s 1.89 s 3.57
die 1328 1.16 s 3.14 s 2.71
. 2012 2.03 s 5.21 s 2.57

er hat 0 0.07 s 0.31 s 4.43
, dass 0 0.08 s 0.31 s 3.88
, die 190 0.38 s 0.49 s 1.29

Table 5.3: Database Format Comparison of the ComputerZeitung Manually Annotated Corpus:
Simple Query

Queried Number ComputerZeitung ComputerZeitung Factor
word of hits manually annotated manually annotated DB2:DB1

(database version 1) (database version 2)
Mensch 2 0.10 s 0.30 s 3.00
hat 205 0.36 s 0.96 s 2.67
von 968 1.12 s 2.91 s 2.60
die 2210 1.92 s 5.34 s 2.78
. 2859 3.14 s 8.54 s 2.72

er hat 1 0.09 s 0.34 s 3.78
, dass 0 0.07 s 0.31 s 4.43
, die 334 0.48 s 0.60 s 1.25

CHAPTER 5. ANALYSIS AND EVALUATION 85

The remaining three queries close the gap between these two at more or less regular intervals.
The same procedure was chosen for thequery for word followed by word. An infrequent pair
of words (er hat which occurs 0 to 73 times per one million words) is contrasted by the most
frequent combination of two words, which is a comma followed by the relative pronoundie. It
is the most frequent becausedie is a relative pronoun following feminine nominative singular
nouns as well as all plural nouns. The combination of, dieoccurs between 3990 and 5354 times
per one million words.

As can be observed in tables 5.1, 5.2, and 5.3, the first version of the database format always
results in shorter data retrieval times for simple queries. The last column shows the factor by
which the first version works faster than the second one. The factor varies between 1.01 (which is
hardly an improvement at all) and 4.43 (which occurs twice in a query which had no instances to
retrieve). The vast majority of simple queries is improved by a factor between 2.5 and 2.7. These
results show that the first version of the database format is definitely preferable with regards to
data retrieval times.

The factor between the first and the second version of the database format differs between
the two types of query compared. Aquery for a wordis for the most part improved by a factor
between 2.5 and 2.7 with the exception of queries which retrieve a small number of matching
instances. If only a few matching instances are found, a query for a word may be improved
by a factor between three and four. This differs, however, from thequery for word followed by
word. When neglecting queries which retrieve only a few matching instances, aquery for a word
followed by a wordis only improved by a factor between 1.01 and 1.29. As table 5.4 shows,
the reason for this divergence can possibly be found in the number of joins which have to be
executed.

Table 5.4: Comparison of the Number of JOINS for Simple Queries
Number of JOINS in Number of JOINS in
database version 1 database version 2

Query for word 1 3
Query for word followed by word 2 4

The SQL query statement for aquery for wordrequires the join between a temporary table
and tableWord in the first version of the database format and three joins in the second version.
The joins which are added occur between tablesWord andTag and tablesTag andTagSim-
ple . The number of joins for thequery for wordcan thus be reduced by a factor of three. For
the query of a word followed by a word, two joins are necessary in the first and four joins in
the second version of the database format. The joins necessary in both database versions occur
between tablesWord andWord (tableWord is joined with itself to allow the calculation of
the distance between two different word identification numbers) and a temporary table and table
Word. The additional joins in the second version of the database format occur between tables

the ComputerZeitung treating technical subjects and the TagesAnzeiger as a daily newspaper) make use of different
words.

CHAPTER 5. ANALYSIS AND EVALUATION 86

Word andTag and tablesTag andTagSimple . The number of joins can therefore only be
reduced by a factor of two. A larger factor of join reduction is certainly a reason for improved
data retrieval times with the first version of the database format.

Table 5.5: Database Format Comparison of the TagesAnzeiger Corpus: Complex Query
Query Type Queried Number Tages- Tages- Factor

Item of hits Anzeiger Anzeiger DB2:DB1
(version 1) (version 2)

Query for pos AJDA 13264 20.41 s 40.15 s 1.97
followed by pos with NN
distanceexactly 1
Query for pos AJDA 21950 27.84 s 49.32 s 1.77
followed by pos with NN
distanceat most 5
Query for pos ADJA 31085 27.63 s 46.84 s 1.70
followed by pos with NN
distanceat least 1
Query for syntactical AP 2418 4.94 s 9.63 s 1.95
constituent
Query for syntactical NP 27653 26.65 s 51.54 s 1.93
constituent

Query for sentence 1 1 0.0045 s 0.0072 s 1.60
Query for sentence 3000 1 0.0028 s 0.0041 s 1.64

Complex Query Tables 5.5, 5.6, and 5.7 show the data retrieval times for complex queries.
A complex query is distinguished from a simple query by the output format. A complex query
is displayed in a table which contains the verticalized sentence including its syntactic as well
as semantic annotation. To make these linguistic information available, the information has to
be retrieved from the respective tables. The complex queries chosen for timing experiments
arequery for part-of-speech tag followed by part-of-speech tag in variable distance, query for
syntactical constituent, andquery for sentence number. A query of a word followed by a word
has already been evaluated in the simple query experiments, so the influence of the distance
operator between part-of-speech tags (exactly, at most, at least) will be noteworthy. Thequery
for a syntactical constituentis insofar important as the queried item is for once not searched in
tableWord but in tableParent . The query for one particular sentence (also called “corpus-
browsing”) intuitively stands out with extremely fast result presentation, so it is interesting to see
if the database format affects and improves such a well-running query type as well.

For the evaluation of thequery for a part-of-speech tag followed by another part-of-speech
tag, the combination of part-of-speech tags chosen was always the same, namely an attributive
adjective (ADJA) followed by a regular noun (NN). Since both of these part-of-speech tags occur

CHAPTER 5. ANALYSIS AND EVALUATION 87

Table 5.6: Database Format Comparison of the ComputerZeitung Automatically Annotated Cor-
pus: Complex Query

Query Type Queried Number CZ autom. CZ autom. Factor
Item of hits annotated annotated DB2:DB1

(version 1) (version 2)
Query for pos AJDA 1986 2.98 s 5.56 s 1.87
followed by pos with NN
distanceexactly 1
Query for pos AJDA 3381 3.92 s 6.49 s 1.66
followed by pos with NN
distanceat most 5
Query for pos ADJA 4848 4.05 s 6.53 s 1.61
followed by pos with NN
distanceat least 1
Query for syntactical AP 249 0.57 s 1.09 s 1.91
constituent
Query for syntactical NP 4025 3.76 s 7.28 s 1.94
constituent

Query for sentence 1 1 0.0039 s 0.0072 s 1.85
Query for sentence 3000 1 0.0046 s 0.0058 s 1.26

frequently, large numbers of matching instances can be found in a corpus. The ADJA-NN com-
bination was tested with three different distance operators. The first mode requested a distance
between ADJA and NN of exactly 1 and resulted – depending on the corpus – in a frequency
between 42’235 and 51’072 instances per one million words3; the second mode queried for a
distance of at most five and resulted in a frequency between 69’894 and 89’128 instances per
one million words, and the last mode queried for a distance of at least one, resulting in frequen-
cies between 98’981 and 130’999 instances per one million words. The number of matching
instances is thus increased with each query mode so that the influence of large numbers of results
can be observed.

The data retrieval times of thequery for a part-of-speech tag followed by another part-of-
speech tagshow that the first version of the database format results in better retrieval times than
the second one by a factor between 1.37 and 1.97. Interestingly enough, a difference between

3The large divergence in occurrences of adjectives and nouns between automatically and the manually annotated
corpora is due to the fact that the sentences in the manually annotated corpus were selected because they contained
at least one full verb and one sequence of a noun followed by a preposition. This selection criterium requires them
to be of a certain complexity, whereas sentences in the automatically annotated corpora vary in their size, possibly
even being very short. Adjectives therefore compellingly occur more often in the sentences which were selected.
Cf. section 4.3 for more information about the corpora.

CHAPTER 5. ANALYSIS AND EVALUATION 88

Table 5.7: Database Format Comparison of the ComputerZeitung Manually Annotated Corpus:
Complex Query

Query Type Queried Number CZ manu. CZ manu. Factor
Item of hits annotated annotated DB2:DB1

(version 1) (version 2)
Query for pos AJDA 3186 4.93 s 7.15 s 1.45
followed by pos with NN
distanceexactly 1
Query for pos AJDA 5560 6.60 s 9.08 s 1.38
followed by pos with NN
distanceat most 5
Query for pos ADJA 8172 6.56 s 9.00 s 1.37
followed by pos with NN
distanceat least 1
Query for syntactical AP 874 1.78 s 2.65 s 1.49
constituent
Query for syntactical NP 7275 6.25 s 9.27 s 1.48
constituent

Query for sentence 1 1 0.0051 s 0.0055 s 1.08
Query for sentence 3000 1 0.0051 s 0.0065 s 1.27

the manually annotated and the automatically annotated corpora can be made out. The Tages-
Anzeiger and the ComputerZeitung automatically annotated corpus are improved by a factor of
always greater than 1.61; with the ComputerZeitung manually annotated corpus it is always less
than 1.40. These numbers indicate that the frequency of the queried item plays an important role
in the time of retrieval. I will comment further on this idea in section 5.3.2.

Since the automatically annotated corpora were syntactically only annotated with adjective,
prepositional and noun phrases, the syntactic constituents queried in all corpora were AP and
NP. The data retrieval times reflect the insights gained with the query for part-of-speech tags.
Adjective phases as well as noun phrases occur with a higher frequency in the manually annotated
corpus because as mentioned in section 4.3, this corpus is composed of selected sentences which
include at least one full verb and a sequence of a noun followed by a preposition, thus being of a
certain complexity which include more adjective and noun phrases. Likewise, the improvement
by database format version 1 results in a factor around 1.5 for the manually annotated corpus but
in a factor around 1.9 for the automatically annotated corpora. The assumption that data retrieval
times are not only influenced by the database scheme but also by the frequency of the queried
item is confirmed.

Thequery for a sentencealways resulted in data retrieval times below 72 milliseconds. It is

CHAPTER 5. ANALYSIS AND EVALUATION 89

hard to judge whether times of this order are representative. The general trend of an improvement
by the first version of the database format can still be made out, as can be seen in the difference
between the manually and the automatically annotated corpora.

Again, a difference between query types can be discerned. In all corpora, the query for a
syntactical constituent can be improved by using the first version of the database format by a
larger factor. The following analysis of the number of joins used in both SQL query statements
shows how this aspect influences the outcome.

Table 5.8: Comparison of the Number of JOINS for Complex Queries
Number of JOINS in Number of JOINS in
database version 1 database version 2

Query for pos followed by pos
in variable distance 3 7
Query for syntactical constituent 2 6

Table 5.8 shows that the number of joins for aquery for a part-of-speech tag followed by
another part-of-speech tagcan be improved in the first version of the database format by a factor
of two; the number of joins for aquery for a syntactical constituentcan be improved by a factor
of three. Based on the previous assumptions about the reduction of joins, these numbers explain
why the improvement factors for thequery for syntactical constituentare slightly higher than the
improvement factors for thequery for part-of-speech tag followed by part-of-speech tag.

I have shown that a selection of query types standing for all query possibilities can be im-
proved by using the first version of the database format. The improvement is caused to a large
extent by the reduced number of joins. The negative influence of the number of joins can also
be seen in a more detailed analysis of the improvement factors which show that the more joins
have been omitted, the faster can data be retrieved from a database. There is, however, a trade-off
with storage room. The reduction of joins inevitably results in more redundancy and the corpus
database therefore requires more storage space on a server. Table 5.9 shows a comparison of
the storage room which each corpus database occupies in the first and the second version of the
database format.

Table 5.9: Comparison of Storage Space between Database Format Versions
Storage SpaceStorage Space Factor
Version 1 Version 2 DB1:DB2
(Megabytes) (Megabytes)

TagesAnzeiger 60.50 57.15 5.86%
ComputerZeitung autom. annotated 8.28 7.95 4.15%
ComputerZeitung manually annotated 12.41 11.59 7.08%

Table 5.9 shows that a corpus stored in the first version of the database format occupies more
storage space than a corpus stored in the second version. The amount of additional disk space

CHAPTER 5. ANALYSIS AND EVALUATION 90

0

0.5

1

1.5

2

2.5

3

-500 0 500 1000 1500 2000 2500 3000

R
et

ri
ev

al
 T

im
e

(S
ec

on
ds

)

Number of Instances Retrieved

Tages-Anzeiger Corpus
ComputerZeitung Automatically Annotated Corpus

Figure 5.1: Data Retrieval Times per Matching Instances in the ComputerZeitung Manually
Annotated Corpus and the Tages-Anzeiger Corpus

varies between four and seven per cent. Compared with the average improvement of 122 per cent
for data retrieval times from all queries, the additional storage space is more than compensated.

5.3.2 Database Performance

In a final stage, the corpus query tool is supposed to be used for large automatically annotated
corpora. The Tages-Anzeiger corpus contains 314’049 words; a large corpus most likely exceeds
one million words. In this section I would like to analyze how the size of a corpus influences
retrieval times. Although I have not focused on optimization strategies, a corpus query system
which confronts a user with unbearably long loading times is not acceptable. The analysis of the
influence of the corpus size on data retrieval times will be based on the results from the timing
experiments presented in the previous section.

In a first analysis, the time interval needed to retrieve a certain number of matching instances
in two different corpora is compared. The corpora chosen are the ComputerZeitung automatically
annotated corpus and the Tages-Anzeiger corpus because their annotation is comparable. The
ComputerZeitung corpus contains 3000 sentences; the Tages-Anzeiger contains corpus 20’000
sentences. If a query retrieving the same amount of matching instances takes the same time in

CHAPTER 5. ANALYSIS AND EVALUATION 91

both corpora, the size of the corpus is of no importance. Figure 5.1 shows that this is almost but
not exactly the case.

None of the queries retrieve exactly the same amount of matching instances. When focussing
on the two bars in the center of figure 5.1 which show the query for wordhat in the Tages-
Anzeiger corpus which retrieves 1091 hits and on the query for worddie in the ComputerZeitung
corpus which retrieves 1328 hits, a general trend can be made out. The corpus query system
needs slightly more time (3.31 seconds compared to 3.14 seconds) to retrieve less instances in
the larger Tages-Anzeiger corpus. A slight influence of the corpus size can therefore be made
out. It is, however, impossible to name an exact number which stands for the difference in data
retrieval times depending on corpus size based on the experiments conducted on the three testing
corpora.

Although the direct influence of corpus size cannot be determinded, its indirect effects on
the number of instances retrieved can be examined. When trying to find the exact amount of
the influence of the corpus size on data retrieval times, the general trend of retrieval times per
number of instances retrieved may give an indication about the development with larger corpora.
Figure 5.2 shows the connection between the number of instances which have to be retrieved and
the amount of time needed to do so in the Tages-Anzeiger corpus.

Figure 5.2 shows that data retrieval times of queries for a word in the Tages-Anzeiger corpus
progress in a linear way depending on the number of hits which have to be retrieved.4 An equa-
tion approximating this line can therefore be calculated. Equations 5.1 and 5.2 show how to find
the best fit straight line from a set of measured values. In this case, the number of valuesn equals
five because five different queries for word have been measured. Variablea corresponds to the
y-axis intercept, and variableb matches the slope of the line. Equation 5.1 shows how the approx-
imative value of the arithmetic mean of a random sample withn values is calculated, and equation
5.2 shows the formula of a regression line including the calculation of variablesa andb. Both for-
mulas can be found on page 91 in [Verein Schweizerischer Mathematik- und Physiklehrer 1992].

x̄ =
1

n

n∑
i=1

xi(5.1)

y = a+ bx, a =

∑n
i=1 xiyi − nx̄ȳ∑n
i=1 xi

2 − nx̄2
, b = ȳ − ax̄(5.2)

If applied to the results of the Tages-Anzeiger corpus, equations 5.1 and 5.2 result in the
following equation which approximates the line in figure 5.2.

y = 0.2042 + 0.0009x(5.3)
4The data retrieval times of both ComputerZeitung corpora progress in exactly the same way but are for reasons of
legibility not included.

CHAPTER 5. ANALYSIS AND EVALUATION 92

0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000 12000 14000 16000

R
et

rie
va

l T
im

e
(S

ec
on

ds
)

Number of Instances Retrieved

Tages-Anzeiger Corpus

Figure 5.2: Comparison of Data Retrieval Times per Matching Instances in the Tages-Anzeiger
Corpus

CHAPTER 5. ANALYSIS AND EVALUATION 93

Equation 5.3 shows that the data retrieval times of the Tages-Anzeiger progress in a linear
way with the slope of 0.0009. The line does not exactly intersect the x-axis at zero but crosses
it at the x-value of 0.2042. In order to find out how correct such an approximative equation for
a line is, a correlation coefficient can be calculated. This coefficient is based on the standard
deviation and measures the linear cohesion between independent values.5 For equation 5.3, the
correlation coefficientr is displayed in equation 5.4.

r = 0.989674784(5.4)

A perfect correlation between an equation and a line corresponds to the coefficient of one.
The correlation coefficient displayed in 5.4 shows that equation 5.3 comes very near to the actual
data.6 Assuming that the distribution of data retrieval times progress as they have 20’000 sen-
tences, guesses about retrieval times with larger corpora can be made. This is, however, a risky
business because the hypothesis of equation 5.3 could only be proven by two corpora of 3000
sentences.

If equation 5.3 is applied, one has to be aware of the fact that the influence of corpus size is
neglected. The factor considered is the number of instances which have to be retrieved. Although
it is risky to predict a general trend based on the data from only two corpora, it seems that corpus
size does have an indirect influence on retrieval times, but it is nowhere as important as the
influence of the number of instances which match a query. There is, however, a connection
between the two because a linguistic entity will occur with the same frequency regardless of
corpus size.

5.3.3 Database Evaluation

Among the four criteria which are compelling prerequisites for any corpus query system, two
concern the structure of the corpus database. The first prerequisite iscompleteness, meaning that
every occurrence which matches a query is found in a corpus. When working with a database
system, this prerequisite is met if the SQL query statement is correct and the database man-
agement system works properly. The correctness of the SQL query statement can be tested by
working with a small number of sentences. The results from a query statement can be checked
manually. If the SQL query statement outputs the correct instances from an assessable amount of
sentences, it will also do so on a larger scale. On the other hand, a database management system
is definitely reliable because it has been used often and experiences made in these applications
guarantee a correct operation. The criteria ofcompletenessis therefore fulfilled.

The second prerequisite for corpus query tools being connected with the corpus database
is efficiency. It states that the time of retrieval must be limited to a reasonable interval. In

5The detailed formula can be found in [Verein Schweizerischer Mathematik- und Physiklehrer 1992] on page 85.
6Another regression line with the correlation coefficient r=0.9897 is possible. Its equation isy = a∗xb with a=0.0171
and b=0.6679. Although the linear progression matches the data better, this equation shows that the development is
less than of linear order because b is less than 1. I will, however, prefer the linear equation.

CHAPTER 5. ANALYSIS AND EVALUATION 94

the previous subsection, I have presented data retrieval times for my corpus query tool. When
comparing the two database formats, it is obvious that the second version of the database format
does not result in acceptable data retrieval times. Depending on the query, I have been able to
reduce the time span between fifty to three hundred percent.

I have also been able to show that retrieval times chiefly depend on the number of hits which
have to be retrieved from a corpus. Queries matching a large number of instances will, however,
match an even greater number of instances in a larger corpus, and retrieval times will grow
proportionally. With 20’000 sentences, a query retrieving 4848 instances (0.015 instances per
corpus) takes approximately four seconds. The final time, however, will be somewhat different
because only ten results are retrieved at a time, but a HTML page also needs time for loading.
In my opinion, this is still a reasonable time interval. The prerequisite of efficiency, however,
remains a matter of worry to my corpus query system.

5.3.4 Suggestions for Improvement

Some suggestions for improving my corpus query tool have already been mentioned in the previ-
ous sections of this chapter and will not be repeated here. The main concern of my corpus query
system, however, is its performance. Although I have implemented the most obvious query opti-
mization strategies such as indexing, reducing the number of joins, and reducing the number of
sentences retrieved, there are some further ideas about improving the performance of my corpus
query tool.

For general information about performance tuning of MySQL database system, the fifth chap-
ter in [Reese et al. 2002] devoted to this topic gives insights about approaches which can be taken
to improve the performance of my corpus query system. On page 81, Reese et al. (2002) list five
points which are to be considered.

1. Application tuning

2. SQL query tuning

3. Database server tuning

4. Operating system

5. Hardware

The order of the list corresponds to the effects of the measures. Application tuning therefore
yields better results than hardware updating. For further work being done on my corpus query
tool, this list will be a helpful support.

The first two issues include host application and SQL query tuning. Most suggestions for
SQL query tuning have already been implemented (the strategies for SQL query tuning have

CHAPTER 5. ANALYSIS AND EVALUATION 95

been described in section 4.4). The effect of some other strategies mainly in the section of host
application tuning (such as data caching and connection pooling) remain to be tested. So far I
have not optimized the PHP-scripts so that an improvement in this area is certainly possible.

Another idea about SQL query tuning was suggested by Dr. Bernhard Ruef during a pre-
sentation of my corpus query system within a lecture about corpus linguistics with and for com-
putational linguistics. He suggested that the instances of a query retrieving more than one item
should be tested so that the scope of the query can be restricted as soon as possible by using the
least frequent item to be queried first. For more complex queries, this strategy would certainly
improve retrieval times. I am convinced that this strategy and others in a similar style as well
could would result in better retrieval times.

The last three issues of the list of MySQL query performance tuning concern matters which
were out of my sphere of influence because the database server on which my corpus query tool
is running belongs to the Institut für Informatik at the University of Zurich. The database server
named “ludwig”, however, is set up in the file structure mode and other applications run on it. A
different server could possibly influence the corpus query system positively.

It seems that there is a good chance of improving the performance of my corpus query tool
if all components including hardware and host language scripts are reexamined and optimized
based on their operational purpose. The improvements remain, however, the task of another
programmer.

CHAPTER 5. ANALYSIS AND EVALUATION 96

5.4 Conclusion

The goal of the project which I have carried out in the context of my Lizentiatsarbeit was to
implement a corpus query system which stores syntactically annotated corpora in a relational
database system. The design of this tool was planned to be web-based so that users can access
the database through a HTML query interface. The intended users were beginners in corpus
linguistics.

In this thesis I have presented an overview of theoretical issues concerning corpus query and
included a description of a selection of other corpus query systems. The focus of the thesis,
however, was set on the documentation of my own corpus query system. I have presented its
different components, namely the database format, the corpora which were used for testing the
corpus query tool, the SQL query statements, the interface functions, and the design of the result
output. In a last chapter, I have analyzed my corpus query tool and have been able to show that
the format of the database is a crucial factor for the performance of my corpus query tool.

The use of relational database systems to store large amounts of linguistic data (such as syn-
tactically annotated corpora) has so far been neglected. The only project testing the collaboration
of database technologies with corpus linguistics is the corpus query system called San Remo by
Thomas Knneth ([Knneth98]). Its limitation, however, is that San Remo was restricted to the use
with the British National Corpus which is only part-of-speech tagged. Otherwise, current corpus
query systems make use of file systems to store and access corpora. With the implementation of
my corpus query tool, I have been able to show that the advantages of database systems can be
used for the storage of syntactically annotated corpora as well.

As a next step, a comparison between a corpus query system based on a file system and a
corpus query system making use of a database system testing query retrieval times of exactly the
same corpus would be interesting. Based on the results of the evaluation of my corpus query
tool, I estimate at the moment a file system to be faster than my corpus query tool, especially for
large corpora. I am convinced, however, that there are a number of improvements - especially
involving database technologies which I have not explored yet - which can make a corpus query
system based on a database system faster as well as easier to administrate than one based on a file
system. The database system, for example, need not necessarily be a relational one. Additionally,
the database format as well as retrieval strategies can be optimized for the retrieval of sentences.
An intensified effort between the fields of database technology and corpus linguistics would in
my opinion result in profound improvements of any type of linguistic data storage.

Another focus of my corpus query tool is the implementation of an intuitive and user-friendly
interface which can be accessed through the internet. Without having conducted any experiments
with test persons, a conclusive statement about the user-friendliness of the corpus query tool
cannot be made. There are, however, a number of components which make the interface easy
to handle. All query inputs involving a fixed set of choices (such as part-of-speech tags or
syntactical categories) can be selected from a list which includes their name as well as a short
description of their function. Tedious consultations of help files and false inputs can thus be

CHAPTER 5. ANALYSIS AND EVALUATION 97

avoided. Additionally, a number of warning messages are displayed if the user inputs senseless
query statements. The corpus query tool provides only a selected range of query types, but
within these queries, many errors which could occur to an inexperienced corpus linguist have
been anticipated.

A test version of my corpus query tool including three corpora described in this thesis is
running on a server at the Department of Computer Science at the University of Zurich. Instead
of claiming completeness, the current version shows that it is possible to implement a corpus
query tool for syntactically annotated corpora based on a relational database system. Further
efforts would certainly improve retrieval times and expand its functionality and thus create a
corpus query tool which could compete with other ones.

Bibliography

[Biber et al. 2000]Douglas Biber, Susan Conrad, and Randi Reppen. 2000.Corpus Linguistics:
Investigating Language Structure and Use. Cambridge University Press, 2nd edition.

[Brants 1997]Thorsten Brants. 1997. The NeGra Export Format for Annotated Corpora (Ver-
sion 3). Technical report, Universität des Saarlandes.

[Burnard 1996]Lou Burnard. 1996. Introducing SARA: An SGML-Aware Retrieval Applica-
tion for the British National Corpus.Papers Presented at the Second Conference on Teaching
and Language Corpora.

[Bußmann 1990]Hadumod Bußmann. 1990.Lexikon der Sprachwissenschaft. Alfred Kröner
Verlag, Stuttgart, 2nd edition.

[Carstensen et al. 2001]Kai-Uwe Carstensen, Christian Ebert, Cornelia Endriss, Susanne Jekat,
Ralf Klabunde, and Hagen Langer, editors. 2001.Computerlinguistik und Sprachtechnologie:
Eine Einf̈uhrung. Spektrum Akademischer Verlag, Heidelberg, Berlin.

[Corley et al. 2001]Stefan Corley, Martin Corley, Frank Keller, Matthew W. Crocker, and Shari
Trewin. 2001. Finding Syntactic Structure in Unparsed Corpora: The GSearch Query System.
Computers and Humanities, 35(2):81–94.

[Elmasri and Navathe 2000]Ramez Elmasri and Shamkant B. Navathe. 2000.Fundamentals of
Database Systems. Addison Wesley Longman, Reading, Massachusetts, 3rd edition.

[Finegan 1999]Edward Finegan. 1999.Language: Its Stucture and Use. Harcourt Brace Col-
lege Publishers, Fort Worth, 3rd edition.

[Garside et al. 1997]Roger Garside, Geoffrey Leech, and Anthony McEnery. 1997.Corpus
Annotation: Linguistic Annotation from Computer Text Corpora. Longman, London and New
York.

[Jurafsky and Martin 2000]Daniel Jurafsky and James H. Martin. 2000.Speech and Language
Processing. Prentice Hall, Upper Saddle River.

[Künneth 1998]Thomas K̈unneth. 1998. Datenbankgestützte Speicherung von Korpora. Mas-
ter’s thesis, Friedrich-Alexander-Universität Erlangen-N̈urnberg.

98

BIBLIOGRAPHY 99

[Lezius and K̈onig 2000] Wolfgang Lezius and Esther K̈onig. 2000. Towards a Search Engine
for Syntactically Annotated Corpora. In Schukat-Talamazzini, Ernst G. and Zühlke, Werner,
editors, Proceedings der 4. Konferenz zur Verarbeitung natürlicher Sprache (KONVENS-
2000), pages 113–116, Ilmenau. VDE-Verlag.

[Linke et al. 1996]Angelika Linke, Markus Nussbaumer, and Paul R. Portmann. 1996.Studi-
enbuch Linguistik. Max Niemeyer Verlag, T̈ubingen, 3rd edition.

[McEnery and Wilson 1996]Tony McEnery and Andrew Wilson. 1996.Corpus Linguistics.
Edinburgh Textbooks in Empirical Linguistics, Edinburgh.

[Meier 2002] Charles F. Meier. 2002.English Corpus Linguistics: An Introduction. Cambridge
University Press, Cambridge.

[Mengel and Lezius 2000]Andreas Mengel and Wolfgang Lezius. 2000. An XML-based Rep-
resentation Format for Syntactically Annotated Corpora. InProceedings of the Second Inter-
national Conference on Language Resources and Engineering (LREC 2000), volume 1, pages
121–126.

[Plaehn 1998]Oliver Plaehn. 1998. ANNOTATE Datenbank-Dokumentation. Technical report,
Universiẗat des Saarlandes.

[Rechenberg and Pomberger 1999]Peter Rechenberg and Gustav Pomberger, editors. 1999.
Informatik-Handbuch. Carl Hanser Verlag, M̈unchen, Wien, 2nd edition.

[Reese et al. 2002]George Reese, Randy Jay Yarger, and Tim King. 2002.Managing and Using
MySQL. O’Reilly, 2nd edition.

[Schiller et al. 1999]Anne Schiller, Christine Stöckert, Simone Teufel, and Christine Thielen.
1999. Guidelines f̈ur das Tagging Deutscher Textkorpora mit STTS. Technical report, Insti-
tut für Maschinelle Sprachverarbeitung der Universität Stuttgart und Seminar für Sprachwis-
senschaft der Universität Tübingen.

[Schmid and Kempe 1996]Helmut Schmid and A. Kempe. 1996. Tagging von Korpora mit
HMM, Entscheidungsb̈aumen und Neuronalen Netzen.Wiederverwendbare Methoden und
Ressourcen zur linguistischen Erschliessung des Deutschen, pages 231–244.

[Stoll and Leierer 2000]Rolf D. Stoll and Gudrun Anna Leierer. 2000.PHP4 and MySQL. Data
Becker, Paderborn, 2nd edition.

[Verein Schweizerischer Mathematik- und Physiklehrer 1992]Verein Schweizerischer
Mathematik- und Physiklehrer. 1992. Formeln und Tafeln: Mathematik - Physik.
Orell Füessli, 5th edition.

[Volk and Schneider 1998]Martin Volk and Gerold Schneider. 1998. Comparing a Statistical
and a Rule-Based Tagger for German. InProceedings der 2. Konferenz zur Verarbeitung
natürlicher Sprache (KONVENS-1998), Bonn.

BIBLIOGRAPHY 100

[Volk 2001] Martin Volk. 2001.The Automatic Resolution of Prepositional Phrase Attachment
Ambiguities in German. Universiẗat Zürich, Habilitationsschrift.

[Voormann and Lezius 2002]Holger Voormann and Wolfgang Lezius. 2002. TIGERin –
Grafische Eingabe von Benutzeranfragen für ein Baumbank-Anfragewerkzeug. In Stephan
Busemann, editor,Proceedings der 6. Konferenz zur Verarbeitung natürlicher Sprache
(KONVENS-2002), pages 231–234, Saarbrücken.

[Zierl 1998] Marco Zierl. 1998. Entwicklung und Implementierung eines Datenbankssystems
zur Speicherung und Verarbeitung von Textkorpora. Master’s thesis, Friedrich-Alexander-
Universiẗat Erlangen-N̈urnberg.

Glossary

Annotation (i) the practice of adding explicit additional information to machine-readable text;
(ii) the physical representation of such information.
([McEnery and Wilson 1996]:177)

CompetenceNoam Chomsky distinguishes between a speaker’s competence andPERFORMANCE.
Competence is the ability to produce and assign meaning to any kind of grammatical ut-
terance. ([Bußmann 1990]:396)

Corpus (i)(loosely) any body of text; (ii)(most commonly) a body of machine-readable text;
(iii)(more strictly) a finite collection of machine-readable text, sampled to be maximally
representative of a language or variety. ([McEnery and Wilson 1996]:177)

Corpus Linguistics The activities involved in compiling and using aCORPUS to investigate
natural language use. ([Finegan 1999]:588)

Database/Database SystemThe combination of a collection of logically coherent data with
some inherent meaning and aDATABASE MANAGEMENT SYSTEM.
([Rechenberg and Pomberger 1999]:876)

Database Management System (DBMS)A collection of programs that enables users to cre-
ate and maintain a database; i.e. a general-purpose software systems that facilitates the
process of defining, constructing, and manipulating databases for various applications.
([Elmasri and Navathe 2000]:5)

Descriptive Adequacy Evaluation criterion for grammatical theories of natural language estab-
lished by Noam Chomsky. A grammar is of descriptive adequacy if it describes a speaker’s
COMPETENCEto determine the correctness of linguistic expressions. ([Bußmann 1990]:46)

Entity-Relationship Model A data model used for the conceptual design of database applica-
tions. The ER-model describes data as entities, relationships, and attributes.
([Elmasri and Navathe 2000]:41-72)

Explanatory Adequacy Evaluation criterion for grammatical theories of natural language es-
tablished by Noam Chomsky. A linguistic theory is of explanatory adequacy if it does not
only determine the correctness of linguistic expressions but additionally explains how a
speaker acquires this knowledge. ([Linke et al. 1996]:104-105 and [Bußmann 1990]:46)

101

BIBLIOGRAPHY 102

Join Operation in relational database systems combining related tuples form two relations into
single tuples, resulting in one combined relation.
([Elmasri and Navathe 2000]:219)

KWIC Acronym for KeyWord-In-Context, describing a type of sentence representation in which
a keyword is centralized and context preceding or following the keyword is displayed on
its left and right respectively.

Lemma The headword form of an entry in a dictionary (German: Grundform), e.g. the inflected
verb formran belongs to the lemmarun.

Parsing (Automatical) grammatical analysis with the goal of finding syntactic functions and
constituents of a text. An automatical parser has an accuracy rate of 70-80 per cent.

Performance Noam Chomsky distinguishes between a speaker’sCOMPETENCE and perfor-
mance. Performance is the actual output of a speaker’s competence, i.e. the utterances
produced. ([Bußmann 1990]:396)

Register A language variety associated with a particular situation of use. Examples: baby talk,
scholarly writing. ([Finegan 1999]:594)

Relational Data Model Data model implemented in relational database systems representing
the database as a collection of relations. A relation is a mathematical set of values resem-
bling a table. ([Elmasri and Navathe 2000]:196-198)

SQL (Structured Query Language) Standardized data definition and data manipulation lan-
guage for relational database systems.

Tagging (also part-of-speech tagging) (Automatical) grammatical analysis with the goal to find
part-of-speech tags. Taggers have become highly accurate; a tagger can automatically
analyze a corpus at accuracy rates exceeding 95 per cent. ([Meier 2002]:91)

Tag-Set A group of symbols representing various parts-of-speech. ([Meier 2002]:86)

Tokenization The segmentation of a text into entities most closely resembling words.

Treebank A special kind of corpus consisting of a collection of syntactically annotated sen-
tences. The encoding of the sentence structure resembles a tree.
([Carstensen et al. 2001]:377-385)

Appendix A

SGML-Tags in the ComputerZeitung and
Tages-Anzeiger Corpora

Table A.1 shows which SGML-Tags were inserted into the ComputerZeitung corpus in order to
preserve the formatting.

Table A.1: SGML-Tags in the ComputerZeitung Corpus
<AUTHOR> author
<AU ABBR> author abbreviation
<CITY> document anchor city
<DOC> document begin
<H2> header
 list item
<LOC> location of the document within the newspaper (vol-

ume and page number)
<NUM> volume number of the newspaper
<P> paragraph

Additionally, a sequence of dots (‘...’) was replaced by the tag<Dots> to prevent a mix-up
with dots at the end of a sentence.

103

APPENDIX A. SGML-TAGS IN THE CZ AND TA CORPORA 104

The SGML-Tags in table A.2 were already extant in the Tages-Anzeiger corpus.

Table A.2: SGML-Tags in the TagesAnzeiger Corpus
<AN> article number
<AU> author
<DA> date of article writing
<DD> document
<HT> main title
<KA> ??
<LA> language of the article
<LD> lead
<LG> caption
<NT> ??
<P> paragraph
<PG> page
<RU> rubric
<SE> ??
<SM> ??
<SO> source
<TI> title
<TX> article text
<UR> ??
<UT> subtitle
<ZT> intermediate title

During the annotation, tags<DA> and<PG> were removed. The date of the article can be
reconstructed from the article number<AN>.

Additionally, a sequence of dots (‘...’) was replaced by the tag<Dots> to prevent a mix-up
with dots at the end of a sentence.

Appendix B

List of Database Relations

The following tables describe the detailed format of the relations used in the database system
implemented for my own corpus query tool. ColumnName lists the set of attributes (columns)
which are defined for a relation, columnType indicates the MySQL data type which is used
in this column1, and columnDescription gives additional information about the purpose of the
attribute. ColumnP (Primary) indicates if an attribute functions as primary key, columnI (Index)
is checked if the attribute is indexed, and columnU (Unique) is checked if each attribute value
occurs only once. If a single field is marked as primary key, MySQL takes it automatically as
indexed and unique.2 Each corpus is saved in a new database.

1The following MySQL data types were used: char (character; the size is indicated in bytes), varchar (variable-length
character; the size is indicated in bytes; storage room is the length of value + 1), int (integer; a basic whole number
with a range of -2’147’483’648 to 2’147’483’647), smallint (a basic whole number with a range of -32’768 to
32’767), and tinyint (a basic whole number with a range of -128 to 127).

2This is only true for single primary keys. Note the behavior of a compound primary key in tableParent .

105

APPENDIX B. LIST OF DATABASE RELATIONS 106

B.1 Database Format Version 1

The first version of the corpus database format is based on an entity-relationship model. Besides
a table calledCorpus which contains meta-information about the corpus which is saved in
the database, the first version comprises four tables namedSentence , Word, Parent , and
Syntax . TableWord is the pivotal table which stores linguistic information to each word.
TableParent andSyntax do so accordingly for syntactic structures.

Table Corpus This table contains the information about the corpus which is stored in the
database.

Table B.1: TableCorpus
Name Type Description P I U
Name varchar(100) name of the corpus

√

DBName varchar(50) database in which the corpus is stored
MaxSentNr int number of the last sentence
Language varchar(50) language of the corpus

Table Sentence This table stores the number of each sentence. The last number is equivalent
to theMaxSentNr in tableCorpus .

Table B.2: TableSentence
Name Type Description P I U
Id int identification number of the sentence

√

APPENDIX B. LIST OF DATABASE RELATIONS 107

Table Word This table contains the information to a word. Each word is provided with an
identification number. By means of the foreign keySentenceId , a word can be identified with
one particular sentence. All other attributes of tableWord are parts of the linguistic annotation.

Since a corpus may contain a large number of words and sentences, datatype int is assigned to
the word and sentence identification numbers. AttributeTxt is text of variable length depending
on the word. The corresponding datatype is int. The lengthiest part-of-speech tag in the current
annotation is seven letters long, so datatype char(7) is sufficient. Simplified part-of-speech tags
take up room up to fifteen letters, so datatype char(15) is assigned. Edgelabels consists of four
letters. Semantical name tags and semantical type tags are of datatype char(14) because the
opening and the closing brackets have to be converted into their HTML-codes which take up
4 letters each. It is a tendency of lemmas to take up more room than the words, so datatype
varchar(120) is assigned. Morphological tags were not available in the tested corpora but space
of length char(30) is provided.

Table B.3: TableWord
Name Type Description P I U
Id int key of the word

√

SentenceId int sentence key
√

Txt varchar(100) word text (token)
√

Tag char(7) part-of-speech tag
√

TagSimple char(15) simplified part-of-speech tag
√

ParentId smallint foreign key to Parent ; the parent is a non-
terminal node one of whose children is the word,
or 0 if the word is not bound in a syntactic struc-
ture.

√

Edgelabel char(4) edgelabel (description of the edge from the word
to the node)

√

SemName char(14) the semantical name tag labels a named entity
√

SemType char(14) the semantical type tag labels temporal or local
prepositional phrases

√

Lemma varchar(120) the text of the lemma as analyzed by GERTWOL
√

MorphTag char(30) morphological information of the word
√

APPENDIX B. LIST OF DATABASE RELATIONS 108

Table Parent This table contains the information about the syntactic annotation of a word.
In order to place each parent node with its corresponding sentence, the key toSentenceId is
included. In syntactic annotations, each parent node may also be a child node of another parent;
this is realized by referring recursively fromparentId to the same table. Parent identification
numbers range from 500 to 1000, so data type smallint is of sufficient size to number the parent
nodes. Since parent identification numbers start at 500 within each sentence and therefore are
not unambiguous, the primary key of tableParent is composed of the parent and the sentence
identification number.

Table B.4: TableParent
Name Type Description P I U
Id smallint number of the nonterminal node parent

√

SentenceId int foreign key toSentence
√

Edgelabel char(4) edgelabel (description of the edge from one node
to another)

√

Parentlabel char(4) description of the node
√

ParentId smallint foreign key to Parent ; the parent is a non-
terminal node one of whose children is the node,
or 0 if the node is not bound in another syntactic
structure.

√

Table Syntax This table is the result of several joins of tableparent and tableparent-
label . It makes the recursive structure of the syntactic annotation explicit.

Table B.5: TableSyntax
Name Type Description P I U
Id int foreign key to tableWord

√

SentenceId int foreign key to tableSentence
√

NodeTxt1 tinyint label of the syntactic node on the first level
√

NodeTxt2 tinyint label of the syntactic node on the second level
√

NodeTxt3 tinyint label of the syntactic node on the third level
√

NodeTxt4 tinyint label of the syntactic node on the fourth level
√

ParentId smallint identification number of the parent node on the
fifth level

√

The number of database tables in the second version of the database format is larger than
the one presented above. Some tables of the second database format are only slightly modified;
others are added.

APPENDIX B. LIST OF DATABASE RELATIONS 109

B.2 Database Format Version 2

Table Corpus This table contains the information about the corpus which is stored in the
database.

Table B.6: TableCorpus
Name Type Description P I U
Name varchar(100) name of the corpus

√

DBName varchar(50) database in which the corpus is stored
MaxSentNr int number of the last sentence
Language varchar(50) language of the corpus

Table Sentence This table stores the number of each sentence. The last number is equivalent
to theMaxSentNr in tableCorpus .

Table B.7: TableSentence
Name Type Description P I U
Id int identification number of the sentence

√

Table Text This table contains the texts of each word occurring in the corpus; in other words,
each word type (as opposed to token) is stored. Each text is provided with an identification
number of data type integer.

Table B.8: TableText
Name Type Description P I U
Id int key of the text-string (type)

√

Text varchar(100) word text
√

APPENDIX B. LIST OF DATABASE RELATIONS 110

Table Word This table contains the information to a word. Each word is provided with an
identification number. By means of the foreign keySentenceId , a word can be identified
with one particular sentence. All other attributes of tableWord are foreign keys which refer to
other tables which contain information about the linguistic annotation of the word.

Table B.9: TableWord
Name Type Description P I U
Id int key of the word

√

SentenceId int sentence key
√

TextId int foreign key toText
√

TagId tinyint foreign key toTag; if the value is0, no tag is
assigned to the word

√

ParentId smallint foreign key to Parent ; the parent is a non-
terminal node one of whose children is the word,
or 0 if the word is not bound in a syntactic struc-
ture.

√

EdgelabelId tinyint foreign key toEdgelabel ; the edge label is the
description of the edge from the word to the node
or 0 if the word is not bound in a syntactic struc-
ture

√

SemNameId tinyint foreign key toSemName; the semantical name
tag labels a named entity, or its value is 0 if the
word does not belong to a semantical name class.

√

SemTypeId tinyint foreign key toSemType; the semantical type tag
labels temporal or local prepositional phrases, or
its value is 0 if the word does not belong to a
semantical type class.

√

LemmaId int foreign key toLemma; if the value is 0, no lemma
is analyzed for the word.

√

MorphTagId smallint foreign key toMorph ; if the number is0, no mor-
phological information is assigned to the word

√

APPENDIX B. LIST OF DATABASE RELATIONS 111

Table Tag The information to the part-of-speech annotation is stored in this table. In the
current annotation, there are 60 part-of-speech tags, so the data type of sufficient size to number
the tags is tinyint. Part-of-speech tags are currently no longer than seven letters.

Table B.10: TableTag
Name Type Description P I U
Id tinyint identification number of the part-of-speech tag

√

Txt char(7) short text which will be displayed in the graphical
representation

√ √

Description varchar(80) description of the part-of-speech tag
TagSimpleId tinyint foreign key to TagSimple ; the simple tag

groups the detailed categories of the STTS into
groups which are more intuitive for beginners in
corpus linguistics

√

Table TagSimple Each part-of-speech tag from the Stuttgart-Thübingen tagset is mapped to
a broader category in order to have a simplified tagset for beginners in corpus linguistics. A
detailed list of the simplified tagset can be found in Appendix C. There are currently eleven
simplified part-of-speech tags, so the data type of sufficient size to number the tags is tinyint.
The texts of the tags are no longer than fifteen letters.

Table B.11: TableTagSimple
Name Type Description P I U
Id tinyint identification number of the part-of-speech cate-

gory

√

Txt char(15) short text which will be displayed in the graphical
representation

√ √

Description varchar(80) description of the part-of-speech category

APPENDIX B. LIST OF DATABASE RELATIONS 112

Table Parent This table contains the information about the syntactic annotation of a word.
In order to place each parent node with its corresponding sentence, the key toSentenceId is
included. In syntactic annotations, each parent node may also be a child node of another parent;
this is realized by referring recursively fromparentId to the same table. Parent identification
numbers range from 500 to 1000, so data type smallint is of sufficient size to number the parent
nodes. Since parent identification numbers start at 500 within each sentence and therefore are
not unambiguous, the primary key of tableParent is composed of the parent and the sentence
identification number.

Table B.12: TableParent
Name Type Description P I U
Id smallint number of the nonterminal node parent

√

SentenceId int foreign key toSentence
√

EdgelabelId tinyint foreign key toEdgelabel ; the edge label is the
description of the edge from one node to another
or 0 if the word or node is not bound in a syntactic
structure

√

ParentlabelId tinyint foreign key to the description of the node in table
Parentlabel ; if the number is0, no descrip-
tion is assigned to the node

√

ParentId smallint foreign key to Parent ; the parent is a non-
terminal node one of whose children is the node,
or 0 if the node is not bound in another syntactic
structure.

√

Table Edgelabel The labels for the edges in the syntactic annotation are stored here. Since
there are forty-four tags for edgelabels in the current annotation, data type tinyint is of sufficient
size to number the tags. The texts are no longer than four letters.

Table B.13: TableEdgelabel
Name Type Description P I U
Id tinyint identification number of the edgelabel

√

Txt char(4) short text which will be displayed in the graphical
representation

√ √

Description varchar(80) description of the edgelabel

APPENDIX B. LIST OF DATABASE RELATIONS 113

Table Parentlabel The labels for parent nodes in the syntactic annotation are stored here.
Since there are twenty-six tag for parentlabels in the current annotation, data type tinyint is of
sufficient size to number the tags. The texts are not longer than four letters.

Table B.14: TableParentlabel
Name Type Description P I U
Id tinyint identification number of the parentlabels

√

NodeTxt char(4) short text which will be displayed in the graphical
representation

√ √

Description varchar(80) description of the parent label

Table SemName This table contains the tags used for the semantical annotation of named
entities. The categories used are person name (<PERS>), geographical name (<GEO>), com-
pany name (<FA>), and product name (<PROD>). Since all of them are numbered to indicate
components of larger named entity expressions, the number of semantical name tags totals to
forty-one. Data type tinyint is therefore sufficient to describe these values. Since the pointed
brackets have to be transformed into their HTML-code which takes up four letters, the texts are
of a maximum length of fourteen letters.

Table B.15: TableSemName
Name Type Description P I U
Id tinyint identification number of the semantic name tag

√

Txt char(14) short text which will be displayed in the graphical
representation

√ √

Description varchar(80) description of the semantic name tagSemType

APPENDIX B. LIST OF DATABASE RELATIONS 114

Table SemType This table contains the tags used for the semantical annotation of prepo-
sitional phrases. The categories used are temporal prepositional phrase (<temp>), and local
prepositional phrase (<loc>). Since all of them are numbered to indicate components of larger
named entity expressions, the number of semantical type tags totals to twenty-one. Data type
tinyint is therefore sufficient to describe these values. Since the pointed brackets have to be trans-
formed into their HTML-code which takes up four letters, the texts are of a maximum length of
fourteen letters.

Table B.16: TableSemType
Name Type Description P I U
Id tinyint identification number of the semantic type tag

√

Txt char(14) short text which will be displayed in the graphical
representation

√ √

Description varchar(80) description of the semantic type tagSemType

Table MorphTag The morphological tags are stored in this table.

Table B.17: TableMorphTag
Name Type Description P I U
Id smallint identification number of the morphological tag

√

Txt char(30) short text which will be displayed in the graphical
representation

√ √

Description varchar(80) description of the morphological information

Table Lemma The lemmas are stored in this table. Each lemma is only stored once and referred
to by its primary key. Since lemmas tend to be longer than words, space for 120 letters is
provided.

Table B.18: TableLemma
Name Type Description P I U
Id int identification number of the morphological tag

√

Txt varchar(120) text of the lemma
√ √

APPENDIX B. LIST OF DATABASE RELATIONS 115

Table Syntax This table is the result of several joins of tableparent and tableparent-
label . It makes the recursive structure of the syntactic annotation explicit.

Table B.19: TableSyntax
Name Type Description P I U
Id int foreign key to tableWord

√

SentenceId int foreign key to tableSentence
√

NodeTxt1 tinyint label of the syntactic node on the first level
√

NodeTxt2 tinyint label of the syntactic node on the second level
√

NodeTxt3 tinyint label of the syntactic node on the third level
√

NodeTxt4 tinyint label of the syntactic node on the fourth level
√

ParentId smallint identification number of the parent node on the
fifth level

√

Final Implementation for Size Comparisons In tablesTag, TagSimple , Edgelabel ,
Parentlabel , SemName, SemType, andMorphTag , a description about the linguistic tags
used is included. In the first version of the corpus database, this description is missing. When
comparing the size of the two databases, the afore-mentioned tables are therefore also included
in the first version of the database format so that both versions contain the same information.

Appendix C

Simplified STTS Tagset

Table C.1 shows a simplified tagset based on the Stuttgart-Tübingen tagset. The STTS-tags in
the second column were mapped onto the broader categories displayed in the first column.

Table C.1: Simplified STTS Tagset
Simplified Tag STTS-Tags
Nomen NN, NE
Verb VVFIN, VVIMP, VVINF, VVIZU, VVPP, VAFIN,

VAIMP, VAINF, VAPP, VMFIN, VMINF, VMPP
Adjektiv ADJA, ADJD
Adverb ADV
Pr̈aposition APPR, APPRART, APPO, APZR
Konjunktion KOUI, KOUS, KON, KOKOM
Pronomen PDS, PDAT, PIS, PIAT, PIDAT, PPER, PPOSS,

PPOSAT, PRELS, PRELAT, PRF, PWS, PWAT,
PWAV, PAV

Artikel ART
Partikel PTKZU PTKNEG, PTKVZ, PTKANT, PTKA
Zahl CARD, ORD
Interpunktion $, $. $(

116

Appendix D

PHP-programs on a Separate CD-ROM

117

Curriculum Vitae

Personal Information

Name Charlotte Merz
Date of Birth April 8, 1977

Education

1997-2003 University of Zurich
English Linguistics and Literature (major)
Computational Linguistics (first subsidiary subject)
Computer Science (second subsidiary subject)

2001 Exchange semester at University of Georgia
1994-1995 High school year at Coffee High, Douglas, GA

Coffee High School Honor Graduate
1993-1997 Kantonschule Zofingen

Matura Typus B
1989-1993 Bezirksschule Zofingen
1984-1989 Primarschule Zofingen

Work Experience

2002-2003 student assistant at the Institute of Computational Linguistics
2000-2001 student assistant for Dr. M. Volk

at the Institute of Computational Linguistics
summer 2000 annotation of linguistic corpora

at the Institute of Computational Linguistics
1997-2000 part-time secretary for Mr. C.-L. Raaflaub

at Raaflaub Attorneys at Law, Zurich

118

