
Abstract

Pro3Gres is a robust, hybrid, deep-syntatic dependency-based parser. The architecture and the implementation are carefully designed to
keep search-spaces small without compromising much on the linguistic performance or adequacy. The resulting parser is deep-syntactic
like a formal grammar-based parser but at the same time mostly context-free and fast enough for large-scale application to unrestricted
texts. It combines a number of successful current approaches into a hybrid, comparatively simple, modular and open model.

This technical documentation gives an overview of the code. Due to the complexity of the program, many simplifications in the
description were unavoidable.

PRO3GRES TECHNICAL DOCUMENTATION

Gerold Schneider

August 11, 2011

Contents

1 Overview of the Parser and the Architecture 4
1.1 The Modular Architecture . 4
1.2 Structure of the Code . 9

2 Pre-Processing 11
2.1 Prolog input format . 11
2.2 LT-TTT2 XML input format . 11

3 The CYK Parser 12
3.1 The Pro3Gres chart-driven CYK implementation . 12
3.2 Simplified CYK Parser . 12
3.3 Format of current chart entries . 13
3.4 CYK Levels . 14

4 Pruning and Partial Parses 15
4.1 Pruning . 15

4.1.1 Hard Local Cut . 15
4.1.2 Fixed Beam Pruning . 15
4.1.3 Complexity-Dependent Pruning . 15
4.1.4 Large Beam Panic Mode . 16

4.2 Partial Parses . 16

5 The Grammar Rules 17
5.1 Introduction . 17

5.1.1 The Penn Treebank . 17
5.1.2 The Difficulty of Writing Grammars . 17
5.1.3 Benefits of a Hand-Written Grammar . 19

5.2 The Rules in Detail . 20
5.2.1 Rule Format . 20
5.2.2 Major Types of Grammar Rules . 21
5.2.3 Minor Types . 26
5.2.4 Unconventional Types . 27

6 Statistical Disambiguation 29
6.1 Decision-Based Parsing . 29
6.2 Backoffs . 29

6.2.1 The pobj relation backoff as an example . 29
6.2.2 Mapping Grammatical Relations for the Probability Estimation . 30
6.2.3 Sparseness and Quality . 31

6.3 Obtaining lexical statistics . 31
6.3.1 With TGrep from Penn Treebank . 31
6.3.2 With Perl script from CoNLL Output . 33
6.3.3 With Prolog from Simon’s format . 34
6.3.4 Functional restrictions and long-distance dependencies from the Penn Treebank 34

7 Chunk-Internal Relations 37

8 Installing and running your own copy of Pro3Gres 38
8.1 Installing the parser Pro3gres . 38

8.1.1 Installing Pro3gres . 38
8.1.2 Installing LT-TTT2 . 38
8.1.3 Running Pro3Gres . 39
8.1.4 Running Pro3Gres in Prolog . 39

2

3 CONTENTS

8.2 Preprocessing options . 40
8.2.1 More on LT-TTT2 for tagging, chunking and morphological analysis . 40
8.2.2 LTPOS Tagger and Chunker, Morphological Analyzer morpha . 40
8.2.3 Treetagger and Carafe Chunker . 41

Chapter 1: Overview of the Parser and the Architecture
In this chapter we first give an overview of the parser with an example. Each module is introduced and briefly discussed. Second, we
give a brief overview of the structure of the code.

1.1 The Modular Architecture
Pro3Gres is a modular system. Each problem is broken down into sub-problems, and a simplified solution is used. As much of the
processing and disambiguating as reasonably possible is done before and after the costly parsing stage. The parsing itself is also least
resource-intense thanks to reasonably reducing search spaces and restricting to mostly CFG parsing. Fig. 1.1, a flowchart, gives an
overview of the parsing architecture.

We will now illustrate the information flow by sketching the on-line processing of the following example sentence, respectively the
off-line processing of Treebank training sentences.

(1) What could rescue the bill would be some quick progress on a bill amending the National Defense Education Act of 1958

Its top-ranked parser output can be seen in figure 1.2.

Tagging The raw text is part-of-speech tagged using a state-of-the-art tagger. We have used LTPos (Mikheev, 1997) and, alternatively,
Ratnaparkhi’s Maximum Entropy tagger (Ratnaparkhi, 1996) in the beginning. Later, the TreeTagger and also LingPipe were used.
Currently, the simplest pipeline uses LT-TTT2, which allows the XML output of LT-TTT2 to be fed directly into the parser.

Almost all current taggers reach accuracy of 95-97% for tagging the Penn Treebank with the Penn Treebank tagset.Only an evaluation
on unknown words is reported in Mikheev (1997), but LTPos and its successor LT-TTT2 are popular taggers because they support XML
and integrate a chunker, which makes it particularly easy to integrate into a pipeline. Ratnaparkhi (1996) report an accuracy of 96.6%.
The tagged text of our example sentence is shown in (2).

(2) What_WP could_MD rescue_VB the_DT bill_NN
would_MD be_VB some_DT quick_JJ progress_NN on_IN
a_DT bill_NN amending_VBG the_DT National_NNP
Defense_NNP Education_NNP Act_NNP of_IN 1958_CD

Chunking The tagged text is chunked for verb groups, indicated by parentheses and base NPs indicated by square brackets with
LTChunk (Mikheev, 1997). The resulting text is shown in (3).

(3) What_WP (could_MD rescue_VB) [the_DT bill_NN]
(would_MD be_VB) [some_DT quick_JJ progress_NN] on_IN
[a_DT bill_NN] amending_VBG [the_DT National_NNP
Defense_NNP Education_NNP Act_NNP] of_IN 1958_CD

Because LTChunk was not robust enough for chunking the whole British National Corpus, we have used Carafe, a conditional random
field chunker for that task1. Currently, the simplest option is to use LT-TTT2, which integrates tagging and chunking, and whose XML
output can be fed directly into the parser.

1Carafe is a programming project available at http://sourceforge.net/projects/carafe/

Figure 1.1: Pro3Gres flowchart

4

5 1.1. The Modular Architecture

Figure 1.2: Parser output of the sample sentence What could rescue the bill would be some quick progress on a bill amending the
National Defense Education Act of 1958 in stemma notation

Head Extraction The linguistic heads are extracted using our own implementation of Magerman rules (Magerman, 1995). The original
chunk and the tag are associated to the head. The linguistic head is the semantic and syntactic core of the chunk. It has frequently been
suggested (see e.g. (Abney, 1995; Collins, 1996)) that it is sufficient to parse between heads of chunks. The sentence reduced to
(head,tag) pairs is shown in (4).

(4) What_WP rescue_VB bill_NN be_VB progress_NN on_IN
bill_NN amending_VBG Act_NNP of_IN 1958_CD

Lemmatizing The extracted heads are lemmatised. We use Morpha (Minnen, Carroll, and Pearce, 2000). In LT-TTT2, morpha is
integrated.

Tagging, chunking and head-extraction issues are described in the chapter 2.

Functional Dependency Grammar The hand-written grammar is based on part-of-speech tags and on few closed-classed words. For
example, the leftmost parsing step, combining what and rescuewith a relative modification dependency is licensed by a rule involving
closed class words, because it is restricted to only a subset of all WH-pronouns. First, only a subset of WH-pronouns can generally serve
as relative pronoun, secondly, the relative dependency here is special since what is both the modified noun and the relative pronoun, short
for that which. This rule is restricted to the what WH-pronoun only. The second left parsing step which leads to the analysis in fig.
1.2, the rule that licenses the object dependency, is very general and applies to any verb tag followed by any noun tag. We describe our
Dependency Grammar in detail in chapter 5.

Parsing A CYK parser (Younger, 1967) is used. CYK is a generalised, all path version of chart-based shift-reduce parsing for CNF
grammars. CYK is a bottom-up algorithm, the structure is built up in a breadth-first fashion from the lexical item, level by level.

The algorithm in pseudo-code is as follows (N is the number of chunks in the sentence):

for j = 2 to N # length of span
for i = 1 to N − j + 1 # beginning of span
for k = i+ 1 to i+ j − 1 # separator position
if Z → XY and X in chart[i to k], Y in chart[k + 1 to j]
and Z not in chart[i to j]
then insert Z into chart[i to j]

At the first level, where the span length j is 2, all combinations between adjacent words are built, as far as they are licensed by the
grammar. The combination of A and B, the span from A to B, can either have A as head, (which can be noted as A(B)) or B as head
(which can be noted as B(A)). The following graph illustrates the build-up at level 2 for the first 6 words in the sentence.

1.1. The Modular Architecture 6

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

A B C D E F

A B C D EB C D E F– – – – –j = 2 �
�
�

�
�
�

�
�
�

�
�
�

@
@
@

@
@
@

@
@
@

@
@
@

A B C DC D E F– – – –j = 3

j = 4

j = 5

j = 6

A B CD E F– – –

A BE F– –

A F–

�
�
�

�
�
�

�
�
�

@
@
@

@
@
@

@
@
@

�
�
�

�
�
�

@
@
@

@
@
@

�
�
�

@
@
@

Figure 1.3: Complete CYK chart for an example sentence with 6 terminals

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

A B C D E F

A B C D EB C D E F– – – – –

In our example, A − B is What − rescue which can be licensed by a subject relation, in which B is the head, B(A) or by a
modification by relative clause relation, in which A is the head, A(B).
B − C is rescue− bill which can be be licensed by an object or an adjunct or a subject relation, in all cases rescue being the head.

The object relation rule succeeds and creates a chart entry. Since the inverted subject relation rule is restricted to a closed class of verbs,
it fails. The adjunct relation rule is restricted to a closed class of dependents, namely temporal expressions, and thus fails.
C−D is bill− is which licenses a subject relation. This relation will not lead to a globally connected parse due to the parsing context,

but it is possible locally, the rule succeeds and a chart entry is created.
Analogously, structures of span length 2 are constructed for the rest of the sentence.
At the next level, j is 3, structures with span length 3 are constructed. A− C is What(rescue(bill)) with a modification by relative

clause relation, or
rescue(what)(bill) = rescue(what, bill) with a subject relation. Analogously, the whole structure is built up, in exactly N levels,
where N is the number of words per longest parse span. All the theoretically possible chart entries for the cell A − C are listed in the
following illustration.

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

A B C D E F

A B C D EB C D E F– – – – –j = 2 �
�
�

�
�
�

�
�
�

�
�
�

@
@
@

@
@
@

@
@
@

@
@
@

A B C DC D E F– – – –j = 3
⇓

A+ (B(C)) = A(B(C))orB(A,C)
A+ (C(B)) = A(C(B))orC(A,B)
C + (A(B)) = C(A(B))orA(B,C)
C + (B(A)) = C(B(A))orB(A,C)

The algorithm continues analogously until one or several spans covering the entire sentence are found. In our example, that is at at
j = 6, because this example has 6 terminals. Figure 1.3 shows the complete chart for this example.

In order to alleviate the overhead of keeping loop variables or executing loops that do not find results, a data-driven, fully declarative
version of the CYK algorithm has been implemented, which we desribe in chapter 3.

Relation Extraction Each chart entry is weighted by a lexicalized probability. The frequency counts for the lexicalized statistics are
obtained from the Gold Standard, which is the Penn Treebank (Marcus, Santorini, and Marcinkiewicz, 1993; Bies et al., 1995), at an
off-line stage, before the parsing starts. Structural patterns expressing grammatical relations are applied to the Gold Standard. For local

7 1.1. The Modular Architecture

relations the patterns are relatively simple, for long-distance dependencies they can be quite complex (see section ??), spanning a large
number of tree generations. Since the lexical heads need to be extracted, all patterns comprise more than one generation.

Let us consider a simple example of a subject relation. The first sentence in the Penn Treebank is annotated as follows.
(5)

((S
(NP-SBJ (NNP Mr.) (NNP Vinken))
(VP (VBZ is)
(NP-PRD
(NP (NN chairman))
(PP (IN of)
(NP

(NP (NNP Elsevier) (NNP N.V.))
(, ,)
(NP (DT the) (NNP Dutch) (VBG publishing) (NN group))))))

(. .)))

A subject relation holds between an NP with a functional label SBJ and its VP sister. In order to extract the lexical head, the extraction
pattern needs to comprise the possible subtrees of the NP and the VP. They can both be arbitrarily nested, in our simple example that
is not the case, both NP and VP immediately dominate their heads. The subject NP immediately dominates two nouns, however. The
structural pattern selects the rightmost noun as the head. It thus reports a count for the (noun,verb) pair (Vinken_NNP, is_VBZ). The
counts are lemmatized after the extraction, and back-off counts with semantic classes, tags, and only a subset of the heads specified are
also calculated. We describe relation extraction in section 6.3.

Lexicalized Statistical Data from the Treebank During the build-up of the parse, three sources contribute to the disambiguation:
first, the parsing context only allows a small subset of local structures to be combined into a full parse. Second, the analyses are ranked
by the product of the probabilities of the parsing decisions. Third, analyses whose products of probabilities fall below a certain threshold
are abandoned.

A Maximum Likelihood Estimation (MLE) probability model is used for the second and third source. We use the hash symbol (#)
to symbolise frequency. The general Pro3Gres MLE estimation is as follows. We estimate the probability of dependency relation R at
distance (in chunks) dist, given the lexical head a of the governor and the lexical head b of the dependent. By application of the chain
rule we get:

P (R, dist|a, b) = P (R|a, b) · P (dist|R, a, b) ∼=
#(R, a, b)
#(a, b)

· #(R, dist, a, b)
#R, a, b

(1.1)

We then take the assumption that the distance depends only on the relation type, but not on the lexical items. We have observed that
some relations, for example the subordinating clause relation sentobj or the PP-attachment relations modpp and pobj can span many
chunks, while for example in the object relation obj the object noun is almost always immediately adjacent to its governing verb chunk.
We have also observed that there is only little variation based on lexical differences, so that including them would considerably increase
the sparseness of the data at probably very little benefit.

P (R, dist|a, b) ∼= P (R|a, b) · P (dist|R) ∼=
#(R, a, b)
#(a, b)

· #(R, dist)
#R

(1.2)

Some relations use variations of this general estimation rule. Let us look at the ending of our example sentence, ... a bill amending
the National Defence Education Act of 1958. The final PP, which is introduced by of, can syntactically be attached to 5 positions: be,
progress, bill, amend, or act. For PP-attachment, a variation on the above MLE estimation, following Collins and Brooks (1995), is
used. It includes the PP-internal noun (we will refer to it as description noun). a is the head (a verb or a subject), b the preposition and c
the description noun, R is labelled modpp for noun-attachment and pobj for verb-attachment.

P (R, dist|a, b) ∼= P (R|a, b) · P (dist|R) ∼=
#(R, a, b, c)
#(a, b, c)

· #(R, dist)
#R

(1.3)

The co-occurrence count in the denominator expresses the sum of attachment cases and attachment candidates (i.e. syntactically
licensed, potential attachments). Because potential attachment interacts with the rest of the parsing progress in complex ways it needs
to be approximated. Following (Collins and Brooks, 1995) we model PP-attachment as 2-way ambiguous between noun- and verb-
attachment2. As regards our above example, where attachment is 5-way ambiguous, that means that all 5 attachment possibilities are
never compared directly. The denominator generally expresses the sum of competing relations. The MLE estimations for pobj and
modpp are thus the distance factor times all attachment cases divided by all attachment cases plus all cases where the attachment went
to any competing relation.

P (pobj, dist|verb, prep, desc.noun) ∼=
#(pobj, verb, prep, desc.noun)

#(verb, prep, desc.noun)
· #(pobj, dist)

#pobj
(1.4)

P (modpp, dist|noun, prep, desc.noun) ∼=
#(modpp, noun, prep, desc.noun)

#(noun, prep, desc.noun)
· #(modpp, dist)

#modpp
(1.5)

2There are other approximations, e.g. (Collins, 1996) uses the entire sentence as a window. Merlo, Crocker, and Berthouzoz (1997) model 3-way ambiguous situations

1.1. The Modular Architecture 8

Since we model PP-attachment as ambiguous between verbal and nominal attachment (discussed in more detail in section 6), we make
the approximation that the competing relations are only pobj and modpp, hence that the denominator is the sum of all nominal plus all
verbal attachments given the lexical items. This approximation is appropriate, because PPs can usually only attach to nouns (modpp), to
verbs (pobj) or to predicative adjectives (which is subsumed under the pobj relation). If we based our counts on all 2-way ambiguous
verb-noun-pp sequences (Collins and Brooks, 1995) we could get the following probabilities.

P (pobj, dist|verb, noun, prep, desc.noun) ∼=
#(pobj, verb, noun, prep, desc.noun)

#(pobj, verb, noun, prep, desc.noun) + #(modpp, verb, noun, prep, desc.noun)
· #(pobj, dist)

#pobj

P (modpp, dist|verb, noun, prep, desc.noun) ∼=
#(modpp, verb, noun, prep, desc.noun)

#(modpp, verb, noun, prep, desc.noun) + #(pobj, verb, noun, prep, desc.noun)
· #(modpp, dist)

#modpp

We need a slightly different model for three reasons. First, this model only counts occurrences where a PP appears in an ambiguous
position in the text. We would like to profit from the many cases in which informative PP-attachments in the Gold Standard do not
appear in ambiguous positions, for example a sentence initial noun attaching an immediately following PP, or a verb attaching the
immediately following PP. The latter case includes intransitive verbs, which are only in an ambiguous position if they are followed
by an adjunct noun. Second, the parser needs attachment probabilities, for 2-way ambiguous, unambiguous, or multi-way ambiguous
attachments alike. Third, when an attachment probability during parsing needs to be assigned, the analysis we have of the sentence is
very incomplete and does not know which other attachment possibilities there will be. Let us look at the parsing situation where act and
of 1958 are about to be combined, when the probability of the noun attachment with act as governor and of 1958 as dependent needs to
be assigned. At this stage, there is no certain way of knowing that act will in fact be in competition with amend, bill and progress over
attaching of 1958, nor that it will not be in competition with what and the first occurrence of the word bill in the sentence. An object
dependency from rescue to the first occurrence of bill rendering it inaccessible as potential governor for of 1958 will exist in the chart at
this stage, but we cannot know if it will feature in the highest ranked analysis. These intricate interdependencies arising from the parsing
context are very hard to estimate.

We have therefore decided to model PP-attachment as generally ambiguous between noun attachment and verb attachment (the latter
including adjective attachment), that is to use the putative parsing context of Collins and Brooks (1995) as an approximation, where
every verb is in competition with one noun, and every noun is in competition with one verb. The actual competitions during parse time
are never in direct comparison, but indirectly via the comparison of the putative parsing context.

Generally, an MLE probability is the result of the positive counts divided by the candidate counts. For our PP-attachment model,
positive counts are cases that do attach in the Gold Standard, and candidate counts are cases that do attach in the Gold Standard plus
cases that could attach but that do not, according to the putative parsing context. For verb attachment, then, candidate cases are all cases
where attachment as pobj occurs, plus all cases where in the ambiguous context of a verb-noun-PP sequence the PP attaches to the noun
(the label will be modpp).

P (pobj, dist|verb, prep, desc.noun) ∼=
#(pobj, verb, prep, desc.noun)

#(pobj, verb, prep, desc.noun) + #(modpp, verb,
∑

(noun), prep, desc.noun)
· #(pobj, dist)

#pobj (1.6)

P (modpp, dist|noun, prep, desc.noun) ∼=
#(modpp, noun, prep, desc.noun)

#(modpp, noun, prep, desc.noun) + #(pobj,
∑

(verb), noun, prep, desc.noun)
· #(modpp, dist)

#modpp (1.7)

The counts are backed off across several levels, following Merlo and Esteve Ferrer (2006) by including semantic classes, the WordNet
lexicographer file ID for nouns and the Levin top class for verbs. The probabilities used for the attachment of the PP of 1958 in the
example sentence are as follows.

Probability of attachment of the PP of 1958 to the noun bill

P (modpp, dist|noun, prep, desc.noun) ∼=
#(modpp, bill, of, Class18) = 8

#(modpp, bill, of, Class18) + #(pobj,
∑

(verb), bill, of, Class18) = 8
· #(modpp, dist) = 677

#modpp = 53591
= 0.0126

Probability of attachment of the PP of 1958 to the verb amend

P (pobj, dist|verb, prep, desc.noun) ∼=
#(pobj,

∑
(verb), of,

∑
(noun)) = 420

#(pobj,
∑

(verb), of,
∑

(noun)) + #(modpp, verb,
∑

(noun), of, desc.noun) = 5586
· #(pobj, dist) = 25650

#pobj = 46124
= 0.0418

9 1.2. Structure of the Code

Probability of attachment of the PP of 1958 to the noun act

P (modpp|noun, prep, desc.noun) ∼=
#(modpp, act, of, Class18) = 14

#(modpp, act, of, Class18) + #(pobj,
∑

(verb), act, of, Class18) = 14
· #(modpp, dist) = 11918

#modpp = 53591
= 0.2224

As we have mentioned, there is no direct competition between different possible noun-PP attachments in this model. For example bill
and act are not in direct competition in this model, their probabilities differ due to the distance and their relative probabilities when in
competition to verb attachment.

We have now explained the probability for a single parsing decision, equalling a single attachment. The probability of a tree for a
given sentence is the product of all the single decisions that build up the tree. As can be seen in the triangular chart that is built up by
the CYK algorithm (see figure 1.3), the number of chart entries m is related to the number of terminals n as follows.

m =
(n− 1)2 + (n− 1)

2
(1.8)

The probability of a tree T given a sentence S with n terminals is therefore:

P (T |S) =
m∏

i=1

P (Ri, disti|ai, bi) (1.9)

We estimate the probability of a tree given a sentence. We thus use a discriminative, not a generative model (Johnson, 2001).
MLE is not the statistical method leading to the best possible results. However, Bikel (2004, 109 ff) points out that using advanced

statistical methods does often not improve performance considerably. He only reports a 1 % increase in parsing performance on a
Collins (1999) parser when replacing the MLE model by a Maximum Entropy model. We have therefore decided to investigate into a
sophisticated back-off model rather than into alternative statistical methods. We describe the statistical disambiguation in more detail in
chapter 6.

Pruner In complex real-world sentences, constructing all possible chart entries can become very time-consuming. It has been shown
(see e.g. Brants and Crocker (2000)) that discarding locally very improbable partial analyses hardly affects a parser’s performance,
because the chance that locally very improbable analyses become parts of the most probable analysis later is very small. Pruning
happens during parsing, as indicated by the double arrow in figure 1.1. Pruning is a standard procedure, used in all beam parsers
(Ratnaparkhi, 1997; Henderson, 2003).

We use the following three pruning methods: hard local cut, fixed beam pruning, and large chart panic mode. The hard local cut
method rules out local attachments that are very improbable. As a default, all attachments that have a probability below 1 % are
immediately cut. The fixed beam pruning method restrict the number of chart entries for each span. As a default value for robust,
large-scale parsing we use 5. The large chart panic mode is used to cope with very complex real-world sentences. It only has an effect in
a small minority of real-world sentences. When the total number of chart entries exceeds a certain threshold (we use 1000 as a default)
the value used for the hard local cut is increased according to a heuristic function which takes the span length of the chart entries and the
total number of chart entries into account. The large beam panic mode entails that in very complex sentences some permissible spans are
never found, but it allows the parser to deliver a set of long partial analyses for every sentence. The largest sentence we have encountered
in the British National Corpus consists of over 200 chunks. We describe pruning in chapter 4.

Parse Collection In case no complete span for an input sentence can be found, the parser needs to resorts to collecting partial parses.
Starting from the most probable longest span, recursively the most probable longest span to left and right is collected. There are two
reasons why no complete span can be found in some sentences. Either it contains a (rare, highly marked or potentially unacceptable)
construction that is not covered by our grammar, or the pruner prevents a possible complete structure from being created. We describe
parse collection in chapter 4.

Post-Processing After parsing, a post-processing module converts the dependency tree into a graph structure which contains additional,
deep-syntactic relations, so-called long-distance dependencies. We give a short overview of long-distance dependencies in section ??.

1.2 Structure of the Code
This section describes how the individual predicates call each other. It is an extremely simplified version of a trace. Only high-level
predicates are described.
xml_to_p3g_parse(XMLFile) :: TOP CALL for XML format input. See chapter 2.
+ xml_to_prolog(XML) :: converts to Prolog format. See chapter 2.
+ collect_sents :: treats each input sentence individually. Almost the TOP CALL for Prolog-formatted input. See chapter 2.
++ sparse/6 :: initialises the chart, creating a chart entry for each chunk. See chapter 3.
+ + + intrachunk0/4 :: outputs chunk-internal relations. Described in chapter 7

1.2. Structure of the Code 10

Figure 1.4: Parser output

+ + + nextlevel(1,MAX) :: recurses the CYK levels, until there is nothing left to be reduced. Described in chapter 3.
++++ sparse/9 :: the main parsing predicate: foreach two adjacent chart entries, checks if there are head/7 rules and creates new chart
entries if rules match. Described in chapter 3.
+ + + + + head/7 :: the grammar rules, described in chapter 5.
+ + + + + stats/12 :: lexical probabilistic statistics, described in chapter 6.
+ + ++ prune/3 :: pruning, described in chapter 4.
++ pathfinder/0 :: collect and output partial parses. Described in chapter 4.

This technical report should enable readers to get a rough understanding of the Prolog code when browsing it. Given the brevity of
the report, more than a shallow understanding is beyond reach. The most important files of the parser are

• Saar/6566_stanford.pl %% current version, 0.6566 of the main program. Currently about 4,300 lines. The word after the underscore
is a mnemonic

• Saar/grammar_v1_6.pl %% current version, 1.6 of the hand-written grammar. Currently about 1,800 lines.
• intrachunk0.2.pl %% current version, 0.2 of the iuntrachunk rules. Currently 350 lines.
• Pro3Gres_parameters.pl %% current parameter settings, e.g. for the CYK algorithm. pruning, statistical backoffs.
• results_from_WSJ_morph_nov03/* %% statistical data from the Penn Treebank. 102 MB, ca. 2,240,000 lines
• results_from_BNC/* %% statistical data from the BNC, mainly used for chunk-internal relations. 211 MB, ca. 4,380,000 lines
• NomBank/* %% Nominalisation lexicon
• GENIA2/* %% N-gram counts form the Genia corpus. Used for relational nouns
• TTT2/* %% Development data and code for the integration of LT-TTT2
• results_from_wordnet/* %% development of statistical data from Wordnet, used for the semantic statistical backoffs.
• perl/* Various conversion scripts
• EVAL-Carroll/* %% The GREVAL evaluation corpus and evaluation routines

Chapter 2: Pre-Processing
The Pro3Gres parser needs tagged, lemmatized, chunked, and head-extracted input in Prolog format, or in XML.

2.1 Prolog input format
An example of the Prolog input format, for the sentence , is:
w(’failure’ ,’NN’,[’Failure_NN’],’Failure’).
w(’do’ ,’VB’,[’to_TO’,’do_VB’],’do’).
w(’this’ ,’RB’,[’this_RB’],_).
w(’continue’ ,’VB’,[’will_MD’,’continue_VB’],’continue’).
w(’place’ ,’VB’,[’to_TO’,’place_VB’],’place’).
w(’burden’ ,’NN’,[’a_DT’,’disproportionate_JJ’,’burden_NN’],’burden’).
w(’on’ ,’IN’,[’on_IN’],’on’).
w(’taxpayer’ ,’NNS’,[’Fulton_NNP’,’taxpayers_NNS’],’Fulton taxpayers’).
w(’s’ ,’S’,[’S_S’],_).

The Prolog input format can be created in several ways. We have generated it using LTPos, morpha, and LTChunk in early pipelines.
The input is a sequence of w/4 predicates, sentence boundaries need to be indicated as shown in the last w predicate in the example.
Each w/4 predicate contains one chunk, in the order of the original text. The four arguments need to contain the followowing:

1. The lemma of the chunk head.
2. The tag of the chunk head.
3. the chunk, as a list of word_tag pairs.
4. The content of the fourth argument is typically ignored, although versions in which it contains technical information, for example

word number, head position number, non-head lemmas, morphosyntactic features, etc. exist, for example the Prolog format which
is generated automatically from the LT-TTT2 XML input which we will discuss in the following.

2.2 LT-TTT2 XML input format
An example of the XML input format, for the sentence Since 1958, 13 labour life peers and peeresses have been created, is:
<p><s id="s9"><pg><w pws="yes" id="w772" p="IN">Since</w></pg>
<ng><w pws="yes" id="w778" p="CD" headn="yes">1958</w></ng>
<w pws="no" id="w782" p=",">,</w> <ng><w pws="yes" id="w784" p="CD">13</w>
<w pws="yes" id="w787" p="JJ">labour</w>
<w l="life" pws="yes" id="w794" p="NN" headn="yes">life</w>
<w l="peer" pws="yes" id="w799" p="NNS" headn="yes">peers</w></ng>
<w pws="yes" id="w805" p="CC">and</w> <ng>
<w l="peeress" pws="yes" id="w809" p="NNS" headn="yes">peeresses</w></ng>
<vg tense="presorbase" voice="pass" asp="perf" modal="no">
<w l="have" pws="yes" id="w819" p="VBP">have</w>
<w l="be" pws="yes" id="w824" p="VBN">been</w>
<w l="create" pws="yes" id="w829" p="VBN" headv="yes">created</w></vg>
<w sb="true" pws="no" id="w836" p=".">.</w></s></p>

The XML format is most easily created by applying LT-TTT2 to raw text, without running the named-entity recognition module. The
XML needs to be in the format which LT-TTT2 delivers. A version of the LT-TTT2 script which delivers the correct format is e.g. (ttt.sh,
see chapter 8):
#!/bin/bash

#Tokenise and POS tag

/usr/local/TTT2/scripts/preparetxt < $1 > $2.prep
/usr/local/TTT2/scripts/tokenise < $2.prep > $2.tok

/usr/local/TTT2/bin/lxconvert -w -q s -s /usr/local/TTT2/lib/postag/pos.cnv $2.tok |
/usr/local/candc-1.00/bin/pos -model /usr/local/TTT2/models/pos 2>/dev/null |
/usr/local/TTT2/bin/lxconvert -r -q s -s /usr/local/TTT2/lib/postag/pos.cnv -x $2.tok > $2.pos

Lemmatize
/usr/local/TTT2/bin/lxconvert -w -q w -s /usr/local/TTT2/lib/lemmatise/lemmatise.cnv $2.pos |

/usr/local/morph/morpha.ppc_darwin -f /usr/local/TTT2/lib/lemmatise/verbstem.list |
/usr/local/TTT2/bin/lxconvert -r -q w -s /usr/local/TTT2/lib/lemmatise/lemmatise.cnv -x $2.pos > $2.lem

chunk
/usr/local/TTT2/scripts/chunk -s nested -f inline < $2.lem > $2.chunk

Pro3Gres first converts the XML input into the Prolog input format previously described, and then parses it. The predicate that
converts is xml_to_p3g/1, the predicate which parses and then converts is xml_to_p3g_parse/1, the argument is the XML
LT-TTT2 chunked file. The Prolog input format which is produced automatically is e.g.
sid(s9).
w(’Since’,’IN’,[’Since_IN’],[1,0,w772,[pws=yes,id=w772,p=’IN’]]).
w(’1958’,’CD’,[’1958_CD’],[2,0,w778,[’1958_CD’=’1958’]]).
w(c,’COMMA’,[c_COMMA],[3,0,w782,[pws=no,id=w782,p= (’,’)]]).
w(peer,’NNS’,[’13_CD’,labour_JJ,life_NN,peers_NNS],[4,3,w799,[peers_NNS=peer,life_NN=life,labour_JJ=labour,’13_CD’=’13’]]).
w(and,’CC’,[and_CC],[5,0,w805,[pws=yes,id=w805,p=’CC’]]).
w(peeress,’NNS’,[peeresses_NNS],[6,0,w809,[peeresses_NNS=peeress]]).
w(create,’VBN’,[have_VBP,been_VBN,created_VBN],[7,2,w829,[created_VBN=create,been_VBN=be,have_VBP=have,tense=presorbase,voice=pass,asp=perf,modal=no]]).
w(’.’,’.’,[’._.’],[8,0,w836,[sb=true,pws=no,id=w836,p=’.’]]).
w(s,’S’,[’S_S’],[9,0,s9,[id=s9]]).

It is a version of the Prolog input format in which the fourth argument contains technical information: chunk number, head position
number, non-head lemmas and morphosyntactic features. These features are pipe through and output during the parsing.

11

Chapter 3: The CYK Parser

3.1 The Pro3Gres chart-driven CYK implementation
We have discussed the standard CYK algorithm in chapter 1. We use a version of the algorithm that is largely driven by the chart data.
The gist of the algorithm is as follows: Foreach 2 adjacent chart entries, combine them to a new chart entry if any grammar rule allows
that. Repeat this until you cannot create new chart entries any more. The pseudo-code of the “chartdata-driven" CYK implementation is
as follows:

1. Add all terminals to chart
2. Loop: foreach chart entry Xλi.λk.[i− k]

foreach chart entry Y λj.[k − j] # adjacent
if ¬ tried(X,Y)
foreach Z → X,Y assert Z[i− j] to chart (for next Loop)
assert tried(X,Y)

3. Loop: for each pair of adjacent but untried chart entries, check if there is a grammar rule. Add to table of tried chart pairs. If successful, create new chart entry for
next loop.

4. If any rule was successful, prune and then Loop again, else terminate.

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

A B C D E F

A B C D EB C D E F– – – – –loop 1 �
�
�

�
�
�

�
�
�

�
�
�

@
@
@

@
@
@

@
@
@

@
@
@

��
��

��

��
��

��

��
��

��

HH
HH

HH

HH
HH

HH

HH
HH

HH
A B C DC D E F– – – –loop 2 A B CD E F– – –

3.2 Simplified CYK Parser
A simple Prolog version of the actual code, from an early version of the parser, is:

nextlevel(L) :-
chart(FID,[FPos,Ffrom-Fto,FScore],[[F,Ftag,FType]],FuncF),
% foreach chart entry (by backtrack)
Gto is Ffrom-1,
chart(GID,[GPos,Gfrom-Gto,GScore],[[G,Gtag,GType]],FuncG),
% find adjacent chart entries
bagof(_,sparse(FID,[FPos,Ffrom-Fto,FScore],[[F,Ftag,FType]],FuncF,

GID,[GPos,Gfrom-Gto,GScore],[[G,Gtag,GType]],FuncG),_),
% parse (non-recursive, chart version)

write(’End of Level ’), write(L), write(’ reduced items : ’),
perlevel(X), write(X), X > 0, % only recurse if successful
prune(L,X),
L1 is L+1,
retractall(perlevel(_)), assert(perlevel(0)),
nextlevel(L1).

nextlevel(_).

The predicate nextlevel/1 recurses until no new chart entries can be created. and then succeeds (last line, second version of nextlevel/1).
Chart entries in this example consist of 4 arguments, e.g.
chart(FID,[FPos,Ffrom-Fto,FScore],[[F,Ftag,FType]],FuncF) where

FID: the unique chart ID number, simply incrtemented for each chart entry.
Fpos: the position of the head word in the sentence.
Ffrom-Fto: The span from which position to which position in the sentence. Positions are measured in chunks, not in words. In the
initialised chart only consisting of chunks, i.e. before parsing has started, Fpos=Ffrom=Fto.
FScore: The probabiity score of this chart entry.
F: the head word.
Ftag: The part-of-speech tag of the head word.
FType: The dependency relation label.
FuncF: the syntactic structure being built.

A simplified version of the sparse predicate is:

sparse(FID,[FPos,Ffrom-Fto,FScore],[[F,Ftag,FType]],FuncF,
GID,[GPos,Gfrom-Gto,GScore],[[G,Gtag,GType]],FuncG) :-

(tried(FID,GID) -> !, fail; assert(tried(FID,GID))), % already tried
... % get various context info for the grammar rules:
head(Ftag,Gtag,l,Type,Transtag,[FChunk,GChunk,FF,FG,OF,OG],FPos-GPos),
% rule for LEFT reduction (l)

12

13 3.3. Format of current chart entries

(statschart(Ftag,FF,SF,Gtag,FG,SG,Type,Prob,Percent,Dist,FChunk,OG) -> true ;
(stats(Ftag,FF,SF,Gtag,FG,SG,Type,Prob,Percent,Dist,FChunk,OG),
assert(statschart(Ftag,FF,SF,Gtag,FG,SG,Type,Prob,Percent,Dist,FChunk,OG)))),

(Prob < 0.01 -> fail; true), %% early exclusion
%% Build Func-Struc:
...
asserta(chart(ID,[[FF,Ftag,FChunk,FID,FScore],[FG,Gtag,GChunk,GID,GScore]],
[FPos,GPos,Gfrom-Fto,PScore,DLen],[[FF,Transtag,Type,ID]],FuncFTRes,Level)),

retract(perlevel(X)), X1 is X+1, assert(perlevel(X1)),
(Prob > 0.98 -> !; true), %% early commitment
fail.

The sparse predicate has several versions. The version shown here is for head/7 rules to the the left (3rd argument), i.e. where
the dependent is to the left of the governor. There is also a version to the right, and there are many additional version for treating
long-distance dependencies and sentence-initial special constituents.

3.3 Format of current chart entries
The chart entires are more complex in current versions of the parser, than in the simple early example shown above. The chart entries of
a parse of the simple sentence East Providence now has no civil defense program illustrate the current chart entry format:

sent([[providence,’NNP’,[’East_NNP’,’Providence_NNP’],’East Providence’],
[have,’VBZ’,[now_RB,has_VBZ],has],
[program,’NN’,[no_DT,civil_JJ,defense_NN,program_NN],program]]).

%% East Providence now has no civil defense program
<PROLOG_INTRACHUNK>
ncmod1(’providence#1’,’east#1’,_G1167,’(<-)’).
%% stanf [east#1,providence#1,<icdep,_G1248]
ncmod1(’have#2’,’now#2’,_G1496,’(<-)’).
%% stanf [now#2,have#2,<icdep,_G1541]
detmod1(’program#3’,’no#3’,_L1187,’(<-)’).
%% stanf [no#3,program#3,<icdep,_G1876]
ncmod1(’program#3’,’civil#3’,_G1980,’(<-)’).
%% stanf [civil#3,program#3,<icdep,_G2043]
ncmod1(’program#3’,’defense#3’,_G2162,’(<-)’).
%% stanf [defense#3,program#3,<icdep,_G2225]
</PROLOG_INTRACHUNK>

Call: (21) spy_me2 ? leap
Exit: (21) spy_me2 ? leap

analyses(1,24.124396740045043,[],1-3,[’have#2’(’providence#1’([’East_NNP’,’Providence_NNP’]),’<-subj<-’,[now_RB,has_VBZ],’->obj->’,’program#3’([no_DT,civil_JJ,defense_NN,program_NN]))]).
have#2(providence#1([East_NNP,Providence_NNP]),<-subj<-,[now_RB,has_VBZ],->obj->,program#3([no_DT,civil_JJ,defense_NN,program_NN]))
<PROLOGPREDS 1>
subj(’have#2’,’providence#1’,_G1195,’(<-)’).
obj(’have#2’,’program#3’,_G1361,’(->)’).
</PROLOGPREDS>
1 +> 24.124396740045043 :: []

have#2
_________________|_________________
/ | | | \

providence#1 <-subj<- . ->obj-> program#3
| _| |
| / \ |
. now_RB . .

___|___ | ____|___
/ \ | / \

East_NNP . has_VBZ no_DT .
| ____|____
| / \

Providence_NNP civil_JJ .
___|__
/ \

defense_NN .
|
|

program_NN

==
Call: (31) spy_me2 ? abort

[debug] ?- listing(chart).
:- dynamic chart/8.

chart(6, 1, 3, [
[’have#2’, ’VBZ’, [now_RB, has_VBZ], 4, 7.727071383281478],
[’providence#1’, ’NNP’, [’East_NNP’, ’Providence_NNP’], 1, 1]],
[2, 1, 1-3, 24.124396740045043, 2],
[[’have#2’, ’VBZ’, subj, 6]],
’have#2’(’providence#1’([’East_NNP’, ’Providence_NNP’]), ’<-subj<-’, [now_RB, has_VBZ], ’->obj->’, ’program#3’([no_DT, civil_JJ, defense_NN, program_NN])), 2).

chart(5, 1, 2, [
[’have#2’, ’VBZ’, [now_RB, has_VBZ], 2, 1],
[’providence#1’, ’NNP’, [’East_NNP’, ’Providence_NNP’], 1, 1]],
[2, 1, 1-2, 3.122062103922232, 1],
[[’have#2’, ’VBZ’, subj, 5]],
’have#2’(’providence#1’([’East_NNP’, ’Providence_NNP’]), ’<-subj<-’, [now_RB, has_VBZ]), 1).

chart(4, 2, 3, [
[’program#3’, ’NN’, [no_DT, civil_JJ, defense_NN, program_NN], 3, 1],
[’have#2’, ’VBZ’, [now_RB, has_VBZ], 2, 1]],

3.4. CYK Levels 14

[2, 3, 2-3, 7.727071383281478, 1],
[[’have#2’, ’VBZ’, obj, 4]],
’have#2’([now_RB, has_VBZ], ’->obj->’, ’program#3’([no_DT, civil_JJ, defense_NN, program_NN])), 1).

chart(3, 3, 3, [
[program, ’NN’, [no_DT, civil_JJ, defense_NN, program_NN], program, 1]
],
[3, 3, 3-3, 1, 1],
[[program, ’NN’, w, 3]],
’program#3’([no_DT, civil_JJ, defense_NN, program_NN]), 0).

chart(2, 2, 2, [
[have, ’VBZ’, [now_RB, has_VBZ], have, 1]
],
[2, 2, 2-2, 1, 1],
[[have, ’VBZ’, w, 2]],
’have#2’([now_RB, has_VBZ]), 0).

chart(1, 1, 1, [
[providence, ’NNP’, [’East_NNP’, ’Providence_NNP’], providence, 1]
],
[1, 1, 1-1, 1, 1],
[[providence, ’NNP’, w, 1]],
’providence#1’([’East_NNP’, ’Providence_NNP’]), 0).

[debug] ?- displaychart(4).
4

have#2
_______|______
/ | \
. ->obj-> program#3

_| |
/ \ |

now_RB . .
| ____|___
| / \

has_VBZ no_DT .
____|____

/ \
civil_JJ .

___|__
/ \

defense_NN .
|
|

program_NN

The command displaychart/1allows one to see a tree representation of the syntactic parse of the chart whose ID is given as argument.
The structure of chart ID 4 is commented in detail in the following. Left-combine is the left chunk, right-combine is the right chunk that
are combined into combination.

chart(4, 2, 3, [
combination ID, left-combine ID, right-combine ID,
[’program#3’, ’NN’, [no_DT, civil_JJ, defense_NN, program_NN], 3, 1], # right-combine
[word, tag, chunk, position, score]
[’have#2’, ’VBZ’, [now_RB, has_VBZ], 2, 1]], #left-combine
#[word, tag, chunk, position, score]
[2, 3, 2-3, 7.727071383281478, 1],
#[governor-combine ID, dependent-combine ID, span, score, CYK level]
[[’have#2’, ’VBZ’, obj, 4]], # combination
#[word,tag,relation,combination ID]
’have#2’([now_RB, has_VBZ], ’->obj->’, ’program#3’([no_DT, civil_JJ, defense_NN, program_NN])), 1).

3.4 CYK Levels
In its original conception, the parser recurses the nextlevel/1 predicate until no new chart entries can be created. In its current form, it
first parses everything between commas (except for enumerations, i.e. commmas that are conjunctions or appositions), then it parses
again overstepping commas. The rules between commas have the predicate head in the grammar, the rules overstepping commas have
the predicate headc2.

Chapter 4: Pruning and Partial Parses
In order to keep the search space manageable, pruning is essential. Pruning, but also incomplete grammar or grammatically not well-
formed input entail that the longest parse does not necessarily span the entire input sentence. In such cases, the partial parses need to be
selected. They are combined with the ad-hoc relation bridge.

4.1 Pruning

4.1.1 Hard Local Cut
• Very unlikely local structures rarely form part of the most likely global structure
• If a very unlikely local structure forms part of the correct global structure, it chances of getting among the most likely parses are

very low
• Very simple to implement
• Biggest gain in complexity reduction, no partial structures at all are built

sparse(FID,[FPos,Ffrom-Fto,FScore],[[F,Ftag,FType]],FuncF,
GID,[GPos,Gfrom-Gto,GScore],[[G,Gtag,GType]],FuncG) :-

(tried(FID,GID) -> !, fail; assert(tried(FID,GID))), % already tried
... head(Ftag,Gtag,l,Type,Transtag,[FChunk,GChunk,FF,FG,OF,OG],FPos-GPos),
... % stats
(Prob < 0.01 -> fail; true), %% early exclusion
... asserta(chart(ID,[[FF,Ftag,FChunk,FID,FScore],[FG,Gtag,GChunk,GID,GScore]],
[FPos,GPos,Gfrom-Fto,PScore,DLen],[[FF,Transtag,Type,ID]],FuncFTRes,Level)),

retract(perlevel(X)), X1 is X+1, assert(perlevel(X1)),
(Prob > 0.98 -> !; true), %% early commitment
fail.

4.1.2 Fixed Beam Pruning
• Keep a maximum amount of readings for every span
• Only chart entries with equal span can be compared

prune(L,XFact) :- XFact > 3,
Beam is 3,
%% foreach stretch A-Z : only keep 3 most likely spans, if there are at least 3 possibilities
chart(_,_,[_,_,Ffrom-Fto,_Score,_],_,_,_),
findall((Score,ID), chart(ID,_,[_,_,Ffrom-Fto,Score,_],_,_,_),List),
len(List,Len),
(Len < 4 -> fail ;
(sort(List,SList),
Till is Len-Beam,
prunechart(0,Till,SList),
fail)).

prune(_,_).

4.1.3 Complexity-Dependent Pruning
• Pruning is only useful from a certain level of ambiguity on. Prune more and more strongly
• Again, only chart entries with equal span can be compared

prune(L,XFact) :- XFact > 3,
Div is (XFact/3),
%% foreach stretch A-Z : discard lowest prob part, if there are at least 3 possibilities
chart(_,_,[_,_,Ffrom-Fto,_Score,_],_,_,_),
findall((Score,ID), chart(ID,_,[_,_,Ffrom-Fto,Score,_],_,_,_),List),
len(List,Len),
(Len < 4 -> fail ;
(sort(List,SList),
Till is Len-(Len/Div),
prunechart(0,Till,SList),
fail)).

prune(_,_).

Prunechart discards the first ‘Till’ chart entries

prunechart(C,Till,[(_Score,ID)|RList]) :-
C < Till, !,
%displaychart(ID),
retract(chart(ID,_,_,_,_,_)),
%spy_me2,

15

4.2. Partial Parses 16

C1 is C+1,
prunechart(C1,Till,RList).

prunechart(_,_,_). %eorec

Fixed beam pruning and complexitiy-dependent pruning are used as alternatives. Fixed beam pruning performs slightly better and is
thus used in the current version.

4.1.4 Large Beam Panic Mode
When there are more than say 1000 chart entries, only promising paths are pursued.

• it is accepted that some permissible spans will never be found
• increasing severity based on span length and beam size

...,
(ID>1000 -> (((OPScore / ((Len+(Len**sqrt(2)))+(ID/2))) < 0.01)

-> (write(’ TOO LOW!’),nl,fail) ;
...) % else continue

4.2 Partial Parses
Many sentences do not get a full parse, but the chart contains hundreds of partial structures (PS). The following heuristic is used to
collect partial parses:
loop {

take longest PS
to left loop
to right loop
add up scores

}
reverse sort added up scores

The few most complex sentences in BNC consist of 90 chunks and more, typically lists of names. They report so many partial parses
that the collection of partial parses can run out of memory or take several days. We therefore call the predicate pathfinder with a timeout.

Chapter 5: The Grammar Rules
Pro3Gres is a Formal Grammar parser in many senses, because it follows a formalized and established grammar theory, because it treats
the phenomena for which formal grammars were invented, for example long-distance dependencies, and because it analyzes for the
entities defined in Formal Grammars such as LFG: deep-syntactic functions. At the same time, it is a robust parser, and it integrates
lexicalized statistics obtained from the Penn Treebank. One of the aspects that Pro3Gres shares with many systems based on formal
grammars is its use of a hand-written grammar, which we explore in this chapter.

We describe the design principles and the hand-written grammar in detail. It is explained why we have decided to use a hand-written
grammar and which governing principles we have followed during the development. The individual rule types are then presented and
discussed in detail.

5.1 Introduction
Before the success of probabilistic parsers such as Collins (1999) and Charniak (2000) the use of hand-written grammars was com-
monplace, in formal grammar based systems it still is. Grammar writing and grammar engineering proved to be a feasible, but very
labour-intense and complex task.

Grammar writing is much more difficult than rule writing. The intricate interrelations of the individual rules of a grammar
make grammar writing a complex and error-prone process, much like computer programming. (Friedman, 1989, 254)

The majority of classical probabilistic approaches learns the grammar from the corpus, obviating the need for a cumbersome hand-
written grammar, but the amount of manual work for annotating a large corpus manually is considerable. Recently, hand-written formal
grammars are combined with statistical data (Riezler et al., 2002) or formal grammars are learnt from syntactically annotated corpora
(Hockenmaier and Steedman, 2002; Burke et al., 2004; Hockenmaier and Steedman, 2002). Miyao, Ninomiya, and Tsujii (2005)
develop an interesting semi-automatic grammar acquisition algorithm. They state the traditional wisdom on hand-written grammars as
follows: “Although a few studies could apply a hand-crafted grammar to a real-world corpus, (Riezler et al., 2002), these required
considerable effort that lasted over a decade.” (Miyao, Ninomiya, and Tsujii, 2005, 684). We follow the hand-written option and
combine a hand-written rule-based grammar with lexicalized statistical data obtained from the Penn Treebank.

We have experienced that the amount of work needed to write a broad-coverage grammar manually is manageable, as we describe in
subsection 5.1.2. The grammar, once written, can be ported without or with only small changes across most domains. What changes
between domains is terminology and lexicalization probabilities. Before describing the grammar, we need to introduce the tagset on
which it is based: the Penn Treebank tagset. We do so in subsection 5.1.1.

5.1.1 The Penn Treebank
The Penn Treebank is a large collection of syntactically annotated sentences (Marcus, Santorini, and Marcinkiewicz, 1993; Bies et al.,
1995). It is annotated with morphosyntactic part-of-speech information, and with syntactic constituency information. The tagset for the
part-of-speech annotation is very small, it only uses 36 tags. They are summarised in figure 5.1. Notable idiosyncrasies of this tagset
are that the word to is never disambiguiated (it can e.g. be a preposition or an infinitive marker), and that no distinction is made between
complementizer and preposition. The latter requires disambiguation for parsing.

Functional roles known form LFG and functional DG are only partially annotated. Specifically, subjects are annotated, objects are
not, some PPs are functionally or semantically annotated. Functional and semantic tags are summarised in table 5.2. Structurally, all
PPs modifying verbs are attached in under the VP, thus appearing as arguments, while all PPs modifying nouns are Chomsky-adjoined.
Also the functional annotations do not always deliver argument or adjunct status in a consistent way. For example, the functional label
LOC is both used for location adjuncts (e.g. sit on a bench) and adjuncts (e.g. a rise in interest rates). Careful use of empty categories
and co-indexation expressing long-distance dependencies is made in the Penn Treebank.

5.1.2 The Difficulty of Writing Grammars
While automatically or semi-automatically acquiring grammars is a very promising approach, we maintain that the expense needed for
writing a large-scale dependency grammar over Penn tags is sufficiently small and that grammars are quite domain-independent. The
broad-coverage English Functional Dependency grammar described in this chapter was developed in about a person-month.

The Penn tagset consists of 36 tags (plus some punctuation tags). Considering that dependency rules are always binary, that there are
about 20 rule types and 2 possible dependency directions, the upper bound – both on rule writing and parsing search space complexity
– is about 50,000 rules. In a realistic scenario, assuming on average one direction and relation type per possible tag combination (362)
we get about 1000 rules. We only need grammar rules containing lexical information for closed classes. For example, a small class of
gerunds, such as including and excluding can serve as a preposition, or a closed list of temporal expressions serving as adjuncts is used.

17

5.1. Introduction 18

Count Tag Legend
1. CC Coordinating conjunction
2. CD Cardinal number (N.B. ordinal numbers are adjectives)
3. DT Determiner
4. EX Existential there
5. FW Foreign word
6. IN Preposition or subordinating conjunction
7. JJ Adjective
8. JJR Adjective, comparative
9. JJS Adjective, superlative

10. LS List item marker
11. MD Modal verb
12. NN Noun, singular or mass
13. NNS Noun, plural
14. NNP Proper noun, singular
15. NNPS Proper noun, plural
16. PDT Predeterminer (such a good time, both the girls)
17. POS Possessive ending (John ’s idea)
18. PRP Personal pronoun
19. PRP$ Possessive pronoun
20. RB Adverb
21. RBR Adverb, comparative
22. RBS Adverb, superlative
23. RP Verbal particle (give up)
24. SYM Symbol
25. TO to
26. UH Interjection
27. VB Verb, base form
28. VBD Verb, past tense
29. VBG Verb, gerund or present participle
30. VBN Verb, past participle
31. VBP Verb, non-3rd person singular present
32. VBZ Verb, 3rd person singular present
33. WDT Wh-determiner (which, relative pronouns)
34. WP Wh-pronoun (what, who, whom)
35. WP$ Possessive wh-pronoun (whose)
36. WRB Wh-adverb (how, where, why)

Table 5.1: The Penn Treebank Tagset

Label Legend Example or Explanation
Grammatical Functions

-CLF true cleft [S-CLF it was Casey who ...]
-NOM non NP in NP function heard of [S-NOM asbestos being dangerous]
-ADV clausal and NP adverbial reaches 10,000 barrels [NP-ADV a day]
-LGS logical subject in passive done by [NP-LGS the president]
-PRD non VP predicate is [NP-PRD a producer]
-SBJ surface subject [NP-SBJ Peter] walks.
-TPC topicalised constituent [S-TPC-1 I agree, he said [SBAR [S-1]]
-CLR closely related “open class of other cases"

Semantic Roles
-VOC vocative Close the door, [NP-VOC John]!
-DIR direction & trajectory attention [PP-DIR to the problem]
-LOC location declines [PP-LOC in interest rates]
-MNR manner happy [PP-MNR like a kid]
-PRP purpose and reason [PP-PRP (in order) to ...]
-TMP temporal phrase shares rose [NP-TMP yesterday]

Table 5.2: Penn Treebank Functional Labels

19 5.1. Introduction

For all open word classes, the Penn tags provide enough generalisation to deliver syntactically correct analyses in the vast majority of
cases. The task of the lexicalized disambiguation is to select the semantically most convincing among all syntactically possible analyses.

The current Pro3Gres grammar has about 1200 rules. The number of rules may seem high because of tag combinatorics leading to
many almost identical rules. A subject relations is e.g. possible between the 6 verb tags and the 4 noun tags. The supplied Pro3Gres
grammar does not aim at covering all phenomena of the English language. The decision of which phenomena to exclude depends
on “armchair linguistics” intuition, followed by many test cycles to supplement the necessary empirical evidence. This decision also
depends on the amount of ambiguity and errors rare rules introduce. The grammar rules contain the dependent’s and the head’s tag, the
direction of the dependency, lexical information for closed class words, and context restrictions. The rules are described in detail in the
following section 5.2.

The task of grammar writing is further simplified because we follow the Dependency-based broad architecture suggested by (Abney,
1995), which uses chunking for the base phrase level, thus making it unnecessary to write base NP grammars. This approach naturally
integrates chunking and dependency parsing and has proven to be practical, fast and robust (Collins, 1996; Basili and Zanzotto, 2002).
Tagging and chunking are robust, finite-state approaches, parsing only occurs between heads of chunks.

The most time-consuming aspect of manual grammar writing is the practice of incremental engineering across a large number of test
cycles. We first consulted Quirk et al. (1985), a comprehensive and very carefully written grammar of English. A small set of simple
rules is tested first, the missing rules are then added in a large number of development cycles. There is a constant quality feedback from
the development set corpus at each development cycle. Rules that are found to create more errors than correct analyses are refined or
eventually discarded. We have trained over Penn section 2-22 and used section 0 as development corpus. Evaluations (see Doctoral
thesis) have been made on John carroll’s 500 sentence test corpus, and 100 random sentences form the GENIA corpus.

5.1.3 Benefits of a Hand-Written Grammar
Writing a grammar manually is more time-consuming than applying a machine learning algorithm to learn the rules from a corpus. Still,
there may be potential benefits from writing a grammar manually.

Parsing Questions Sentence types that are underrepresented in a training corpus are difficult to learn. In the Penn Treebank, this is the
case for questions, which are crucial for Question Answering applications. (Hermjakob, 2001) shows that question parsing considerably
improves if a grammar is enriched with additional question parsing knowledge. In section ?? we show that Pro3Gres is highly capable
of parsing both simple and complex questions. Pro3Gres has been employed for question parsing at a TREC conference (Burger and
Bayer, 2005).

Correcting Tagging Errors In a hand-written grammar, some typical parsing errors can be corrected by the grammar engineer, or
rules can explicitly ignore particularly error-prone distinctions. Examples of rules that can correct tagging errors without introducing
many new errors are allowing VBD to act as a participle, or the possible translation of VBG to an adjective. Most taggers perform poorly
in the distinction between verb past tense VBD and participle VBN. But the distinction can usually be made in the parsing process.
Therefore, the grammar leaves this tag distinction underspecified for a number of constructions, for example the modpart relation. A
second example of ignoring error-prone distinctions is the distinction between prepositions and verbal particles, which are known to be
particularly unreliable – and also human inter-annotator agreement is quite low. The grammar has therefore been designed to make no
distinction between verbal particles and prepositions.

The Power of Linguistic Constraints Linguistic knowledge allows us to place strong non-local restrictions on the co-occurrence of
different relation types. Verbs that have attached adjuncts cannot attach complements, since this would violate X-bar constraints. Verbs
that have no object cannot attach secondary objects. The application of dependency rules can often be lexically restricted: for example,
only temporal expressions occur as NP adjuncts. We have noticed during the development that these restrictions play a crucial role for
the improvement of the parser’s performance. History-based parsers learning a sufficiently large number of subtree generations, such as
in data-oriented parsing (Bod, Scha, and Sima’an, 2003), inherently learn these linguistic constraints, while we concisely express them
in the grammar rules. The fact that the majority of these non-local constraints become local in DG makes it easy to express them in a
DG grammar, and reduces search spaces.

Almost Complete Grammar A practical system, such as the one devised in this work, can choose to rule out linguistic constructions
that are possible, but very marked and rare, and that often introduce more errors than improving the coverage. For example, while it is
generally possible for nouns to be modified by more than one PP, only nouns seen in the Treebank with several PPs are allowed to have
several PPs in the best-performing grammars used in Pro3Gres. Or, while it is generally possible for a subject to occur to the immediate
right of a verb (said she), this is only allowed for verbs seen with a subject to the right in the training corpus, typically verbs of utterance,
and only in a comma-delimited or sentence-final context.

Grammar Teaching and Learning A hand-written grammar offers the possibility to the user to inspect, edit and experiment with the
grammar. Although this possibility does not give any scientific advantage, it is useful for learning and teaching purposes. On a personal
level, manually writing and testing a grammar has considerably improved our knowledge of English grammar.

5.2. The Rules in Detail 20

RELATION LABEL EXAMPLE
verb–subject subj he sleeps
verb–direct object obj sees it
verb–second object obj2 gave (her) kisses
verb–adjunct adj ate yesterday
verb–subord. clause sentobj saw (they) came
verb–pred. adjective predadj is ready
verb–prep. phrase pobj slept in bed
noun–prep. phrase modpp draft of paper
noun–participle modpart report written
noun–preposition prep to the house
verb–complementizer compl to eat apples
noun–gerund-adjective adjtrans developing countries

Table 5.3: The major Pro3Gres dependency types

Structures constrain each other While many non-parsing approaches to grammatical role discovery (e.g. Buchholz (2002)) have
proven successful, we wanted to profit from the fact that structures constrain each other. The majority of locally possible structures
cannot be combined into a globally possible structure, they can be disambiguated by the parsing context. Linguistic knowledge allows
us to place strong restrictions on the co-occurrence of different relation types in our hand-written rules. Verbs that have attached adjuncts
cannot attach complements, since this would violate X-bar constraints. Verbs that have no object cannot attach secondary objects. The
application of dependency rules can often be lexically restricted: for example, only temporal expressions occur as NP adjuncts. We have
noticed during the development of the grammar that these restrictions play a crucial role for the improvement of the parser’s performance.
Formulating constraints has a huge impact both on the search space and on the accuracy of the parser. Refer to the evaluation section of
the doctoral thesis for more details.

5.2 The Rules in Detail
We now describe the rules in detail. Each rule has four arguments and a restriction part. The arguments are the tag of the head, the tag
of the dependent, the tag of the projection, and the direction. The tag of the projection is usually identical to the head tag, according to
the endocentricity principle, which most head-driven formalisms, for example HPSG, X-bar or Dependency Grammar use. There are a
few exceptions, for example a preposition and a noun project into a prepositional phrase, the projection tag is PP. The direction can be
left underspecified, like in an ID/LP grammar. The restriction part allows one to place arbitrary restrictions on the application of a rule.
Some rules are lexically restricted. For example, there is a postposition rule forming a PP from a preposition and a preceding noun (i.e.
the direction of the dependency is to the right), but this rule is restricted to a closed class of words like ago. Other rules express non-local
restrictions on the co-occurrence of different dependency types. For example, a verb that already has attached an adjunct cannot attach
a complement, since this would violate X-bar constraints.

We distinguish between the following three classes of dependency types:

1. Major types: these are the classical dependency types like subject and object. For each of them, statistical data has been extracted
from the Penn Treebank, and an appropriate version of our probability model is used. This class consists of the following depen-
dency types: subj, obj, obj2, adj, sentobj, pobj, modpp, modpart, prep, compl and adjtrans. Examples of these types are
found in table 5.3.

2. Minor types: minor types are not probabilistic. They have auxiliary functions, such as building up noun chunks that the chunker
has missed. Not all of them can be semantically interpreted. The adverb relation attaches to any noun or verb without aiming at a
meaningful interpretation. Some relations are in this class because they give rise to very little ambiguity and thus do not warrant
a probabilistic treatment: the modrel relation that attaches relative pronouns and the predadj relation that attaches predicative
adjectives.

3. Unconventional types: there are a number of types that are each very different from any other type. Conjunctions, a classical DG
problem, are split into two binary rules and leave ambiguities underspecified. WH-rules receive a simple treatment as real long-
distance dependencies (see section ??). Commas have an important function in structuring the sentence and are treated in a special
way, as will be discussed in subsection 5.2.4.

5.2.1 Rule Format
% left: F is head
head(Ftag,Gtag,l,Type,Transtag,[FChunk,GChunk,FF,FG,OF,OG],FPos-GPos) :-

restrictions.
% right: G is head
head(Gtag,Ftag,r,Type,Transtag,[FChunk,GChunk,FF,FG,OF,OG],FPos-GPos) :-

restrictions.

21 5.2. The Rules in Detail

%% F is always before G
%% Type relation (subj, obj, etc.)
%% Transtag =head tag, except PP or translations
%% FChunk Chunk of F
%% GChunk Chunk of G
%% FF lexical head of F
%% FG lexical head of G

%% OF dependents of F until now
%% OG dependents of G until now
%% OF is always FURTHER FRONT : if "l" --> of HEAD, if "r" --> of DEP
%% OG is always FURTHER BACK : if "l" --> of DEP, if "r" --> of HEAD
%% FPos-GPos positions

5.2.2 Major Types of Grammar Rules
All major verb types are probabilistic. They comprise the relations given in table 5.3.

Subject

There are 145 subject rules, the high number is due to tag combinations: Any verb tag, corresponding to the regular expression
VB[ZPGDN]? can combine with any noun tag, corresponding to the regular expression (NN[P]?[S]? or EX or IN or WP or DT or
CD or PRP or RB or VBG). Some possible combinations are ruled out in order to express agreement constraints: for example, a verb
tagged VBZ cannot govern a noun tagged NNS. Each rule exists in a version with and without a comma between the verb and the subject.
The subject relation is the only relation to have two probability models: one for active verbs and one for passive verbs.

General restrictions:

• Maximally one subj: The subject candidate is only allowed to attach if the verb does not already have a subject.
• Verb-chunk is not to followed by an infinitive: infinitival verbs are assumed not to take subjects. This entails a GPSG-style treatment

of control, where the matrix verb takes both a nominal and a clausal object.

Special restrictions:

• Plural nouns: verb chunk does not contain VBZ. This is a simple method to ensure agreement.
• if the verb tag is VBG: verb chunk length>1. Present participles (gerunds) are not allowed to take a subject.
• if the noun tag is VBG: noun chunk length=1, only with copula verb. Gerunds acting as nouns (e.g. Swimming_VBG is fun) are

only allowed to attach to copular verbs (*Swimming_VBG likes fun). The length restriction on gerund chunks is redundant for the
current parser.
• Relation to right: only verbs seen in training corpus (in assertive sentences) are allowed to have verb-subject inversion (e.g. says

she The restriction to seen material is an intermediate step between a rule- and probability-based model. It restricts the application
of rare rules to attested cases. This measure can reduce search spaces considerably. The chunk distance is restricted to one, which
means that no intervening elements are permitted (*says quickly she).
• if the noun tag is EX: no noun conjunction is allowed. Expletives are not allowed to participate in conjunctions (*there and it seems

to be a problem).
• Noun tag RB for pronouns: The pronouns this, that, it are tagged RB. Only this closed lexical class is permitted to be subject.

Example:
head(’VBG’,’NNS’,l,subj,’VBG’,[FC,_,_,_,UG,OG],_) :-

\+ member(’<-subj<-’,UG), \+ member(’->subj->’,UG),
\+ ending_member(FC,’_VBZ’), \+len(FC,1), \+ first(FC,’to_TO’).

This example rule expresses that a verb head in -ing-form (VBG) can take a plural noun (NNS) to its left

• if the verb does not have a subject yet (subcategorization),
• if the verb group does not contain a third person singular verb (agreement),
• if the length of the verb group is longer than 1 (not a lonely participle),
• and if it does not start with the infinitive marker.

Object

There are 78 object rules, the high number is due to tag combinations. Any verb tag, corresponding to the regular expression
VB[ZPGDN]? can combine with with any noun tag, including lonely determiners, numbers, or WH-words, pronouns, gerunds and
symbols, corresponding to the regular expression NN[P]?[S]? or IN or WP or DT or CD or PRP or VBG or SYM or RB. Verb-object
dependencies are not allowed to overstep commas.

5.2. The Rules in Detail 22

General restrictions:

• Maximally one obj: the 2nd, ditransitive object is labeled obj2. This ensures proper subcategorization.
• Verb has no adjunct to the right yet (all objects are closer to verb than adjuncts to the right). According to X-bar theory, case and
θ-role assignment, complements need to be closer than adjuncts. In the CYK derivation history, this means that a verb can only
attach complements before it attaches adjuncts. There can be rare and marked violations of X-bar theory in real-world language
(?they will ask today John), which we explicitly intend not to cover in our parsing approach.

• Verb has no sentobj (all objects are closer to verb than subordinate clauses): this assumption is based on the closeness of the object
to the verb, and on the observation that considerably longer constituents are usually placed further than short constituents.

• Verb has no pobj (almost all objects are closer to verb than verb-PPs). This assumption, based on the same observations, is
occasionally flouted ?they prescribed to John this dangerous stuff that had relieved generations of previous death candidates from
unbearable pain. While missing some readings, the restriction disambiguates for instance she donated to the poor every Sunday to
an adjunct reading for every Sunday

• Verb has no predadj (predicate adjective): verbs cannot have a predicative adjective and an object simultaneously.

Special restriction: noun tag RB for pronouns: The pronouns this, that, it are tagged RB. Only this closed lexical class is permitted to
be object.

Assumptions: In order to facilitate parsing, two assumptions are made:

• The predicate of a copular verb is considered to be obj (also in the lexicalized probability model). This does not mean that the
complement of a copular verb (e.g. president in Mary became president) is really an object, but it allows a uniform syntactic
treatment of verbs. Since copular verbs are a closed and unambiguous class, a simple mapping to e.g. a complement label would
always be possible.

• In a ditransitive verb, obj is the indirect object (also in the lexicalized probability model).

Example:
head(’VBD’,’NN’,r,obj,’VBD’,[_,_,_,_,_,OG],_) :-

\+ member(’->adj->’,OG), \+ member(’->sentobj->’,OG), \+ member(’->obj->’,OG),
\+ member(’->pobj->’,OG), \+ member(’->predadj->’,OG).

This example rule expresses that a past verb (VBD) can take a singular noun NN object to its right

• if no adjunct is attached yet (X-bar)
• if no sentobj is attached yet (objects are closer)
• if no object is attached yet (subcategorization)
• if no PP is attached yet (closeness constraint, rarely flouted)
• and if no predicative adjective is attached yet. See the adjective rule.

Object2

There are 24 second object rules. Any verb tag, corresponding to the regular expression VB[ZPGDN]? can combine with any noun
tag, corresponding to the regular expression NN[P]?[S]?. Other obj2 tags are rare but possible, the grammar is thus potentially still
incomplete. The tags CD and WP seem possibple, DT and PRP seem unlikely, as the following examples illustrate.

(6) She gave him 23_CD.

(7) ? She gave him what_WP ?

(8) ?? She gave him this_DT.

(9) * She gave him it_PRP.

The indirect objects in these examples tend to be expressed rather by means of a to-PP.

General restrictions:

• Maximally one obj2. The second, ditransitive object is labeled obj2. This ensures proper subcategorization.
• Verb already has an object.
• Only verbs seen in the training corpus or from a licensing list: this restricts obj2 to verbs attested as ditransitive.
• No temporal expression noun: temporal expressions are excluded. This can lead to a few errors but reduces the search space.
• Verb has no adjunct to the right yet (all objects are closer to verb than adjuncts to the right): according to X-bar theory, case and
θ-role assignment, complements need to be closer than adjuncts.

23 5.2. The Rules in Detail

• Verb has no sentobj (all objects are closer to verb than subordinate clauses), similar to the object relation.
• Noun has no modpart: this heuristic constraint is prone to introduce errors, for instance in He gave her the roses bought in the

shop, which is rare, but not impossible. It was introduced to correct frequent misanalyses of sentences such as He reported her
the roses sold in the shop. In other words, a structural constraint that prefers a superordinate zero-complementizer to a subordinate
zero-relative has been implemented. While structural soft constraints are not in the spirit of a statistical system, the very success-
ful constraint grammar (CG) approaches rely on elaborate versions of such constraints. Hybrid combinations of such different
approaches are a promising field of research.

Example:
head(’VBN’,’NNS’,r,obj2,’VBN’,[_,_,N,V,_,OG],_) :-

(vpnpnpo_bak_verb(V,_);obj2except(V)), \+tmp(N), \+ member(’->adj->’,OG),
\+ member(’->sentobj->’,OG), members(’->obj->’,OG,1), \+ member(’->pobj->’,OG),
\+ member(’->obj2->’,OG), \+ member(’->modpart->’,OG).

Adjunct

There are 50 adjunct rules. Any verb tag, corresponding to the regular expression VB[ZPGDN]? can combine with any noun tag,
corresponding to the regular expression NN[P]?[S]?. Adjunct relations are allowed to overstep commas.

General restrictions:

• Only nouns seen in the training corpus or from a list of temporal expressions. Temporal expressions are a closed class. This step
greatly reduces the search space.
• Noun has no modpart relation.
• Verb has no sentobj: this heuristic constraint forces a low attachment in (stocks were said [to rise] Friday).

Special restriction: The direction of the adjunct relation is possible to the left only if the verb has subject (Friday they said ...)

Example:
head(’VBD’,’NNS’,r,adj,’VBD’,[_,_,N,_,UG,OG],_) :-

tmp(N), \+ member(’->sentobj->’,OG), \+ member(’->modpart->’,UG).

Sentobj

There are 130 sentential object rules. Any verb or noun tag, corresponding to the regular expression VB[ZPGDN]? or NN[P]?[S]? can
combine with any verb tag, corresponding to the regular expression VB[ZPGDN]?. sentobj relations are allowed to overstep commas.

General restrictions:

• Maximally one sentobj: this ensures proper subcategorization.
• The subordinate clause is generally required to have a subject. This constraint is however subject to the following special restric-

tions.

Special restrictions:

• Infinite subordinate clauses with to are allowed not to have a subject: these are typically control structures, which get their object
at the post-parsing predicate-argument stage.
• Comma-involving sentobj requires the subordinate verb to have a complementizer or the superordinate verb to be a verb of

utterance: this helps us to restrict ambiguities arising from zero-complementizers. Zero-complementizers are rare if there is a
comma between the matrix and the subordinate clause, except when the matrix verb is a verb of utterance.

(10) She said, the winners have arrived.
(11) ?She believed, the winners have arrived.

• Nouns can have subordinate clauses, but only subjectless ones, and only if the noun was seen in the training corpus. These are
mostly relational nouns, e.g. tendency to go. The fact that they need to be attested greatly reduces the search space and eliminates
many incorrect analyses.

Pobj

There are 30 verb-PP attachment rules. Any verb or adjective tag, corresponding to the regular expression JJ or VB[ZPGDN]? can
combine with any prepositional phrase, corresponding to the regular expression PP. pobj is allowed to overstep commas. Attachment to
left is allowed if a PP is fronted to the beginning of a sentence.

5.2. The Rules in Detail 24

General restrictions:

• No verb-PP attachment if there is a predicative adjective (*she grew [tired] from too much walking, she grew [tired from too much
walking])

• Unlimited number of PPs possible: no distinction between PP-arguments and adjuncts is made, an unlimited number of PP-
attachments is thus allowed.

Special restrictions:

• According as verb is disallowed, because it is analysed as a preposition.
• Adjective-PP attachment is restricted to small distances only.
• The verb be is not allowed to attach PPs unless it has no object: this heuristic was introduced to correct a large number of incorrect

analyses.

Example:
head(’VBN’,’PP’,r,pobj,’VBN’,[_,_,_,V,_,OG],_) :-

\+ member(’->predadj->’,OG), (V=’be’ -> \+ member(’->obj->’,OG) ; true).

Modpp

There are 10 noun-PP attachment rules. Any noun tag, corresponding to the regular expression NN[P]?[S]? can combine with any
prepositional phrase, corresponding to the regular expression PP. modpp is allowed to overstep commas.

General restrictions:

• Noun has no modrel: this restriction does not allow a full analysis of she has a problem [which annoys her] with computers, but it
eliminates attachment ambiguities in she has a problem [which annoys people with computers].

• Only relational nouns are allowed to have more than one PP (relational noun recognition is approximated by Wordnet). This
heuristic is a rather crude approximation. It leads to errors with nouns that have several adjunct PPs. But we have empirically seen
on the development corpus that the error rate increases considerably if we eliminate this restriction.

Example:
head(’NNP’,’PP’,r,modpp,’NNP’,[FC,_,_,N,UG,OG],_) :-

(\+member(’->modpp->’,OG);nountoclass(N,_,’04’), \+ member(’->modrel->’,OG)),
\+member(’->adjective->’,OG), (FC=as([as_IN]) -> (member(UG,’->modpart->’),
fail); true).

The last constraint in this example excludes noun-PP attachment for the preposition as if the description noun is modified by a
participle – thus giving preference to verb attachment in these cases.

They [consider the president as a man acting_VBG in his own interest only].
They [consider the president as a man lost_VBN in the sea].
They consider [the person as a whole] when judging. While this piece of crude heuristics improved performance on the development
corpus, its status is not beyond question, and it may well be removed again.

Modpart

There are 30 modification by participle rules. Any noun tag, corresponding to the regular expression NN[P]?[S]? can combine with
gerunds, corresponding to the regular expression VB[NDG]. modpart is allowed to overstep commas. VBD is included (because this
is a very frequent tagging error), in order to exclude at least the perfect tense under the restriction that it is the first element in the verb
chunk (unless an adverb precedes).

General restrictions:

• Maximally one modpart per noun.
• Verb has no subject.
• Noun has no apposition (appos): a heuristic that rules out possible but rare readings: the report, 60 pages, issued yesterday, shows

that ... but considerably increases performance on the development corpus.
• Verb has no object, unless it is an appoint class verb.
• Noun is no temporal expression.
• The distance is very short.

25 5.2. The Rules in Detail

Special restrictions:

• If the tag is VBD then the verb chunk is checked in order to exclude verbs that are not participles.

Example:
head(’NN’,’VBD’,r,modpart,’NN’,[FC,_,W,_,UG,OG],F-G) :-
\+ W=’be’, D is F-G, D=<3, \+ ending_member(FC,’_VBZ’),
(first(FC,’_VBD’);first(FC,’_RB’)),(\+ member(’->obj->’,UG);obj2except(W)),
\+ member(’->modpart->’,UG), \+ member(’->modpart->’,OG),
\+ member(’->appos->’,OG), \+ member(’<-subj<-’,UG), \+ member(’->subj->’,UG).

Prep

There are 72 preposition rules. Any noun tag, including lonely determiners, adjectives, numbers, symbols, or PPs, corresponding to
the regular expression NN[P]?[S]? or PP or DT or CD or SYM or JJ[RS]? can combine with preposition tags and verbal particle tags,
corresponding to the regular expression IN or TO or RP. PPs can attach prepositions to treat multi-word prepositions, for example in
from under the bed. Some rules need access to lexical items. For example,

• including_VBG is analyzed as a preposition contrary to its verb tag.
• The adverbs ago, later, before are considered to be real postpositions.
• that_IN and because_IN, if allowed as prepositions, lead to many incorrect analyses.

General restrictions:

• The distance needs to be very short distance. Adjacency is thus enforced.
• that_IN is not a preposition.
• because_IN is not a preposition.

Special restrictions:

• The direction allowed to the right only for the English postpositions ago, later, before.
• Including_VBG, involving_VBG can be prepositions.
• Because of, according to is a multi-word preposition. The attachment of because to an of-PP is thus allowed, although because is

otherwise no preposition. The present participle according is allowed to attach an to-PP.

Example:

head(’NN’, ’IN’,r,prep,’PP’,[_,_,ago,_,_,_],F-G) :- D is F-G, D is 1.

Compl

There are 24 complementizer rules. Any verb tag, corresponding to the regular expression VB[ZPGDN]? can combine with tags and
closed class words expressing complementizers, corresponding to the regular expression IN or WRB or whether_CC or but_CC). An
example for WRB is the following.

(12) While many of the risks were anticipated when_WRB Minneapolis-based Cray Research first announced the spinoff ...

General restriction:

• The subordinated clause verb needs to have a canonical subject.

Example:

head(’VBD’,’CC’,l,compl,’VBD’,[_,_,_,whether,UG,_],_) :- members(’<-subj<-’,UG,1).

Adjtrans

There are 12 adjective translation rules. Any noun tag, corresponding to the regular expression NN[P]?[S]? can combine with verb
gerund tags, corresponding to the regular expression VB[DNG], as shown in the following example.

(13) Longer maturities are thought to indicate declining_VBG interest rates

Gerunds that can act as verbs or adjectives are a major source of ambiguity. The chunker does not include them in the noun chunk,
which means that the parser has to decide. The gerund cannot be an adjective if the noun chunk contains a determiner. The local
ambiguity created by gerunds often survives up to the sentence level: He likes developing countries.

5.2. The Rules in Detail 26

Restrictions:

• Short distance. Adjacency is enforced.
• The noun chunk does not contain a determiner.
• No verb of utterance is allowed: in order to avoid conflicts with verb-subject inversion, verbs licensing this inversion cannot act as

adjectives.
(14) Share prices will fall, stock brokers kept quoting.
(15) ? Share prices will fall, kept quoting stock brokers.

Example:
head(’NN’,’VBG’,l,adjtrans,’NN’,[FC,[_],_,V,OF,[]],F-G) :-

D is F-G, D is 1, \+ ending_member(FC,’_DT’), \+ vpnpsubj_bak_verb(V,_).

NB. A probabilized version has been implemented after the completion of the thesis.

5.2.3 Minor Types
All minor types do not have a probability model.

Nountrans

“Lonely” adjectives, i.e. adjectives outside noun chunks (for example the same, the poor) can have noun function. There are 3 noun
translation rules.

Restriction: Only an adjacent determiner can trigger the translation.

Example:
head(’JJ’, ’DT’,l,nountrans,’NN’,[_,[_],_,_,_,_],F-G) :- D is F-G, D is 1.

Adv

There are 51 adverb rules. Any verb or noun tag, corresponding to the regular expression VB[ZPGDN]? or NN[P]?[S]? can combine
with any adverb tag, corresponding to the regular expression RB[RS]?. adv is allowed to overstep commas. Proper adverb-attachment
is often not ensured. There is no probability model, the main purpose of the adverb-relation is to attach adverbs somewhere, so that an
adverb does not fragment the parse into two parts. This is an area where Pro3Gres can be improved in the future.

Restrictions:

• Short distance
• The preposition about can be analysed as an adverb (about 200 people came.)

Modrel

There are 65 modification by relative clause rules. Any noun tag, including WH-words, corresponding to the regular expression
(NN[P]?[S]? or WP can combine with any verb tag, corresponding to the regular expression VB[ZPGDN]?. modrel is allowed to
overstep commas. No distinction between restrictive and non-restrictive relative clauses is made, although that would be easy to inte-
grate.

General Restrictions:

• The relative clause has a subject
• This subject is a pronoun: the rel. pronoun or a personal pronoun
• The relativized noun does not have a modpart

Special restriction: if the subject of the relative clause is a personal pronoun, the relative pronoun (zero-relative object) may be absent.
The restriction of zero-relatives to the pronoun case is a pragmatic simplification.

Example:
head(’NN’,’VBZ’,r,modrel,’NN’,[_,FD,_,_,UG,OG],_) :-

member(’<-subj<-’,UG), (member(’who’,UG) ; member(’that’,UG);
member(’which’,UG); ending_member(FD,’_PRP’)),

\+ member(’->modpart->’,OG).

27 5.2. The Rules in Detail

Adjective

This auxiliary relation covers a number of noun-adjective modification including an adjective equivalent to modpart. There are 2 rules.
Examples for the adjective relation are the following.
(16) ... for the purpose of keeping [the_DT prices_NNS] reasonable_JJ

(17) We have demonstrated that triggering delivers [signals_NN] capable_JJ of activating the NF-AT transcription factor

Predadj

This rule is used to attach predicative adjectives to the verb. There are 18 rules. Any verb tag, corresponding to the regular expression
VB[ZPGDN]? can combine with any adjective tag, corresponding to the regular expression JJ[RS].

Restrictions:

• Short distance
• Verb has no object, except if it is a verb of the elect class: (consider them incompetent). This is a consequence of our treatment of

copular and elect verb complements as objects.

Example:
head(’VBD’,’JJ’,r,predadj,’VBD’,[_,_,_,BE,UG,OG],F-G) :-
(\+member(’->obj->’,OG) ; obj2except(BE)), D is F-G, D=<3.

Comp

comp is used to build up comparison constructions involving an adverb RBR or an adjective JJR in the comparative.

Example:
head(’RBR’,’COMP’,r,comp,’RBR’,[_,_,than,_,_,_],F-G) :- D is F-G, D=<3.
head(’JJR’,’COMP’,r,comp,’JJR’,[_,_,than,_,_,_],F-G) :- D is F-G, D=<3.
head(’IN’,’NN’,r,comp,’COMP’,[_,_,_,than,_,_],F-G) :- D is F-G, D=<3.

Gen, Pos

gen and pos are used to build up the Saxon genitive. The gen relation attaches the ’s_POS or ’_APOSTR marker to the noun, which can
then be attached to its head noun. The head noun cannot be a proper noun.

Example:
head(’NNP’,’POS’,r,gen,’NNP$’,_,A-Z) :- D is A - Z, D < 3.
head(’NNPS’,’APOSTR’,r,gen,’NNP$’,_,A-Z) :- D is A - Z, D=1.
head(’NN’,’NNP$’,l,pos,’NN’,[_,_,_,_,UG,OG],A-Z) :- D is A - Z, D < 4.
head(’NNS’,’NNP$’,l,pos,’NNS’,[_,_,_,_,_,_],A-Z) :- D is A - Z, D < 4.

5.2.4 Unconventional Types
This class contains a number of relation types which are each quite different from all other relations.

Conj

Conjunctions have always been a problem for DG. At least three elements, two conjoined elements and the conjunction, need to be
combined into a structure. This is difficult in a grammar that knows binary rules only. Also, on a semantic level, it cannot be said that
any of the conjoined elements governs the other. In order to treat conjoined and non-conjoined phrases on a par, it is also not desirable
to have the conjuction as the governor. As a pragmatic solution, we use binarized conjunction rules. In a first step, a word of a given
word class can govern a preceding conjunction. In a second step, that word (it is checked that it governs a conjunction) can be governed
by a preceding word of the same part-of-speech tag. As a consequence, the following simplification is made for lexicalization: only the
lexical item of the first conjoined element is respected.

head(’NN’,’CC’,l,conj,’NN’,_,_).
head(’NN’,’NN’,r,conj,’NNS’, [_,_,_,_,UG,OG],_) :- member(’<-conj<-’,UG).

Enumerations: A comma is allowed to be a conjunction if the enumeration is terminated by a conjunction. Enumerations are a case
where commas are easily disambiguated.

head(’NN’, ’COMMA’,l,conj,’NN’, [_,_,_,_,UG,OG],F-G) :-
D is F-G, D=<2, member(’->conj->’,UG).

5.2. The Rules in Detail 28

Apposition and other relations stepping across commas

Commas are generally ambiguous. Three cases are distinguished: Enumerations (see above), appositions and boundaries. Appositions
are (often) identifiable as starting and ending with a comma, the head of the apposition is a noun or an adjective, and appositions modify
nouns.

Boundary commas are commas which have structuring information. They do not alter relation types but mark a separation a high
level in the syntax tree. In a first parsing step, only the apposition and conjunction relations are allowed to span across commas. When
parsing finishes, i.e. all possible reductions have been made, all other syntactic relations that can span across commas (e.g. subject,
PP-attachment, but not object) are allowed to do so and parsing continues, finding new reductions that overstep commas. This procedure
implements the intuition that commas are a strong boundary.

High separation assumption (works relatively well):

1. parse without commas, except for enumeration until all partial analyses are found.
2. then, allow comma-involving relations to transgress commas.

Nchunk

nchunk corrects some chunking insufficiencies involving adjtrans, currencies, percent signs, numbers, etc. For example, in the
corresponding_VBG solution the chunker does not deliver a chunk. The adjtrans relation attaches the present participle to the noun,
then an nchunk relation can attach the determiner. There are 51 rules of this type.

Aux and wh-preparsing

The aux relation is needed to attach auxiliary verbs in questions. Since DG does not distinguish internal and external arguments, the
auxiliary verb can attach locally to the matrix verb. WH-relations the are only real long-distance dependencies.

Chapter 6: Statistical Disambiguation

6.1 Decision-Based Parsing
We have given an introduction to the probabilistic disambiguation that we use in chapter 1. The probabilities that we use are not
generation probabilities, but decision probabilitities: given a certain parser configuration, which attachment decision is how probable?
Not the sum of p of possible parses, but the sum of p of possible decisions at a decision point add to 1. Whether to attach or not (in
shift/reduce parlance: to reduce or to shift) is e.g. a decision.

The probability-based score of a parse is the product of the (normalized) decisions taken during parsing.

6.2 Backoffs
Sparse data is a serious problem, most decisions need to be taken based on less information than is desirable.

6.2.1 The pobj relation backoff as an example
We give the example of the current back-off hierarchy of the pobj relation (verb-PP attachment) in Prolog code.

%%%% PP-Attachment
%% v<pp
stats2(_HTag,FH,_SH,_DTag,DescN,Prep,pobj,P,NP,D,_HC,_OG) :-

((vppp(FH,Prep,DescN,Count), coocvppp(FH,Prep,DescN,CoCount),baklev(vppp,0)); % full, backoffs below
((nountoclass(DescN,_,DescNClass) -> true;DClass=18),
vppp_bak_nclass(FH,Prep,DescNClass,Count), coocvppp_bak_nclass(FH,Prep,DescNClass,CoCount), baklev(vppp,1)

); % verb & prep & nounclass
(vppp_bak_verb_prep(FH,Prep,Count), coocvppp_bak_verb_prep(FH,Prep,CoCount), baklev(vppp,2)
); % verb & prep
(verbtoclass(FH,HClass),
vppp_bak_vclass(HClass,Prep,DescN,Count), coocvppp_bak_vclass(HClass,Prep,DescN,CoCount), baklev(vppp,3)

); % verbclass & prep & noun
((nountoclass(DescN,_,DescNClass) -> true;DClass=18),verbtoclass(FH,HClass),
vppp_bak_class(HClass,Prep,DescNClass,Count), coocvppp_bak_class(HClass,Prep,DescNClass,CoCount), baklev(vppp,4)

); % verbclass & prep & nounclass
(vppp_bak_prep_descnoun(Prep,DescN,Count), coocvppp_bak_prep_descnoun(Prep,DescN,CoCount), baklev(vppp,5)
); % prep & descnoun
(vppp_bak_prep(Prep,Count), coocvppp_bak_prep(Prep,CoCount),baklev(vppp,6)
); % prep only
(Count is 0.05, CoCount is 1, baklev(vppp,7)) %% Smoother

),
dist(vppp,D,C,_,TotC), DP is 0.8 + ((C/TotC)*2),
P is (Count/CoCount),
NP is ((Count/CoCount)*2)*DP. %% PROB: ATTACHMENT / COOCCURRENCE * # of poss. attachments

The predicate vppp/4 contains the counts (4th argument) of verb-PP attachment involving the governor verb FH , the preposition
prep and the description noun DescN . The predicate coocvppp/4 contains the counts (4th argument) of candidate configurations, i.e.
configurations that could be verb-PP attachments, including those where the Penn Treebank has a noun-PP attachment.

The top counts of vppp/4 and coocvppp/4 are:

cincano:results_from_WSJ_morph_nov03 gschneid$ head -20 vp_pp_morpha.pl
vppp(’close’,’in’,’trading’, 66).
vppp(’file’,’in’,’court’, 51).
vppp(’reach’,’for’,’comment’, 49).
vppp(’rise’,’to’,’yen’, 45).
vppp(’contribute’,’to’,’article’, 44).
vppp(’account’,’for’,’%’, 42).
vppp(’file’,’for’,’protection’, 40).
vppp(’rise’,’to’,’%’, 38).
vppp(’say’,’in’,’interview’, 36).
vppp(’be’,’for’,’year’, 36).
vppp(’be’,’in’,’market’, 35).
vppp(’buy’,’at’,’price’, 33).
vppp(’rise’,’from’,’yen’, 32).
vppp(’say’,’in’,’statement’, 31).
vppp(’raise’,’to’,’%’, 31).
vppp(’rise’,’in’,’september’, 29).
vppp(’price’,’at’,’par’, 29).
vppp(’file’,’with’,’commission’, 29).
vppp(’fall’,’to’,’%’, 29).
vppp(’rise’,’in’,’quarter’, 26).

cincano:results_from_WSJ_morph_nov03 gschneid$ head -20 vp_pp_cooc_morpha.pl
coocvppp(’close’,’in’,’trading’, 66).
coocvppp(’report’,’for’,’quarter’, 54).
coocvppp(’file’,’in’,’court’, 51).
coocvppp(’reach’,’for’,’comment’, 49).
coocvppp(’rise’,’to’,’yen’, 45).
coocvppp(’contribute’,’to’,’article’, 44).
coocvppp(’be’,’in’,’market’, 42).
coocvppp(’account’,’for’,’%’, 42).
coocvppp(’file’,’for’,’protection’, 40).
coocvppp(’rise’,’to’,’%’, 38).
coocvppp(’be’,’for’,’year’, 38).
coocvppp(’say’,’in’,’interview’, 36).
coocvppp(’buy’,’at’,’price’, 33).
coocvppp(’rise’,’from’,’yen’, 32).
coocvppp(’say’,’in’,’statement’, 31).
coocvppp(’raise’,’to’,’%’, 31).
coocvppp(’rise’,’in’,’september’, 29).
coocvppp(’price’,’at’,’par’, 29).
coocvppp(’file’,’with’,’commission’, 29).
coocvppp(’fall’,’to’,’%’, 29).

29

6.2. Backoffs 30

For example, all 66 cases where the configuration ’close in trading appears’ is seen in the Penn Treebank all verb-PP attacment, while
most (or all) configurations ’report for quarter’ (e.g. the company reported a loss for the third quarter) are not verb-PP, but (probably)
noun-PP attachment.

The counts when backing off to verb+prep only are:

cincano:results_from_WSJ_morph_nov03 gschneid$ cat vp_pp_morpha.pl | grep "vppp_bak_verb_prep(’close’"
vppp_bak_verb_prep(’close’,’across’,1).
vppp_bak_verb_prep(’close’,’after’,2).
vppp_bak_verb_prep(’close’,’against’,1).
vppp_bak_verb_prep(’close’,’around’,1).
vppp_bak_verb_prep(’close’,’at’,73).
vppp_bak_verb_prep(’close’,’because’,6).
vppp_bak_verb_prep(’close’,’before’,2).
vppp_bak_verb_prep(’close’,’below’,1).
vppp_bak_verb_prep(’close’,’by’,6).
vppp_bak_verb_prep(’close’,’despite’,1).
vppp_bak_verb_prep(’close’,’for’,16).
vppp_bak_verb_prep(’close’,’from’,1).
vppp_bak_verb_prep(’close’,’in’,109).
vppp_bak_verb_prep(’close’,’near’,1).
vppp_bak_verb_prep(’close’,’of’,2).
vppp_bak_verb_prep(’close’,’on’,26).
vppp_bak_verb_prep(’close’,’to’,11).
vppp_bak_verb_prep(’close’,’with’,3).
vppp_bak_verb_prep(’close’,’within’,2).

cincano:results_from_WSJ_morph_nov03 gschneid$ cat vp_pp_cooc_morpha.pl | grep "coocvppp_bak_verb_prep(’close’"
coocvppp_bak_verb_prep(’close’,’across’,1).
coocvppp_bak_verb_prep(’close’,’after’,2).
coocvppp_bak_verb_prep(’close’,’against’,1).
coocvppp_bak_verb_prep(’close’,’around’,1).
coocvppp_bak_verb_prep(’close’,’at’,73).
coocvppp_bak_verb_prep(’close’,’because’,6).
coocvppp_bak_verb_prep(’close’,’before’,2).
coocvppp_bak_verb_prep(’close’,’below’,1).
coocvppp_bak_verb_prep(’close’,’by’,6).
coocvppp_bak_verb_prep(’close’,’despite’,1).
coocvppp_bak_verb_prep(’close’,’for’,16).
coocvppp_bak_verb_prep(’close’,’from’,2).
coocvppp_bak_verb_prep(’close’,’in’,116).
coocvppp_bak_verb_prep(’close’,’near’,1).
coocvppp_bak_verb_prep(’close’,’of’,12).
coocvppp_bak_verb_prep(’close’,’on’,26).
coocvppp_bak_verb_prep(’close’,’since’,1).
coocvppp_bak_verb_prep(’close’,’to’,12).
coocvppp_bak_verb_prep(’close’,’with’,4).
coocvppp_bak_verb_prep(’close’,’within’,2).

We see e.g. that the probability for verb-PP attachment with close+in is high, while close+of is low.

6.2.2 Mapping Grammatical Relations for the Probability Estimation

We integrate a wide selection of knowledge sources in our system, and a variety of techniques. Integrating grammatical knowledge does
not only have an impact on the grammar rules. We now give an example of how grammatical knowledge can be used for the probability
estimation.

We have discussed the MLE estimation in general in section 1.1, and the case of PP-attachment relations. Some relations have models
that slightly differ from the general estimation. For example, the noun-participle relation integrates linguistic knowledge about similar
grammatical relations.

The noun-participle relation is also known as reduced relative clause. Examples are the report written or the soldiers returned home
were greeted. Reduced relative clauses are frequent enough to warrant a probabilistic treatment, but considerably sparser than verb-
subject or verb–object relations. They are in direct competition with the subject-verb relation (as discussed in section ??), because both
are licensed by a NP followed by a VP. We have a subject-verb relation in the report announced the deal and a noun-participle relation
in the report announced yesterday. The majority of modification by participle relations, if the participle is a past participle, functionally
correspond to passive constructions (the report written∼= the report which has been written). In order to reduce data sparseness, we have
added the verb–passive-subject counts (psubj) to the noun–participle counts. Some past participles also express adjunct readings (the
week ended Friday); therefore the converse, i.e. adding noun–participle counts to verb–passive-subject counts, cannot be recommended.

The probability estimation for the modpart relations across all backoff levels is as follows (we map the noun a to its Wordnet-class å
and the verb b to its Levin-class b̊).

P (modpart, dist|a, b) =

#(modpart,right,a,b)+#(psubj,left,a,b)
#(modpart,right,a,b)+#(psubj,left,a,b)+#(asubj,left,a,b) if>0,else

#(modpart,right,̊a,̊b)+#(psubj,left,̊a,̊b)

#(modpart,right,̊a,̊b)+#(psubj,left,̊a,̊b)+#(asubj,left,̊a,̊b)
if>0,else

#(modpart,right,b)+#(psubj,left,b)
#(modpart,right,b)+#(psubj,left,b)+#(asubj,left,b) if>0,else

#(modpart,right,a)+#(psubj,left,a)
#(modpart,right,a)+#(psubj,left,a)+#(asubj,left,a)

 ·
#(modpart,dist)

#modpart

As the last backoff, a low non-zero probability is assigned for most relations. Again, based on grammatical knowledge, there are
exceptions to this: the verb–adjunct relation can only occur with a closed class of nouns, mostly with adverbial expressions of time. In
order reduce parsing complexity, only the backoff levels that include the adjunct noun or its class are used. The backoff hierarchy is also
changed. Before using a semantic class on the dependent and keeping the lexical head of the governor, the adjunct relation keeps the
head of the dependent and uses the semantic class of the verb. While predicates place selectional restrictions on their arguments, adjuncts
are themselves a restricted class, a class that can, however, be selected by almost any predicate (Merlo and Esteve Ferrer, 2006).

31 6.3. Obtaining lexical statistics

Verb-PP Backoff decision points
pobj 0 full 124

1 verb & prep & nounclass 2624
2 verb & prep 2631
3 verbclass & prep & noun 337
4 verbclass & prep & nounclass 5004
5 prep & noun 995
6 prep 4762
7 NONE 4747

Table 6.1: Verb-PP Backoff decision points for the Fully Lexicalized, Backed-Off System on Carroll’s test suite

“Successful” Verb/Noun-PP Backoff decisions pobj modpp
0 full 26 25
1 verb/noun & prep & nounclass 0 0
2 verb/noun & prep 292 260
3 verb/nounclass & prep & noun 19 20
4 verb/nounclass & prep & nounclass 83 106
5 prep & noun 3 7
6 prep 20 23
7 NONE 0 0

Table 6.2: Current Verb/Noun-PP Backoff “successful” decision points for the aggressively pruned System on Carroll’s test suite

6.2.3 Sparseness and Quality
In order to assess the impact of sparseness, we illiustrate at which backoff level decisions are taken, i.e. at which level in the backoff the
first non-zero count occurs, from which the probbilites are then used. We will refer to them as them decision points.

We can see in table 6.1 that late backoff decisions are disappointingly frequent. But which decisions are successful in the sense that
they actually feature in the globally first reading? These “successful” decision points are given in table 6.2.

Decisions that can be taken early in the backoff chain, i.e. better informed decisions, are expected to better performing. This is indeed
the case, as figure 6.1 illustrates.

6.3 Obtaining lexical statistics
There are a number of ways in which the MLE statistics can be obtained. The logic is always the same: Obtain all the counts for the
counter, and all the candidate counts for the denominator of the probability calculation.

6.3.1 With TGrep from Penn Treebank
TGrep is, as its name suggests, a grep untility for trees. The original TGrep was written byRichard Pito and is no longer maintained. Its
successor, TGrep2, is written by Douglas Rohde and available for download 1.

The rule file which extracts the lexical information, XTRACT_RELATIONS.tcsh, is written for the original TGrep. It is not fully
compatible with tgrep2, due to a different semantics of the flag −a which delivers all solutions – a necessary requirement for statistics.
When recreating the statistics this way, it is vital to make sure that counts are similar to the original ones.

We give an introduction and a few examples in the following.

Introduction to TGrep

"tgrep patterns are composed of a node followed by the relationships which that node participates in. For example,

1) S < NP << S

will match an S node which immediately dominates an NP *and* which dominates some other S node. Note that the second relation-
ship "<< S" refers to the first S and not to the NP. This syntax has been adopted to avoid using clumsy AND statements. You can use
parenthesis to group relationships so that,

2) S < (NP << S)

1http://tedlab.mit.edu/ dr/Tgrep2/

6.3. Obtaining lexical statistics 32

PP-Attachment Precision Values by Back-off Level
Numbers of [Noun,Verb|SynsetNoun,SynsetVerb] occurrences returned by the parser in angular brackets

100

83.07
85

64.65

30.77

84.62

73.84

76.19

62.16

55.56

100

81.34

70.37

58.82

50

89.12

73.85

76.19

65.1

42.85

50

55

60

65

70

75

80

85

90

95

100

Level 0 [24,26|28,37] Level 2
[254,279|284,283]

Level 3 & 3.1
[21,20|27,21]

Level 4 & 4.1
[99,74|68,84]

Levels 5 & 6 [26,18|7,4]

Pe
rc

en
t

nounpp
verbpp
Synonym-nounpp
Synonym-verbpp

Figure 6.1: Evaluation Preview: Quality of Backoff

will match an S node which immediately dominates an NP node which in turn dominates some S node.” (Rohde 1993, tgrep manpage)
There are several basic kinds of relationships between nodes. They are:

A < B A immediately dominates B
A <X B B is the Xth child of A (i.e. first child

is A <1 B)
A <-X B B is the Xth to last child of A

(i.e. last child is A <-1 B)
A <- B the last child of A is B

(same as A <-1 B)
A << B A dominates B
A >> B A is dominated by B
A > B A is immediately dominated by B
A <<, B B is a leftmost descendant of A
A <<‘ B B is a rightmost descendant of A
A . B A immediately precedes B
A .. B A precedes B
A $ B A and B are sisters (note that A $ A

is FALSE)
A $. B A and B are sisters and A immediately

precedes B
A $.. B A and B are sisters and A precedes B

Their negations are also available, e.g. A !< B, which expresses that A does not immediately dominate B

Example queries

Verb-Object Relations In a verb-object relation, an NP is a daughter of a VP. This is expressed in a tgrep query as VP < NP. The
full command is e.g.

tgrep ’VP < NP’ | more

.
If one wants to extract the verb and noun heads, things get more complicated, mainly because one needs to traverse the NP and the

VP down to the lexical head. The tgrep backtick operator (‘) only outputs the constituent in the query after the operator, in the following
examples the lexical heads. These are thecurrently used verb-object patterns:

[1]tgrep -alfs " " -n ’VP << ‘/VB/ < (/NP$/|NP-PRD <-
‘(/NN/|PRP|WDT|WP|CD))’ > OBJECT_ADJUNCT/VP\{NPO_1.res
[2]tgrep -alfs " " -n ’VP << ‘/VB/ < (/NP$/|NP-PRD <1 (NP <-
‘(/NN/|PRP|WDT|WP|CD)))’ > OBJECT_ADJUNCT/VP\{NPO_2.res
[3]tgrep -alfs " " -n ’VP << ‘/VB/ < (/NP$/|NP-PRD <1 (NP<1(NP <-
‘(/NN/|PRP|WDT|WP|CD))))’ > OBJECT_ADJUNCT/VP\{NPO_3.res
[4]tgrep -alfs " " -n ’VP << ‘/VB/ < (/NP$/|NP-PRD <1 (NP<(NP<1(NP <-
‘(/NN/|PRP|WDT|WP|CD)))))’ > OBJECT_ADJUNCT/VP\{NPO_4.res
[5]tgrep -alfs " " -n ’VP << ‘/VB/ < (/NP$/|NP-PRD <1 (NP<(NP<(NP<1(NP
<- ‘(/NN/|PRP|WDT|WP|CD))))))’ > OBJECT_ADJUNCT/VP\{NPO_5.res
[6]tgrep -alfs " " -n ’VP << ‘/VB/ < (/NP$/|NP-PRD <1
(NP<(NP<(NP<(NP<1(NP <- ‘(/NN/|PRP|WDT|WP|CD)))))))’ > OBJECT_ADJUNCT/VP\{NPO_6.res

33 6.3. Obtaining lexical statistics

Without the flag −a tgrep only finds one occurrence per sentence. This entails that counts of frequent relations will be far too low
and inacurrate. If one uses the flag −a, like in Prolog backtracking, many often seemingly incorrect solutions are reported. It is vital
to formulate constrained and precise queries to reduce overgeneration. The complexity arising from this has led me to split every query
into a set of simpler queries, in the above example 6 queries. The currently used number of queries in XTRACT_RELATIONS.tcsh is
around 500.

PP-Attachment relations The basic queries for PP-attachment are

• for noun-attached PPs:
tgrep ’/NP/ < (/PP/ < (IN|TO) < NP)’
• for verb-attached PPs:

tgrep ’VP < (/PP/ < (IN|TO) < NP)’

Candidate Counts Formulating queries for candidates, i.e. configurations that could e.g. be verb-PP attached, but which are not
always, is more involved. A good approximation for verb-PP attachment is to take typical ambiguous configurations: a VP that has a NP
which is itself modified by a PP is ambiguous, because the PP could be attached to the VP.

One of the tgrep patterns for verb-PP attachment is:
tgrep -afs " " -n ’VP << ‘/VB/ < (/PP/ < ‘/IN/ < (NP <- ‘/NN/))’
> PP/VP\{PP_verbhead+prep+descNoun_s.res

The corresponding tgrep pattern for the opposite case, i.e. the ambigous case in which the PP is attached to the noun and not the verb,
is:
grep -afs " " -n ’VP << ‘/VB/ < (/NP/ <- ‘/NN/) < (/PP/ < ‘/IN/ < (NP <- ‘/NN/))’
> PP/VP\{NP_PP_11.res

Some of the candidate cases, we also call them co-occurrence cases, for other relations are:

• subjects: non-subject NPs that immediately precede a VP, like the report which blames the major has been published now.
• object: adjunct NPs like we discussed today that ... and subordinate subjects like we showed our hypothesis is correct.
• subordinating conjunctions vs. prepisitions: both have the same tag (IN) in the Penn treebank. Subordinating conjunctions have

an S node as sister, prepositions an NP node.

6.3.2 With Perl script from CoNLL Output
For domain adaptation, it may be desirable to include statistical lexical data from other corpora. For adapting to the the Biomedical
domain, an extraction of statistical data from the CoNLL format is currently being developped. The CoNLL-format originates from the
CoNLL-XI shared task (Nivre et al., 2007). An example output is:
1 Abstract abstract NN _ 0 ROOT

1 Two two CD _ 3 NMOD
2 recent recent JJ _ 3 NMOD
3 papers paper NNS _ 4 SBJ
4 provide provide VBP _ 0 ROOT
5 new new JJ _ 6 NMOD
6 evidence evidence NN _ 4 OBJ
7 relevant relevant JJ _ 6 NMOD
8 to to IN _ 7 AMOD
9 the the DT _ 10 NMOD
10 role role NN _ 8 PMOD
11 of of IN _ 10 NMOD
12 the the DT _ 16 NMOD
13 breast breast NN _ 14 NMOD
14 cancer cancer NN _ 15 NMOD
15 susceptibility susceptibility NN _ 16 NMOD
16 gene gene NN _ 17 NMOD
17 BRCA2 brca0 NN _ 11 PMOD
18 in in IN _ 10 NMOD
19 DNA dna NN _ 20 NMOD
20 repair repair NN _ 18 PMOD
21 . . . _ 4 P

Comments on the complex mapping between the Pro3Gres format and the CoNLL format can be found in chapter 7 (evaluation) of
the thesis. While the mapping problems forbid the use of CoNNL format for accurate evaluation, an extraction of relations with full
precision at incomplete recall is possible.

A simple conversion routine fragment is e.g.:

foreach $word(@words) {
($id,$full,$lemma,$tag,$u,$tohead,$rel) = split(/\t/,$word) ;
if ($rel eq "SBJ") {

$gov = $words[$tohead-1]; print "% SBJ $gov --> $word\n";
($hid,$hfull,$hlemma,$htag,$hu,$htohead,$hrel) = split(/\t/,$gov) ;
print "subj($hlemma,$lemma).\n";

}
...
}

6.3. Obtaining lexical statistics 34

?
PPPPP

�����
NP-SBJ-X@

noun

VP@
HHH

���
V

control-verb

S

NP-SBJ

-NONE-

*-X

VP@
XXXXXXBB
������

V

control-verb

NP-X@

object noun

S

NP-SBJ

-NONE-

*-X

Figure 6.2: Extraction pattern for subject control (left) and object control (right)

6.3.3 With Prolog from Simon’s format

6.3.4 Functional restrictions and long-distance dependencies from the Penn Treebank
Many additional lexical counts have also been collected form the Penn Treebank, there are various versions of XTRACT_RELATIONS*

For example, verb-locativePP Relations which extract heads can be formulated as follows:
tgrep -alfs " " -n ’VP << ‘/VB/ < (PP-LOC < ‘(IN|TO) < (NP <-
‘(/NN/|PRP|WDT|WP|CD)))’ > PP-FUNC/VP\{PP-LOC_verbhead+prep+descNoun_s.res

tgrep -alfs " " -n ’VP << ‘/VB/ < (PP-LOC < ‘(IN|TO) < (NP <1 (NP <-
‘(/NN/|PRP|WDT|WP|CD))))’ > PP-FUNC/VP\{PP-LOC_verbhead+prep+descNoun_1.res

tgrep -alfs " " -n ’VP << ‘/VB/ < (PP-LOC < ‘(IN|TO) < (NP <1 (NP < (NP <-
‘(/NN/|PRP|WDT|WP|CD)))))’ > PP-FUNC/VP\{PP-LOC_verbhead+prep+descNoun_2.res

tgrep -alfs " " -n ’VP << ‘/VB/ < (PP-LOC < ‘(IN|TO) < (NP <1 (NP < (NP <(NP <-
‘(/NN/|PRP|WDT|WP|CD))))))’ > PP-FUNC/VP\{PP-LOC_verbhead+prep+descNoun_3.res

tgrep -alfs " " -n ’VP << ‘/VB/ < (PP-LOC < ‘(IN|TO) < (NP <1 (NP < (NP <(NP<(NP <-
‘(/NN/|PRP|WDT|WP|CD)))))))’ > PP-FUNC/VP\{PP-LOC_verbhead+prep+descNoun_4.res

An important aspect of the Pro3Gres parser is that it treats long-distance dependencies by reducing them to local dependencies.
Chapter 6 of my doctoral thesis explains the details. Here we just give an introduction and the example of the subject control relation.

Control Structures

Control is a course-book example of long-distance dependency. The extraction pattern for control is in fig. 6.2.
Control and raising coreferences can be reconstructed successfully from the context of the matrix and the subordinate clause. If the

matrix clause contains a control verb, a raising verb, or a control adjective, and if the subordinate clause contains a verb in the infinitive
with to and a corresponding unfilled argument position, then coreference is assumed. This is the assumption expressed by our fixed
extraction pattern.

How many filler and gap indices coincide in our fixed pattern?
Filler and gap indices coincide in our fixed pattern to a high degree. Comparing the counts with enforced and relaxed filler identity

we get 98 % identity for subject-control. In the 320 cases tested, 7 had no identity of gap and filler. An example of these 7 sentences
where the subject-control pattern goes astray is:
(NP-SBJ-1 (DT Some)

(NNP Golenbock)
(NNS lawyers))

(VP (MD wo)
(RB n’t)
(VP (VB be)

(VP (VBN invited)
(NP-2 (-NONE- *-1))
(S (NP-SBJ (-NONE- *-2))

(VP (TO to)
(VP (VB join)

(NP (NNP Whitman)
(CC &)
(NNP Ransom)))))

(, ,)
(PP (VBG according)

(PP (TO to)
(NP (NP (NNS partners))

(PP-LOC (IN at)
(NP (DT both)

(NNS firms)))))))))

Complex interaction between different types of long-distance dependencies, in this case between passive and control, means that the
extraction pattern can make errors. While this affects the recall of the pattern on the Penn Treebank for obtaining lexical statistics,
reconstruction of the control relation during parsing remains unaffected.

35 6.3. Obtaining lexical statistics

We obtain above 99 % identity for object-control. Of the 264 cases tested in the appendix, one failed to have identity.
How many fillers do not find their gap in the subordinate subjectless clause?
In this experiment, we tested in how many cases a filler occurs without a gap position in the position expected by our fixed pattern, i.e.

the subordinate clause subject position. Our experiment, detailed in the appendix, shows that the control pattern occurs 37 times more
often than an (otherwise identical) pattern explicitly requiring a no-trace subordinated subject.

The 8 tested subject-control cases where no gap occurs in the subordinate clause subject position include a conjunction that triggers
a mismatch, an annotation error, a complex interaction between passive and control, and one case where the movement is longer than
what the pattern matches, but not a typical case of control:

(NP-SBJ-1 (PRP we))
(VP (MD should)

(VP (VB be)
(VP (VBG helping)

(S (NP-SBJ (NNP U.S.)
(NNS companies))

(VP (VB improve)
(NP (VBG existing)

(NNS products))
(PP (RB rather)

(IN than)
(S-NOM (NP-SBJ (-NONE- *-1))

(ADVP-TMP (RB always))
(VP (VBG developing)

(NP (JJ new)
(NNS ones))))))))))

For object control, the control pattern is only 22 times more frequent than an (otherwise identical) pattern explicitly requiring a no-
trace subordinated subject. But the tested 15 object-control cases where no gap occurs in the subordinate clause subject position include
13 cases where the pattern erroneously matches a temporal expression in the object position.

Control is almost completely fixed. Although there are a few exceptions and fixed patterns fail when several movements interact, we
only lose very few cases when extracting relations with a fixed pattern. While the extraction of long-distance dependencies may fail
when several movements interact, the impact on lexical statistics used for parsing and thus the impact on parsing success is very small,
and the post-processing step after parsing delivers the correct result unless there are intervening parsing errors.

The trace of both a passive and a control relation is expressed by an NP* constituent in the Penn Treebank. Campbell (2004) uses a
single, purely configurational rule to recover NP* from Treebank trees where they have been removed. Campbell (2004) reports similar
rules for other long-distance relations.

We have written structural patterns corresponding to such rules. Each long-distancce dependency type corresponds to a pattern or a
set of patterns. Grammatical role labels, empty node labels and tree configurations spanning several local subtrees are used as integral
part of long-distance dependency patterns. This leads to much flatter trees, as typical for DG, which has the advantages that (1) it helps
to alleviate sparse data by mapping nested structures that express the same dependency relation2, (2) fewer decisions are needed at parse-
time, which reduces complexity and the risk of errors (Johnson, 2002), (3) the costly overhead for dealing with unbounded dependencies
can be partly avoided. It is ensured that the lexical information that matters is available in one central place, allowing the parser to take
one well-informed decision.

Verb-Subject-control relation extraction rules can be formulated as follows in tgrep:

tgrep -alfs " " -n ’/NP-SBJ-/ <- ‘(/NN/|PRP|WDT|WP) $.. (VP < (‘/VB/ \!$ VP $..
(S < /NP-SBJ/))) ’ > NPSUBJ_V/NP_VP_CONTROL11.res

tgrep -alfs " " -n ’/NP-SBJ-/ <- ‘(/NN/|PRP|WDT|WP) $.. (VP < (VP <(‘/VB/ \!$ VP $..
(S < /NP-SBJ/)))) ’ > NPSUBJ_V/NP_VP_CONTROL12.res

tgrep -alfs " " -n ’/NP-SBJ-/ <- ‘(/NN/|PRP|WDT|WP) $.. (VP < (VP <(VP <(‘/VB/ \!$ VP $..
(S < /NP-SBJ/))))) ’ > NPSUBJ_V/NP_VP_CONTROL13.res

tgrep -alfs " " -n ’/NP-SBJ-/ <- ‘(/NN/|PRP|WDT|WP) $.. (VP < (VP <(VP <(VP<(‘/VB/ \!$ VP $..
(S < /NP-SBJ/)))))) ’ > NPSUBJ_V/NP_VP_CONTROL14.res

tgrep -alfs " " -n ’/NP-SBJ-/<1(NP <- ‘(/NN/|PRP|WDT|WP)) $.. (VP < (‘/VB/ \!$ VP $..
(S < /NP-SBJ/))) ’ > NPSUBJ_V/NP_VP_CONTROL21.res

tgrep -alfs " " -n ’/NP-SBJ-/<1(NP <- ‘(/NN/|PRP|WDT|WP)) $.. (VP < (VP <(‘/VB/ \!$ VP $..
(S < /NP-SBJ/)))) ’ > NPSUBJ_V/NP_VP_CONTROL22.res

tgrep -alfs " " -n ’/NP-SBJ-/<1(NP <- ‘(/NN/|PRP|WDT|WP)) $.. (VP < (VP <(VP <(‘/VB/ \!$ VP $..
(S < /NP-SBJ/))))) ’ > NPSUBJ_V/NP_VP_CONTROL23.res

tgrep -alfs " " -n ’/NP-SBJ-/<1(NP <- ‘(/NN/|PRP|WDT|WP)) $.. (VP < (VP <(VP <(VP<(‘/VB/ \!$ VP $..
(S < /NP-SBJ/)))))) ’ > NPSUBJ_V/NP_VP_CONTROL24.res

tgrep -alfs " " -n ’/NP-SBJ-/<1(NP<(NP <- ‘(/NN/|PRP|WDT|WP))) $.. (VP < (‘/VB/ \!$ VP $..
(S < /NP-SBJ/))) ’ > NPSUBJ_V/NP_VP_CONTROL31.res

tgrep -alfs " " -n ’/NP-SBJ-/<1(NP<(NP <- ‘(/NN/|PRP|WDT|WP))) $.. (VP < (VP <(‘/VB/ \!$ VP $..
(S < /NP-SBJ/)))) ’ > NPSUBJ_V/NP_VP_CONTROL32.res

tgrep -alfs " " -n ’/NP-SBJ-/<1(NP<(NP <- ‘(/NN/|PRP|WDT|WP))) $.. (VP < (VP <(VP <(‘/VB/ \!$ VP $..
(S < /NP-SBJ/))))) ’ > NPSUBJ_V/NP_VP_CONTROL33.res

tgrep -alfs " " -n ’/NP-SBJ-/<1(NP<(NP<(NP <- ‘(/NN/|PRP|WDT|WP)))) $.. (VP < (‘/VB/ \!$ VP $..
(S < /NP-SBJ/))) ’ > NPSUBJ_V/NP_VP_CONTROL41.res

I argue in my doctoral thesis that the vast majority of LDDs can be treated locally. Only relative pronouns and embedded WH-
questions need to be treated non-locally. Refer to chapter 6 of my doctoral thesis for the theoretical discussion and the implementation
of non-local parsing for these structures.

2Data sparseness also depends on the probability model. As an alternative to collapsing the structure in the annotation as we do, it could also be collapsed in the
statistical model

6.3. Obtaining lexical statistics 36

Antecedent POS Label Count Description/Example
1 NP NP * 22,734 NP trace

Sam was seen *
2 NP * 12,172 NP PRO

* to sleep is nice
3 WHNP NP *T* 10,659 WH trace

the woman who you saw *T*
(4) *U* 9,202 Empty units

$ 25 *U*
(5) 0 7,057 Empty complementizers

Sam said 0 Sasha snores
(6) S S *T* 5,035 Moved constituents

Sam had to go, Sasha said *T*
7 WHADVP ADVP *T* 3,181 WH-trace

Sam explained how to leave *T*
(8) SBAR 2,513 Empty clauses

Sam had to go, said Sasha (SBAR)
(9) WHNP 0 2,139 Empty relative pronouns

the woman 0 we saw
(10) WHADVP 0 726 Empty relative pronouns

the reason 0 to leave

Table 6.3: The distribution of the 10 most frequent types of empty nodes and their antecedents in the Penn Treebank (adapted from
Johnson 2002). Row numbers in parentheses indicate cases that are inherently local in our functional DG

Chapter 7: Chunk-Internal Relations
We have implemented a pre-processing module into Pro3Gres that recovers relations inside chunks. This module is called between
tagging and parsing. The module is rule-based, but has a statistical component. It is based on the following assumptions.

1. Generally, all non-head words in a chunk modify the head. There are four exceptions to this rule:

• In verb chunks, every verb modifies the succeeding verb (example: would have been going).
• If a noun chunk contains an adjective and more than one noun, the adjective modifies the succeeding non-head noun if it

is seen more often before the non-head noun lemma than the head noun lemma in the British National Corpus (example:
conventional forces strengthening).

• If a noun chunk contains more than two nouns, the frontmost noun modifies the succeeding non-head noun if it is seen more
often before the non-head noun lemma than the head noun lemma in the British National Corpus (example: Eisenhower
administration effort).

• If a noun chunk contains more than two proper names, every proper name modifies the succeeding proper name (example:
Fulton County Grand Jury).

2. Generally, the modification type deterministically follows from the part-of-speech tag of the head and the modifier. There is one
exception.

• Words that can be determiners or adjectives, for example several, many, few, one are assigned a detmod relation to the head
noun if they occur as the frontmost word in the chunk, and a ncmod relation otherwise.

Using the Ratnaparkhi tagger, we get the performance shown in figure 7.1. ncmod performs relatively poorly. There are several
important sources of errors. First, the statistical component often makes errors due to sparse data. For example, in automobile title law,
the counts are too low. Second, adverbs are included in the verb chunk, although adverbs in copular verb chunks typically modify the verb
complement. For example generally in [was generally] favourable is prevented from modifying the predicative adjective favourable.
Third, very long base NPs contain very many ncmod relations, but are also at highest risk of being chunked incorrectly. The ncmod
relation is thus much more affected by chunking errors than the detmod relation.

Since Pro3Gres V 0.6566, chunk-internal relations are an external file, intrachunk0.x. The core of the chunk-internal relations is the
intrachunk2/7 predicate. The intrachunk predicate iteratiively traverses the chunk, word by word; the intrachunk2/7 predicate . A version
for the detection of the ncmod1 relation is commented in the following. An illustrating trace for the noun chunk free enterprise track is
also given. bixxnn/5 reports the bigram counts from the BNC. free enterprise occurss 54 times, free track zero times (which is smoothed
to 1). As free enterprise is more frequent than free track, it is assumed to be more likely that free modifies the non-head enterprise rather
than the head
intrachunk2(Word,R,’JJ’,FID,Ftag,_Lem,Dir) :-
%% args: Word: current word in the iteration, R: Rest of the chunk,
%% FID: head word, Ftag: tag of the head, _, Dir: direction
intralex(yes), %% is intrachunk flag on?
R=[F|RR], RR \= [], %% is the adjective the non-last non-head word?
wordtag(F,FW,_), %% get FW=word after current
lexic(FID,FID1,ID), %% get FID1= word part of current word
(bixxnn(CN1,Word,_,FW,_)->true;CN1=1), (bixxnn(CNH,Word,_,FID1,_)->true;CNH=1), CN1 > CNH,
%% which modifier modifies which?
!,
writeintra(ncmod1,[FW-ID,Word-ID,Lem,Dir]).

Call: (31) intrachunk2(free, [enterprise_NN, track_NN], ’JJ’, ’track#7’, ’NN’, _G2743, ’(<-)’) ? creep
Call: (32) intralex(yes) ? creep
Exit: (32) intralex(yes) ? creep
Call: (32) [enterprise_NN, track_NN]=[_G2734|_G2735] ? creep
Exit: (32) [enterprise_NN, track_NN]=[enterprise_NN, track_NN] ? creep
Call: (32) [track_NN]\=[] ? creep
Exit: (32) [track_NN]\=[] ? creep
Call: (32) wordtag(enterprise_NN, _G2742, _G2743) ? skip
Exit: (32) wordtag(enterprise_NN, enterprise, ’NN’) ? creep
Call: (32) lexic(’track#7’, _G2745, _G2746) ? skip
Exit: (32) lexic(’track#7’, track, 7) ? creep
Call: (32) bixxnn(_G2780, free, _G2782, enterprise, _G2784) ? skip
Exit: (32) bixxnn(54, free, ’JJ’, enterprise, ’NN’) ? creep
Call: (32) true ? creep
Exit: (32) true ? creep
Call: (32) bixxnn(_G2780, free, _G2782, track, _G2784) ? skip
Fail: (32) bixxnn(_G2780, free, _G2782, track, _G2784) ? creep
Call: (32) _G2783=1 ? creep
Exit: (32) 1=1 ? creep

^ Call: (32) 54>1 ? creep
^ Exit: (32) 54>1 ? creep

Call: (32) writeintra(ncmod1, [enterprise-7, free-7, _G2788, ’(<-)’]) ? skip
ncmod1(’enterprise#7’,’free#7’,_G2788,’(<-)’).

Relation P% R% Counts Correct
detmod 93.5 90.6 1018
ncmod 83.1 67.9 1080
aux 94.2 89.8 342

Table 7.1: Percentage and absolute values for chunk-internal relations

37

Chapter 8: Installing and running your own copy of
Pro3Gres
Ask the author for a license of the Pro3Gres parser if you are interested: gschneid@ifi.uzh.ch

Installation of the parser is trivial. Unzip with the password, untar and follow 8.1.1.
Installation of the preprocessing tools may be more cumbersome, depending on your choice. We describe the simplest option for

pre-processing, using LT-TTT2, here, and two other options in section 8.2

8.1 Installing the parser Pro3gres

8.1.1 Installing Pro3gres
The parser requires SWI or Sisctus Prolog. SWI is recommended. It is available from http://www.swi-prolog.org

A source code distribution looks as follows, for example:

-rwxr-xr-x 1 gschneid gschneid 10053 Jul 29 2005 000RELEASE_NOTES
-rwxr-xr-x 1 gschneid gschneid 12541 Oct 11 16:20 000RELEASE_NOTES2007
-rw------- 1 gschneid gschneid 10664 Sep 17 10:33 000RELEASE_NOTES2007.save
-rw------- 1 gschneid gschneid 12131 Oct 2 11:08 000RELEASE_NOTES2007.save.1
drwxr-xr-x 14 gschneid gschneid 476 Jul 29 2005 EVAL-Carroll
drwxr-xr-x 3 gschneid gschneid 102 Jul 29 2005 PCFG
-rw-r--r-- 1 gschneid gschneid 15227661 Sep 17 09:52 Pro3Gres.tar.gz
-rwxr-xr-x 1 gschneid gschneid 2100 Jul 29 2005 Pro3Gres_parameters_mid_all.pl
drwxr-xr-x 12 gschneid gschneid 408 Jul 29 2005 Saar
drwxr-xr-x 64 gschneid gschneid 2176 Jul 29 2005 perl
drwxr-xr-x 3 gschneid gschneid 102 Jul 29 2005 results_from_WSJ_morph
drwxr-xr-x 55 gschneid gschneid 1870 Jul 29 2005 results_from_WSJ_morph_nov03
-rwxr-xr-x 1 gschneid gschneid 29 Jul 29 2005 tar_it

EVAL-Carroll/ contains preprocessed evaluation texts (the 500 sentence GREVAL corpus by John Carroll)
Saar/ contains versions of the parser main program in Prolog, e.g. 6514_STANDARD.pl
results_from*/ contains statistical data, mainly from the Penn treebank, but also from the BNC.
Pro3Gres runs under Sicstus Prolog and SWI-Prolog. It is optimized for the latter, where a graphical interface is also available, mainly

suitable for demonstration purposes. Loading the statistics files in Sicstus Prolog may take very long. SWI Versions 5.2 to 5.6, and
Sicstus Version 3.8.6 have been tested on Mac OS X, Linux, Windows 2000 and XP and Sun Solaris.

#%%%%%% THIS ONLY APPLIES IF YOU GET SOURCE AND YOU WANT TO USE SICSTUS
#Depending which Prolog you are using, set the fact whichprolog(swi) or whichprolog(sicstus).
#In the latter case ONE clause needs to be changed manually (uncomment, comment as appropriate)
#
#%%%SICSTUS VERSION %%%
#%findlongest(MaxLen,A-Z,A-I-J-Z,MIn-MOut,ScIn-ScOut,SIn-SOut) :-
#% whichprolog(sicstus),
#% if((chart(_,I,J,_,[_,_,I-J,CScore,MaxLen],_,CStruc,_), \+ I=J, I>=A, J=<Z, append(SIn,[CStruc],SOut), ScOut is ScIn*CScore, MOut=MIn),
#% true,
#% (NewMaxLen is MaxLen-1,findlongest(NewMaxLen,A-Z,A-I-J-Z,MIn-MOut,ScIn-ScOut,SIn-SOut))).
#
#%%%SWI VERSION %%%
#findlongest(MaxLen,A-Z,A-I-J-Z,MIn-MOut,ScIn-ScOut,SIn-SOut) :-
whichprolog(swi),
(chart(_,I,J,_,[_,_,I-J,CScore,MaxLen],_,CStruc,_), \+ I=J, I>=A, J=<Z, append(SIn,[CStruc],SOut), ScOut is ScIn*CScore, MOut=MIn)
*-> true;
(NewMaxLen is MaxLen-1,findlongest(NewMaxLen,A-Z,A-I-J-Z,MIn-MOut,ScIn-ScOut,SIn-SOut)).

8.1.2 Installing LT-TTT2
If you want to see the parser at work immediately, you can also skip to chapter 2.2. and come back here later. But you will need to install
LT-TTT2 or a preprocessing option descibed in chapter 3 to be able to run your own texts.

You can obtain LT-TTT2 from
http://www.ltg.ed.ac.uk/software/lt-ttt2
After you have pre-processed your texts with LT-TTT2 they should look like the provided file TTT2/ex100.chunk , which was created

from the raw tex TTT2/ex100.txt
OBS.:!!!! We use a slightly different call to LT-TTT2 compared to the one that is included in the LT-TTT2 distribution. The script

that we use is provided in TTT2/ttt.sh
Sample calls are: bash ttt.sh myinput.txt myoutputfiles bash ttt.sh ex100.txt ex100
In particular, we we skip named entity recognition (NER), as it interferes with chunking. Texts using LT-TTT2 NER will not parse!
As an alternative to TTT2/ttt.sh you can also you the script TTT2/scripts/run_noNER , which is also provided . It differs from the

script ’run’ provided in the LT-TTT2 distribution only by commenting the named-entity recognition step. As this script only ran on
Linux but not on OS X for us, we wrote the script TTT2/ttt.sh

FAQ: Can I parse raw text in just 1 command including the calls to LT-TTT2 and the parser?
Not yet currently. Tell me if you have programmed a pipe. For the time being, first pre-process, then parse.

38

39 8.1. Installing the parser Pro3gres

8.1.3 Running Pro3Gres
Processing your documents happens in two stages, as alluded to. First, your document is tagged, chunked and morphologically analyzed,
secondly it is parsed.

Running Pro3Gres from the commandline

Go to the distribution root directory and enter the following command in the shell.
$./build.pl
If everything works ok, you should get many messages (some error messages, too) and a file called pro3gres.exe, with a size of about

40 to 50 MB, should appear in the directory.
You can now parse. The provided pre-tagged and chunked file EVAL-Carroll/suste-prologfacts_morphed5.pl, which is LTPos output

converted to Prolog format, can be parsed as follows:
$./pro3gres.exe -file EVAL-Carroll/suste-prologfacts_morphed5.pl

-pfile Pro3Gres_parameters.pl
The provided pre-tagged and chunked file TTT2/ex100.chunk , which is LT-TTT2 output, can be parsed as follows:
$./pro3gres.exe -xmlfile TTT2/ex100.chunk

-pfile Pro3Gres_parameters.pl
OBS.! I have only tested a few thousand sentences with this method (-xmlfile, i.e. via TTT2), much fewer than via LTPos/LTCHunk

or via Treetagger/Carafe. Please report bugs to me.

8.1.4 Running Pro3Gres in Prolog
If 8.1.3 fails, or if you want to see in more detail what happens, or if you plan to use Pro3Gres mainly from inside Prolog, proceed as
follows.

Start Prolog, with large stack sizes. If you get memory allocation errors during loading or parsing, your stack sizes are probably too
small.

Start swi Prolog, e.g. with
$ swipl -L16m -G16m -T8m -A8m
In the 64-bit versions of SWI, which run from OS X 10.6 on, stack sizes are large enough by default.
In Sicstus under Mac OS X, you need to the following to increase stack sizes: Issue the shell command
$ ulimit -d unlimited
before starting Sicstus Prolog. In case of problems, consult the Sicstus manual and online help.
IF YOU HAVE SOURCE CODE:
cd to the root ot the distribution, e.g.
?- cd(’SOURCE-DISTRIBUTION’).
Consult the parser (e.g. progres_6556.pl), for example as follows in the Prolog Shell:
?- consult(’Saar/progres_6556.pl’).
You will get one or two error messages and loads of singleton warnings, that is ok. Load the statistical files and the grammar by

entering the following command:
?- start.
You will get many syntax error messages, since the data hasn’t been fully cleaned yet. Note that loading in the Prolog facts may take

very long in Sicstus.
If you want to create a saved state (aka image file or executable):
?- save_me.
will produce the image file (currently progres6556.exe) Image files are machine-dependent. They can be started from Prolog or

directly from the command-line, making it easy to integrate pro3gres into your pipeline, and faster to start up next time, by either issuing
the Prolog command
?- restore(’progres6556.exe’).
or equivalently, from the command line
$./progres6556.exe
You can parse your tagged and chunked files now.
If you have preprocessed with LT-TT2, and produced XML output that looks like the provided files, e.g. TTT2/ex100.chunk you can

parse with
?- xml_to_p3g_parse(’TTT2/ex100.chunk’).
?- spy(spy_me2), xml_to_p3g_parse(’TTT2/ex100.chunk’). %% sentence by sentence
You can convert the XML format to the Prolog-based input format (see details in chapter 3), by
?- tell(’ex100_parserin.pl’), xml_to_p3g_parse(’TTT2/ex100.chunk’), told.
If you have used LTPos and LTChunk, as described before, leading to a Prolog-based input format, you can parse as follows:
?- go_textual(’MYFILE’).
In the distribution, the Carroll tagged and chunked evaluation corpus is provided, in three version: One tagged with LTPos, and one

8.2. Preprocessing options 40

tagged with the Ratnaparkhi MaxEntropy tagger.
It can be parsed e.g. with
?- seen, go_textual(’EVAL-Carroll/suste-prologfacts_morphed5.pl’). %% output to screen,

LTPos tagged input
?- tell(’6556.OUT’), seen,

go_textual(’EVAL-Carroll/suste-prologfacts_morphed5.pl’), told. %% output to file
6566.OUT
?- seen, go_textual(’EVAL-Carroll/suste-prologfacts_morphed5.pl’). %% output to screen,

use Ratnaparkhi-tagged input
?- spy(spy_me2), seen,

go_textual(’EVAL-Carroll/suste-prologfacts_morphed5.pl’). %% sentence by sentence.
You can set various options by retracting and asserting Prolog facts. The most important ones are:
?- ambi(X). % X-1 is the number of readings returned
?- modus(showtree). OR ?- modus(fileout). either shows an ASCII syntax tree or not. For batch processing large

corpora, fileout is recommended.
?- mlf(yes) or ?- mlf(no). should Minimal Logical Forms (MLF) be produced? ATTENTION: mlf(yes) still leads to errors!
?- statmod(backoff). OR ?- statmod(interpol). uses backoff (recommended) or interpolation statistics
All parameters are in the file ’Pro3Gres_parameters.*’
You can also use the graphical mode of the parser, as follows:
Parse one or two sentences in non-graphical mode (yes, this is a bug) and ONLY THEN
?- go_xpce.
’Select a file’ to be parsed (pre-tagged, chunked etc. for example EVAL-Carroll/suste-prologfacts_morphed5.pl), press ’start parsing’

and then ’next’. Any ’next’ will bring you one sentence further. You can play around with the different tree display formats.
If you like trees, but do not like graphics ;-) , you can also use ASCII tree output, which will perhaps conjure up a feeing of being in

an old science fiction movie, but if you have a big screen this is one of the best ways to browse the parser output when debugging.
?- abolish(modus/1).
?- assert(modus(showparses)).
=====

8.2 Preprocessing options

8.2.1 More on LT-TTT2 for tagging, chunking and morphological analysis
LT-TTT2 is an XML-based suite of low-level processors doing tagging, morphological analysis, and tagging. They are a further devel-
opment of LTPos and LTChunk. They support layered chunking, and named-entity recognition, but we do not support the latter. We
plan to move our main pipeline to LT-TTT2, as these powerful tools also provide information on tense, aspect etc. and are maintained.

The main davantage of this option is that it is simple and powerful. The main disadvantage is that we have only tested a few thousand
sentences, the conversion from XML to Prolog input format may still throw an error occasionally. Mail me if that happens.

8.2.2 LTPOS Tagger and Chunker, Morphological Analyzer morpha
This is historically the first option. It has been widely tested. LTChunk was found to crash occasionally on extremely long sentences.

Install the chunker LTChunk and the morphological analyzer morpha first. LTChunk may be obtained from
http://www.ltg.ed.ac.uk/software/chunk/index.html
**Update: LTChunk is no longer distributed. I can provide a binary for Solaris or Linux. ALTERNATIVES:
- Treetager: http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/ this is the tagger we currently use
- TNT: see e.g. http://mokk.bme.hu/resources/hunpos (Linux, Mac, Win) good and more performant than LTPos
- Ratnaparkhi: e.g. http://www.cogsci.ed.ac.uk/ jamesc/taggers/MXPOST.html good and more performant than LTPos
if you want to use a different tagger: ATTENTION: needs to produce Penn Treebank tags.
Morpha may be obtained from
http://www.cogs.susx.ac.uk/lab/nlp/carroll/morph.html
** Update: morpha is no longer distributed. I can provide a binary for Solaris or Linux. LT-TTT2 is the official successor.
Some scripts are provided for this option. You may have to adapt them.
Pipe your documents to the shell script PREPROCESS_XXXX.csh.
e.g.
$ cat /home/netapp/gschneid/LTPos/EVAL-Carroll/suste-raw | csh PREPROCESS_LTPos.csh |

more
$ cat /home/netapp/gschneid/LTPos/EVAL-Carroll/suste-raw | csh PREPROCESS_treetagger.csh

| more
STDOUT should output Prolog facts like the following:

41 8.2. Preprocessing options

w(’jury’ ,’NNP’,[’The_DT’,’Fulton_NNP’,’County_NNP’,’Grand_NNP’,’Jury_NNP’],’Fulton County Grand Jury’).
w(’say’ ,’VBD’,[’said_VBD’],’said’).
w(’friday’ ,’NNP’,[’Friday_NNP’],’Friday’).
w(’investigation’ ,’NN’,[’an_DT’,’investigation_NN’],’investigation’).
w(’of’ ,’IN’,[’of_IN’],’of’).
w(’election’ ,’NN’,[’Atlanta_NNP’,’A_APOSTR’,’s_POS’,’recent_JJ’,’primary_JJ’,’election_NN’],’election’).
w(’produce’ ,’VBD’,[’produced_VBD’],’produced’).
w(’evidence’ ,’NN’,[’no_DT’,’evidence_NN’],’evidence’).
w(’that’ ,’IN’,[’that_IN’],’that’).
w(’irregularity’ ,’NNS’,[’any_DT’,’irregularities_NNS’],’irregularities’).
w(’take’ ,’VBD’,[’took_VBD’],’took’).
w(’place’ ,’NN’,[’place_NN’],’place’).
w(’s’ ,’S’,[’S_S’],_).

!!!!!!!! If you create your own pipeline, CHECK CAREFULLY TO MAKE SURE YOUR PROLOG PREDICATES LOOK LIKE
THIS !!!!!!!!! AS PRO3GRES IS A ROBUST SYSTEM, IT WILL ACCEPT SLIGHTLY MALFORMED INPUT, BUT ITS PERFOR-
MANCE WILL BE MUCH LOWER!

If the Prolog facts you get do not look like Prolog code, you may need to correct the scripts to fit your input idiosyncracies. To test,
consult(MYPREDICATES). If you get no error messages or only an error every 10’000 words or so, and the firsrt argument of w/4
corresponds to the following arguments, everything is ok (a possible source of error is that morpha needs to be started from its directory
to work correctly). Direct the output of PREPROCESS.csh to a file. It will be the input for the parser.

8.2.3 Treetagger and Carafe Chunker
The main advantage of this option is that it certainly scales very well. We have parsed several billions of words like this on a Mac OS X
server.

Carafe: http://sourceforge.net/projects/carafe. A binary distribution for Mac can be obtained from me. I have used this to parse the
BNC and my other corpora, because LTChunk crashed. Recommendable.

The Treebank tagger has an option returning lemmas: recommended, because then you need no morphological analyzer (but the Perl
scripts need to be manually changed)

OBS: Carafe is much greedier than the other chunkers, produces different output.

References 42

References
Abney, Steven. 1995. Chunks and dependencies: Bringing processing evidence to bear on syntax. In Jennifer Cole, Georgia Green, and Jerry Morgan, editors, Computational Linguistics and the

Foundations of Linguistic Theory, pages 145–164. CSLI.

Basili, Roberto and Fabio Massimo Zanzotto. 2002. Parsing engineering and empirical robustness. Journal of Natural Language Engineering, 8/2-3.

Bies, Ann, Mark Ferguson, Karen Katz, and Robert MacIntyre. 1995. Bracketing guidelines for Treebank II style Penn Treebank project. Technical report, University of Pennsylvania.

Bikel, Daniel. 2004. On the Parameter Space of Lexicalized Statistical Parsing Models. Ph.D. thesis, Department of Computer and Information Science.

Bod, Rens, Remko Scha, and Khalil Sima’an, editors. 2003. Data-Oriented Parsing. Center for the Study of Language and Information, Studies in Computational Linguistics (CSLI-SCL).
Chicago University Press.

Brants, Thorsten and Matthew Crocker. 2000. Probabilistic parsing and psychological plausibility. In Proceedings of 18th International Conference on Computational Linguistics COLING-2000,
Saarbrücken/Luxembourg/Nancy.

Buchholz, Sabine. 2002. Memory-Based Grammatical Relation Finding. Ph.D. thesis, University of Tilburg, Tilburg, Netherlands.

Burger, John D. and Sam Bayer. 2005. MITRE’s Qanda at TREC-14. In E. M. Voorhees and Lori P. Buckland, editors, The Fourteenth Text REtrieval Conference (TREC 2005) Notebook.

Burke, M., A. Cahill, R. O’Donovan, J. van Genabith, and A. Way. 2004. Treebank-based acquisistion of wide-coverage, probabilistic LFG resources: Project overview, results and evaluation. In
The First International Joint Conference on Natural Language Processing (IJCNLP-04), Workshop "Beyond shallow analyses - Formalisms and statistical modeling for deep analyses", Sanya
City, Hainan Island, China.

Campbell, Richard. 2004. Using linguistic principles to cover empty categories. In Proceedings of ACL-2004, pages 646–653, Barcelona, Spain.

Charniak, Eugene. 1996. Tree-bank grammar. Technical Report Technical Report CS-96-02, Department of Computer Science, Brown University.

Charniak, Eugene. 2000. A maximum-entropy-inspired parser. In Proceedings of the North American Chapter of the ACL, pages 132–139.

Collins, Michael. 1996. A new statistical parser based on bigram lexical dependencies. In Proceedings of the Thirty-Fourth Annual Meeting of the Association for Computational Linguistics,
pages 184–191, Philadelphia.

Collins, Michael. 1999. Head-Driven Statistical Models for Natural Language Parsing. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA.

Collins, Michael and James Brooks. 1995. Prepositional attachment through a backed-off model. In Proceedings of the Third Workshop on Very Large Corpora, Cambridge, MA.

Friedman, J. B. 1989. Computational testing of linguistic models in syntax and semantics. In I. S. Batori, W. Lenders, and W. Putschke, editors, Computational Linguistics - Computerlinguistik.
de Gruyter, Berlin, pages 252–259.

Henderson, James. 2003. Inducing history representations for broad coverage statistical parsing. In Proceedings of HLT-NAACL 2003, Edmonton, Canada.

Hermjakob, Ulf. 2001. Parsing and question classification for question answering. In Proceedings of the ACL 2001 Workshop on Open-Domain Question Answering, Toulouse, France.

Hockenmaier, Julia and Mark Steedman. 2002. Generative models for statistical parsing with combinatory categorial grammar. In Proceedings of 40th Annual Meeting of the Association for
Computational Linguistics, Philadelphia.

Johnson, Mark. 2001. Joint and conditional estimation of tagging and parsing models. In Proceedings of the 39th Meeting of the ACL, pages 314–321, Toulouse, France.

Johnson, Mark. 2002. A simple pattern-matching algorithm for recovering empty nodes and their antecedents. In Proceedings of the 40th Meeting of the ACL, University of Pennsylvania,
Philadelphia.

Klein, Dan and Christopher D. Manning. 2003. Accurate unlexicalized parsing. In Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics, pages 423–430,
Sapporo, Japan.

Magerman, David. 1995. Statistical decision-tree models for parsing. In Proceedings of the 33rd Meeting of the Association for Computational Linguistics, Boston, MA.

Marcus, Mitch, Beatrice Santorini, and M.A. Marcinkiewicz. 1993. Building a large annotated corpus of English: the Penn Treebank. Computational Linguistics, 19:313–330.

Merlo, Paola, Matthew Crocker, and Cathy Berthouzoz. 1997. Attaching multiple prepositional phrases: Generalized backed-off estimation. In Proceedings of the Second Conference on
Empirical Methods in Natural Language Processing, Providence, RI.

Merlo, Paola and Eva Esteve Ferrer. 2006. The notion of argument in PP attachment. Computational Linguistics, 32(2):341 – 378.

Mikheev, Andrei. 1997. Automatic rule induction for unknown word guessing. Computational Linguistics, 23(3):405–423.

Minnen, Guido, John Carroll, and Darren Pearce. 2000. Applied morphological generation. In Proceedings of the 1st International Natural Language Generation Conference (INLG), Mitzpe
Ramon, Israel.

Miyao, Yusuke, Takashi Ninomiya, and Jun’ichi Tsujii. 2005. Corpus-oriented grammar development for acquiring a Head-driven Phrase Structure Grammar from the Penn Treebank. In Keh-Yih
Su, Jun’ichi Tsujii, Jong-Hyeok Lee, and Oi Yee Kwong, editors, Natural Language Processing - IJCNLP 2004, pages 684–693. Springer.

Nivre, Joakim, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret. 2007. The CoNLL 2007 shared task on dependency parsing. In Proceedings of the
CoNLL Shared Task Session of EMNLP-CoNLL 2007, pages 915–932.

Quirk, Randolph, Sidney Greenbaum, Geoffrey Leech, and Jan Svartvik. 1985. A comprehensive grammar of the English language. 11th edn. Longman, London.

Ratnaparkhi, Adwait. 1996. A Maximum Entropy Part-Of-Speech tagger. In Proceedings of the Empirical Methods in Natural Language Processing Conference, University of Pennsylvania.

Ratnaparkhi, Adwait. 1997. A linear observed time statistical parser based on maximum entropy models. In Proceedings of the Second Conference on Empirical Methods in Natural Language
Processing (EMNLP), Brown University, Providence, Rhode Island.

Riezler, Stefan, Tracy H. King, Ronald M. Kaplan, Richard Crouch, John T. Maxwell, and Mark Johnson. 2002. Parsing the Wall Street Journal using a Lexical-Functional Grammar and
discriminative estimation techniques. In Proc. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL’02), Philadephia, PA.

Tesnière, Lucien. 1959. Eléments de Syntaxe Structurale. Librairie Klincksieck, Paris.

Younger, D. H. 1967. Recognition and parsing of context-free languages in time n3. Information and Control, 10:189-208.

